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Abstract
We consider the problem of recovering a low-rank matrix
from its clipped observations. Clipping is conceivable in
many scientific areas that obstructs statistical analyses. On
the other hand, matrix completion (MC) methods can recover
a low-rank matrix from various information deficits by us-
ing the principle of low-rank completion. However, the cur-
rent theoretical guarantees for low-rank MC do not apply to
clipped matrices, as the deficit depends on the underlying val-
ues. Therefore, the feasibility of clipped matrix completion
(CMC) is not trivial. In this paper, we first provide a the-
oretical guarantee for the exact recovery of CMC by using
a trace-norm minimization algorithm. Furthermore, we pro-
pose practical CMC algorithms by extending ordinary MC
methods. Our extension is to use the squared hinge loss in
place of the squared loss for reducing the penalty of over-
estimation on clipped entries. We also propose a novel regu-
larization term tailored for CMC. It is a combination of two
trace-norm terms, and we theoretically bound the recovery
error under the regularization. We demonstrate the effective-
ness of the proposed methods through experiments using both
synthetic and benchmark data for recommendation systems.

1 Introduction
Ceiling effect is a measurement limitation that occurs when
the highest possible score on a measurement instrument
is reached, thereby decreasing the likelihood that the in-
strument has accurately measured in the intended domain
(Salkind 2010). In this paper1, we investigate methods for
restoring a matrix data from ceiling effects.

1.1 Ceiling effect
Ceiling effect has long been discussed across a wide range
of scientific fields such as sociology (DeMaris 2004), ed-
ucational science (Kaplan 1992; Benjamin 2005), biomed-
ical research (Austin and Brunner 2003; Cox and Oakes
1984), and health science (Austin, Escobar, and Kopec 2000;
Catherine et al. 2004; Voutilainen et al. 2016; Rodrigues et
al. 2013), because it is a crucial information deficit known
to inhibit effective statistical analyses (Austin and Brunner
2003).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1A longer version of this paper including Appendix is available
at https://arxiv.org/abs/1809.04997.
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Figure 1: Ceiling effects may also exist in standard bench-
mark data sets of recommendation systems (details of the
data are described in Section 6). Histograms of the rated val-
ues are plotted. The right-truncated look of the histogram is
typical for a variable under ceiling effects (Greene 2012).

The ceiling effect is also conceivable in the context of ma-
chine learning, e.g., in recommendation systems with a five-
star rating. After rating an item with a five-star, a user may
find another item much better later. In this case, the true rat-
ing for the latter item should be above five, but the recorded
value is still a five-star. As a matter of fact, we can observe
right-truncated shapes indicating ceiling effects in the his-
tograms of well-known benchmark data sets for recommen-
dation systems, as shown in Figure 1.

Restoring data from ceiling effects can lead to benefits
in many fields. For example, in biological experiments to
measure the adenosine triphosphate (ATP) level, it is known
that the current measurement method has a technical upper
bound (Yaginuma et al. 2014). In such a case, by measuring
multiple cells in multiple environments, we may recover the
true ATP levels which can provide us with further findings.
In the case of recommendation systems, we may be able to
find latent superiority or inferiority between items with the
highest ranking and recommend unobserved entries better.

In this paper, we investigate methods for restoring a ma-
trix data from ceiling effects. In particular, we consider the
recovery of a clipped matrix, i.e., elements of the matrix are
clipped at a predefined threshold in advance of observation,
because ceiling effects are often modeled as a clipping phe-
nomenon (Austin and Brunner 2003).
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(a) True matrix M

8 10 6 9 4
2 6 7 10 10
4 6 2 2 0
0 3 6 10 10

7 4 7 4

(b) Observed Mc
Ω

8.0 13.0 6.0 9.0 4.0
2.0 6.0 7.0 15.9 11.9
4.0 6.0 2.0 2.0 0.0
0.0 3.0 6.0 14.9 11.9
4.0 7.0 4.0 7.0 4.0

(c) Restored M̂

Figure 2: Illustration of the task of CMC. The true low-rank
matrix M has a distinct structure of large values. However,
the observed data Mc

Ω is clipped at a predefined threshold
C = 10. The goal of CMC is to restore M from the value
of C and Mc

Ω. The restored matrix M̂ is an actual result of
applying a proposed method (Fro-CMC).

1.2 Our problem: clipped matrix completion
(CMC)

We consider the recovery of a low-rank matrix whose obser-
vations are clipped at a predefined threshold (Figure 2). We
call this problem clipped matrix completion (CMC). Let us
first introduce its background, low-rank matrix completion.

Low-rank matrix completion (MC) aims to recover a low-
rank matrix from various information deficits, e.g., miss-
ing (Cands and Recht 2009; Recht 2011; Chen et al. 2015;
Kirly, Theran, and Tomioka 2015), noise (Cands and Plan
2010), or discretization (Davenport et al. 2014; Lan, Studer,
and Baraniuk 2014; Bhaskar 2016). The principle to enable
low-rank MC is the dependency among entries of a low-rank
matrix; each element can be expressed as the inner product
of latent feature vectors of the corresponding row and col-
umn. With the principle of low-rank MC, we may be able to
recover the entries of a matrix from a ceiling effect.

Clipped matrix completion (CMC). The CMC problem
is illustrated in Figure 2. It is a problem to recover a low-
rank matrix from random observations of its entries.

Formally, the goal of CMC in this paper can be stated as
follows. Let M ∈ Rn1×n2 be the ground-truth low-rank ma-
trix where n1, n2 ∈ N, and C ∈ R be the clipping threshold.
Let Clip(·) := min{C, ·} be the clipping operator that oper-
ates on matrices element-wise. We observe a random subset
of entries of Mc := Clip(M). The set of observed indices
is denoted by Ω. The goal of CMC is to accurately recover
M from Mc

Ω := {M c
ij}(i,j)∈Ω and C.

Limitations of MC. There are two limitations regarding
the application of existing MC methods to CMC.

1. The applicability of the principle of low-rank MC to
clipped matrices is non-trivial because clipping occurs
depending on the underlying values whereas the exist-
ing theoretical guarantees of MC methods presume the
information deficit (e.g., missing or noise) to be in-
dependent of the values (Bhojanapalli and Jain 2014;
Chen et al. 2015; Liu, Liu, and Yuan 2017).

2. Most of the existing MC methods fail to take ceiling
effects into account, as they assume that the observed
values are equal to or close to the true values (Cands
and Recht 2009; Keshavan, Montanari, and Oh 2010),

whereas clipped values may have a large gap from the
original values.

The goal of this paper is to overcome these limitations and
to propose low-rank completion methods suited for CMC.

1.3 Our contribution and approach
From the perspective of MC research, our contribution is
three-fold.

1) We provide a theoretical analysis to establish the va-
lidity of the low-rank principle in CMC (Section 2). To
do so, we provide an exact recovery guarantee: a sufficient
condition for a trace-norm minimization algorithm to per-
fectly recover the ground truth matrix with high probability.
Our analysis is based on the notion of incoherence (Cands
and Recht 2009; Recht 2011; Chen et al. 2015).

2) We propose practical algorithms for CMC (Section 3)
and provide an analysis of the recovery error (Section 4).
We propose practical CMC methods which are extensions of
the Frobenius norm minimization that is frequently used for
MC (Toh and Yun 2010). The simple idea of extension is to
replace the squared loss function with the squared hinge loss
to cancel the penalty of over-estimation on clipped entries.
We also propose a regularizer consisting of two trace-norm
terms, which is motivated by a theoretical analysis of a re-
covery error bound.

3) We conducted experiments using synthetic and real-
world data to demonstrate the validity of the proposed
methods (Section 6). Using synthetic data with known
ground truth, we confirmed that the proposed CMC meth-
ods can actually recover randomly-generated matrices from
clipping. We also investigated the improved robustness of
CMC methods to the existence of clipped entries in compar-
ison with ordinary MC methods. Using real-world data, we
conducted two experiments to validate the effectiveness of
the proposed CMC methods.

1.4 Additional notation
The symbols M,Mc,Mc

Ω,Ω, C, and Clip are used through-
out the paper. Let r be the rank of M. The set of observed
clipped indices is C := {(i, j) ∈ Ω : M c

ij = C}. Given
a set of indices S, we define its projection operator PS :
Rn1×n2 → Rn1×n2 by (PS(X))ij := 1{(i, j) ∈ S}Xij ,
where 1{·} denotes the indicator function giving 1 if the
condition is true and 0 otherwise. We use ‖ · ‖, ‖ · ‖tr, ‖ ·
‖op, ‖ · ‖F, and ‖ · ‖∞ for the Euclidean norm of vectors,
the trace-norm, the operator norm, the Frobenius norm, the
infinity norm of matrices, respectively. We also use (·)> for
the transpose and define [n] := {1, 2, . . . , n} for n ∈ N. For
a notation table, please see Table 4 in Appendix.

2 Feasibility of the CMC problem
As noted earlier, it is not trivial if the principle of low-rank
MC guarantees the recover of clipped matrices. In this sec-
tion, we establish that the principle of low-rank completion
is still valid for some matrices by providing a sufficient con-
dition under which an exact recovery by trace-norm mini-
mization is achieved with high probability.
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We consider a trace-norm minimization for CMC:

M̂ ∈ arg min
X∈Rn1×n2

‖X‖tr s.t.
{
PΩ\C(X) = PΩ\C(M

c),

PC(Mc) ≤ PC(X),

(1)

where “s.t.” stands for “subject to.” Note that the optimiza-
tion problem Eq. (1) is convex, and there are algorithms that
can solve it numerically (Liu and Vandenberghe 2010).

2.1 Definitions and intuition of the information
loss measures

Here, we define the quantities required for stating the the-
orem. The quantities reflect the difficulty of recovering M,
therefore the sufficient condition stated in the theorem will
be that these quantities are small enough. Let us begin with
the definition of coherence that captures how much the row
and column spaces of a matrix is aligned with the stan-
dard basis vectors (Cands and Recht 2009; Recht 2011;
Chen et al. 2015).
Def. 1 (Coherence and joint coherence (Chen et al. 2015)).
Let X ∈ Rn1×n2 have a skinny singular value decomposi-
tion X = ŨΣ̃Ṽ>. We define

µU(X) := max
i∈[n1]

‖Ũi,·‖2, µV(X) := max
j∈[n2]

‖Ṽj,·‖2,

where Ũi,· (Ṽj,·) is the i-th (resp. j-th) row of Ũ (resp. Ṽ).
Now the coherence of M is defined by

µ0 := max
{n1

r
µU(M),

n2

r
µV(M)

}
.

In addition, we define the following joint coherence:

µ1 :=

√
n1n2

r
‖UV>‖∞.

The feasibility of CMC depends upon the amount of in-
formation that clipping can hide. To characterize the amount
of information obtained from observations of M, we define
a subspace T that is also used in the existing recovery guar-
antees for MC (Cands and Recht 2009).
Def. 2 (The information subspace of M (Cands and Recht
2009)). Let M = UΣV> be a skinny singular value de-
composition (U ∈ Rn1×r,Σ ∈ Rr×r and V ∈ Rn2×r). We
define

T := span
(
{uky> : k ∈ [r],y ∈ Rn1}
∪ {xv>k : k ∈ [r],x ∈ Rn2}

)
,

where uk,vk are the k-th column of U and V, respectively.
Let PT and PT⊥ denote the projections onto T and T⊥,
respectively, where ⊥ denotes the orthogonal complement.

Using T , we define the quantities to capture the amount of
information loss due to clipping, in terms of different matrix
norms representing different types of dependencies. To ex-
press the factor of clipping, we define a transformation P∗
on Rn1×n2 that describes the amount of information left af-
ter clipping. Therefore, if these quantities are small, enough
information for recovering M may be preserved after clip-
ping.

Def. 3 (The information loss measured in various norms).
Define

ρF := sup
Z∈T\{O}:‖Z‖F≤‖UV>‖F

‖PTP∗(Z)− Z‖F
‖Z‖F

,

ρ∞ := sup
Z∈T\{O}:‖Z‖∞≤‖UV>‖∞

‖PTP∗(Z)− Z‖∞
‖Z‖∞

,

ρop :=
√
rµ1

 sup
Z∈T\{O}:

‖Z‖op≤
√
n1n2‖UV>‖op

‖P∗(Z)− Z‖op

‖Z‖op

 ,

where the operator P∗ : Rn1×n2 → Rn1×n2 is defined by

(P∗(Z))ij =


Zij if Mij < C,

max{Zij , 0} if Mij = C,

0 otherwise.

In addition, we define the following quantity that captures
how much information of T depends on the clipped entries
of Mc. If this quantity is small, enough information of T
may be left in non-clipped entries.

Def. 4 (The importance of clipped entries for T ). Define

νB := ‖PTPBPT − PT ‖op,

where B := {(i, j) : Mij < C}.

We follow Chen et al. (2015) to assume the following ob-
servation scheme. As a result, it amounts to assuming that Ω
is a result of random sampling where each entry is observed
with probability p independently.

Assumption 1 (Assumption on the observation scheme).
Let p ∈ [0, 1]. Let k0 :=

⌈
log2(2

√
2
√
n1n2r)

⌉
and q :=

1−(1−p)1/k0 . For each k = 1, . . . , k0, let Ωk ⊂ [n1]×[n2]
be a random set of matrix indices that were sampled accord-
ing to P((i, j) ∈ Ωk) = q independently. Then, Ω was gen-
erated by Ω =

⋃k0
k=1 Ωk.

The need for Assumption 1 is technical (Chen et al. 2015).
Refer to the proof in Appendix D for details.

2.2 The theorem

We are now ready to state the theorem.

Theorem 1 (Exact recovery guarantee for CMC). Assume
ρF < 1

2 , ρop < 1
4 , ρ∞ < 1

2 , νB < 1
2 , and Assumption 1

for some p ∈ [0, 1]. For simplicity of the statement, assume
n1, n2 ≥ 2 and p ≥ 1

n1n2
. If, additionally,

p ≥ min
{

1, cρ max(µ1
2, µ0)rf(n1, n2)

}
is satisfied, then the solution of Eq. (1) is unique and equal
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to M with probability at least 1− δ, where

cρ = max

{
24

(1/2− ρF)2
,

8

(1/4− ρop)2
,

8

(1/2− ρ∞)2
,

8

(1/2− νB)2

}
,

f(n1, n2) = O
(

(n1 + n2)(log(n1n2))2

n1n2

)
,

δ = O
(

log(n1n2)

(n1 + n2)2

)
.

The proof and the precise expressions of f and δ are avail-
able in Appendix D. A more general form of Theorem 1
allowing for clipping from below is also available in Ap-
pendix E. The information losses (Def. 3 and Def. 4) appear
neither in the order of p nor that of δ, but they appear as coef-
ficients and deterministic conditions. The existence of such
a deterministic condition is in accordance with the intuition
that an all-clipped matrix can never be completed no matter
how many entries are observed.

Note that p > 1/(n1n2) can be safely assumed when
there is at least one observation. An intuition regarding the
conditions on ρF, ρop, ρ∞, and νB is that the singular vec-
tors of M should not be too aligned with the clipped entries
for the recovery to be possible, similarly to the intuition for
the incoherence condition in previous theoretical works such
as Cands and Recht (2009).

3 Practical algorithms
In this section, we introduce practical algorithms for CMC.
The trace-norm minimization (Eq. (1)) is known to require
impractical running time as the problem size increases from
small to moderate or large (Cai, Cands, and Shen 2010).

A popular method for matrix completion is to minimize
the squared error between the prediction and the observed
value under some regularization (Toh and Yun 2010). We
develop our CMC methods following this approach.

Throughout this section, X ∈ Rn1×n2 generally denotes
an optimization variable, which may be further parametrized
by X = PQ> (where P ∈ Rn1×k,Q ∈ Rn2×k for some
k ≤ min(n1, n2)). Regularization terms are denoted by R,
and regularization coefficients by λ, λ1, λ2 ≥ 0.

Frobenius norm minimization for MC. In the MC meth-
ods based on the Frobenius norm minimization (Toh and
Yun 2010), we define

fMC(X) :=
1

2
‖PΩ(Mc −X)‖2F, (2)

and obtain the estimator by

M̂ ∈ arg min
X∈Rn1×n2

fMC(X) +R(X). (3)

The problem in using this method for CMC is that it is not
robust to clipped entries as the loss function is designed un-
der the belief that the true values are close to the observed
values. We extend this method for CMC with a simple idea.

The general idea of extension. The general idea of exten-
sion is not to penalize the estimator on clipped entries when
the predicted value exceeds the observed value. Therefore,
we modify the loss function to

fCMC(X) =
1

2
‖PΩ\C(M

c −X)‖2F +
1

2

∑
(i,j)∈C

(Mc
ij −Xij)

2
+,

(4)

where (·)2
+ := (max(0, ·))2 is the squared hinge loss, which

does not penalize over-estimation. Then we obtain the esti-
mator by

M̂ ∈ arg min
X∈Rn1×n2

fCMC(X) +R(X). (5)

From here, we discuss three designs of regularization
terms for CMC. The methods are summarized in Table 1,
and further details of the algorithms can be found in Ap-
pendix A.

Double trace-norm regularization. We first propose to
use R(X) = λ1‖X‖tr + λ2‖Clip(X)‖tr. For this method,
we will conduct a theoretical analysis of the recovery er-
ror in Section 4. For optimization, we employ an iterative
method based on subgradient descent (Avron et al. 2012).
Even though the second term, λ2‖Clip(X)‖tr, is a composi-
tion of a nonlinear mapping and a non-smooth convex func-
tion, we can take advantage of its simple structure to approx-
imate it with a convex function of X whose subgradient can
be calculated for each iteration. We refer to this algorithm as
DTr-CMC (Double Trace-norm regularized CMC).

Trace-norm regularization. With trace-norm regulariza-
tion R(X) := λ‖X‖tr, the optimization problem Eq. (5)
is a relaxation of the trace-norm minimization (Eq. (1)) by
replacing the exact constraints with the quadratic penalties
(Eq. (2) for MC and Eq. (4) for CMC). For optimization, we
employ an accelerated proximal gradient (APG) algorithm
proposed by Toh and Yun (2010), by taking advantage of the
differentiability of the squared hinge loss. We refer to this al-
gorithm as Tr-CMC (Trace-norm-regularized CMC), in con-
trast to Tr-MC (its MC counterpart; Toh and Yun 2010).

Frobenius norm regularization. This method first
parametrizes X as PQ> and use R(P,Q) :=
λ1‖P‖2F + λ2‖Q‖2F for regularization. A commonly
used method for optimization in the case of MC is the al-
ternating least squares (ALS) method (Jain, Netrapalli, and
Sanghavi 2013). Here, we employ an approximate optimiza-
tion scheme motivated by ALS in our experiments. We refer
to this algorithm as Fro-CMC (Frobenius-norm-regularized
CMC), in contrast to Fro-MC (its MC counterpart; Jain,
Netrapalli, and Sanghavi 2013).

4 Theoretical analysis for DTr-CMC
In this section, we provide a theoretical guarantee for DTr-
CMC. Let G be the hypothesis space defined by

G =
{
X ∈ Rn1×n2 :‖X‖2tr ≤ β1

√
kn1n2,

‖Clip(X)‖2tr ≤ β2

√
kn1n2

}
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Table 1: List of the proposed methods for CMC (Fro: Frobe-
nius norm, Tr: Trace-norm, Sq.hinge: Squared hinge loss,
SUGD: SUb-Gradient Descent, APG: Accelerated Prox-
imal Gradient, ALS: Alternating Least Squares, Param.:
Parametrization, Reg.: Regularization, Opt.: Optimization).

Method Param. Loss on C Reg. Opt.
DTr-CMC X Sq. hinge Tr + Tr SUGD
Tr-CMC X Sq. hinge Tr APG
Fro-CMC PQ> Sq. hinge Fro ALS

for some k ≤ min(n1, n2) and β1, β2 ≥ 0. Here, we analyze
the estimator

M̂ ∈ arg min
X∈G

∑
(i,j)∈Ω

(M c
ij − Clip(Xij))

2. (6)

The minimization objective of Eq. (6) is not convex. How-
ever, it is upper-bounded by the convex loss function fCMC

(Eq. (4)). The proof is provided in Appendix A.1. Therefore,
DTr-CMC can be seen as a convex relaxation of Eq. (6) with
constraints turned into regularization terms. To state our the-
orem, we define the unnormalized coherence of a matrix.

Def. 5 (Unnormalized coherence). Let µ(X) be unnormal-
ized coherence defined by

µ(X) = max{µU(X), µV(X)},

using µU and µV from Def. 1.

Now we are ready to state our theorem.

Theorem 2 (Theoretical guarantee for DTr-CMC). Suppose
that M ∈ G, and that Ω is generated by independent ob-
servation of entries with probability p ∈ [0, 1]. Let µG =

supX∈Gµ(Clip(X)), and M̂ be a solution to the optimiza-
tion problem Eq. (6). Then there exist universal constantsC0

and C1, such that with probability at least 1−C1/(n1 +n2)
we have√

1

n1n2
‖M̂−M‖2F

≤ ‖M−Mc‖F√
n1n2︸ ︷︷ ︸

=B1:Complexity of data

+
‖M̂− Clip(M̂)‖F√

n1n2︸ ︷︷ ︸
=B2:Complexity of hypothesis

+
‖Clip(M̂)− Clip(M)‖F√

n1n2︸ ︷︷ ︸
=B3:Estimation error

,

(7)

and

B1 ≤ (
√
β1 +

√
β2)k

1
4 (n1n2)−

1
4 ,

B2 ≤ (
√
β1 +

√
β2)k

1
4 (n1n2)−

1
4 ,

B3 ≤

√
C0

2µG2β2

p

(
pk(n1 + n2) + k log(n1 + n2)

n1n2

) 1
4

.

We provide the proof in Appendix F. The right-hand side
of Eq. (7) converges to zero as n1, n2 → ∞ with p, k, β1,
and β2 fixed. From this theorem, it is expected that if ‖M‖tr
and ‖Mc‖tr are believed to be small, DTr-CMC can accu-
rately recover M.

5 Related work
In this section, we describe related work from the literature
on matrix completion and that on ceiling effects. Table 2
briefly summarizes the related work on matrix completion.

5.1 Matrix completion methods.
Theory. Our feasibility analysis in Section 2 followed the
approach of Recht (2011) while some details of the proof
were based on Chen et al. (2015). There is further research to
weaken the assumption of the uniformly random observation
(Bhojanapalli and Jain 2014). It may be relatively easy to
incorporate such devices into our theoretical analysis.

Our theoretical analysis for DTr-CMC in Section 4 is in-
spired by the theory for 1-bit matrix completion (Davenport
et al. 2014). The difference is that our theory effectively ex-
ploits the additional low-rank structure in the clipped matrix
in addition to the original matrix.

Problem setting. Our problem setting of clipping can be
related to quantized matrix completion (Q-MC; Lan, Studer,
and Baraniuk 2014; Bhaskar 2016). Lan, Studer, and Bara-
niuk (2014) and Bhaskar (2016) formulated a probabilistic
model which assigns discrete values according to a distri-
bution conditioned on the underlying values of a matrix.
Bhaskar (2016) provided an error bound for restoring the
underlying values, assuming that the quantization model is
fully known. The model of Q-MC can provide a different
formulation for ceiling effects from ours by assuming the ex-
istence of latent random variables. However, Q-MC methods
require the data to be fully discrete (Lan, Studer, and Bara-
niuk 2014; Bhaskar 2016). Therefore, neither their methods
nor theories can be applied to real-valued observations. On
the other hand, our methods and theories allow observations
to be real-valued. The ceiling effect is worth studying in-
dependently of quantization, since the data analyzed under
ceiling effects are not necessarily discrete.

Methodology. The use of the Frobenius norm for MC has
been studied for MC from noisy data (Cands and Plan 2010;
Toh and Yun 2010). Our algorithms are based on this line of
research, while extending it for CMC.

Methodologically, Mareek, Richtrik, and Tak (2017) is
closely related to our Fro-CMC. They considered comple-
tion of missing entries under “interval uncertainty” which
yields interval constraints indicating the ranges in which the
true values should reside. They employed the squared hinge
loss for enforcing the interval constraints in their formula-
tion, hence coinciding with our formulation of Fro-CMC.
There are a few key differences between their work and ours.
First, our motivations are quite different as we are analyz-
ing a different problem from theirs. They considered com-
pletion of missing entries with robustness to uncertainty,
whereas we considered recovery of clipped entries. Sec-
ondly, they did not provide any theoretical analysis of the
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Table 2: Our target problem is the restoration of a low-rank
matrix from clipping at a predefined threshold. No existing
work has considered this type of information deficit.

Type of deficit Related work
Missing (Cands and Recht 2009) etc.
Noise (Cands and Plan 2010) etc.
Quantization (Bhaskar 2016) etc.
Clipping This paper

problem. We provided an analysis by specifically investigat-
ing the problem of clipping. Lastly, as a minor difference, we
employed an ALS-like algorithm whereas they used a co-
ordinate descent method (Mareek, Richtrik, and Tak 2017;
Marecek et al. 2018), as we found the ALS-like method to
work well for moderately sized matrices.

5.2 Related work on ceiling effects
From the perspective of dealing with ceiling effects, the
present paper adds a potentially effective method to the
analysis of data affected by a ceiling effect. Ceiling effect
is also referred to as censoring (Greene 2012) or limited
response variables (DeMaris 2004). In this paper, we use
“ceiling effect” to represent these phenomena. In econo-
metrics, Tobit models are used to deal with ceiling effects
(Greene 2012). In Tobit models, a censored likelihood is
modeled and maximized with respect to the parameters of
interest. Although this method is justified by the theory of
M-estimation (Schnedler 2005; Greene 2012), its use for
matrix completion is not justified. In addition, Tobit models
require strong distributional assumptions, which is problem-
atic especially if the distribution cannot be safely assumed.

6 Experimental results
In this section, we show the results of experiments to com-
pare the proposed CMC methods to the MC methods.

6.1 Experiment with synthetic data
We conducted an experiment to recover randomly generated
data from clipping. The primary purpose of the experiment
was to confirm that the principle of low-rank completion is
still effective for the recovery of a clipped matrix, as in-
dicated by Theorem 1. Additionally, with the same exper-
iment, we investigated how sensitive the MC methods are to
the clipped entries by looking at the growth of the recovery
error in relation to increased rates of clipping.

Data generation process. We randomly generated non-
negative integer matrices of size 500 × 800 that are ex-
actly rank-30 with the fixed magnitude parameter L = 15
(see Appendix B). The generated elements of matrix M
were randomly split into three parts with ratio (0.8, 0.1, 0.1).
Then the first part was clipped at the threshold C (varied
over {5, 6, 7, 8, 9, 11, 13}) to generate the training matrix
Mc

Ω (therefore, p = 0.8). The remaining two parts (with-
out thresholding) were treated as the validation (Mv) and
testing (Mt) matrices, respectively.

Evaluation metrics. We used the relative root mean
square error (rel-RMSE) as the evaluation metric, and we
considered a result as a good recovery if the error is of order
10−2 (Toh and Yun 2010). We separately reported the rel-
RMSE on two sets of indices: all the indices of M, and the
test entries whose true values are below the clipping thresh-
old. For hyperparameter tuning, we used the rel-RMSE after
clipping on validation indices: ‖Clip(M̂)−Clip(Mv)‖F

‖Clip(Mv)‖F . We re-
ported the mean of five independent runs. The clipping rate
was calculated by the ratio of entries of M above C.

Compared methods. We evaluated the proposed methods
(DTr-CMC, Tr-CMC, and Fro-CMC) and their MC coun-
terparts (Tr-MC and Fro-MC). We also applied MC meth-
ods after ignoring all clipped training entries (Tr-MCi and
Fro-MCi, with “i” standing for “ignore”). While this treat-
ment wastes some data, it may improve the robustness of
MC methods to the existence of clipped entries.

Result 1: The validity of low-rank completion. In Fig-
ure (3a), we show the rel-RMSE for different clipping rates.
The proposed methods successfully recover the true matri-
ces with very low error of order 10−2 even when half of
the observed training entries are clipped. One of them (Fro-
CMC) is able to successfully recover the matrix after the
clipping rate was above 0.6. This may be explained in part
by the fact that the synthetic data were exactly low rank, and
that the correct rank was in the search space of the bilinear
model of the Frobenius norm based methods.

Result 2: The robustness to the existence of clipped train-
ing entries. In Figure (3b), the recovery error of MC meth-
ods on non-clipped entries increased with the rate of clip-
ping. This indicates the disturbance effect of the clipped en-
tries for ordinary MC methods. The MC methods with the
clipped entries ignored (Tr-MCi and Fro-MCi) were also
prone to increasing test error on non-clipped entries for high
clipping rates, most likely due to wasting too much infor-
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Figure 3: Relative RMSE for variedC (Dotted: previous MC
methods, Solid: proposed CMC methods).
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mation. On the other hand, the proposed methods show im-
proved profiles of growth, indicating improved robustness.

6.2 Experiments with real-world data
We conducted two experiments using real-world data. The
difficulty of evaluating CMC with real-world data is that
there are no known true values unaffected by the ceiling ef-
fect. Therefore, instead of evaluating the accuracy of recov-
ery, we evaluated the performance of distinguishing entries
with the ceiling effect and those without. We considered two
binary classification tasks in which we predict whether held-
out test entries are of high values. The tasks would be rea-
sonable because the purpose of a recommendation system is
usually to predict which entries have high scores.

Preparation of data sets. We used the following bench-
mark data sets of recommendation systems.
• FilmTrust (Guo, Zhang, and Yorke-Smith 2013)2 consists

of ratings obtained from 1,508 users to 2,071 movies on a
scale from 0.5 to 4.0 with a stride of 0.5 (approximately
99.0% missing). For ease of comparison, we doubled the
ratings so that they are integers from 1 to 8.

• Movielens (100K)3 consists of ratings obtained from 943
users to 1,682 movies on an integer scale from 1 to 5 (ap-
proximately 94.8% missing).

Task 1: Using artificially clipped training data. We arti-
ficially clipped the training data at thresholdC and predicted
whether the test entries were originally above C. We used
C = 7 for FilmTrust and C = 4 for Movielens. For testing,
we made positive prediction for entries above C + 0.5 and
negative prediction otherwise.

Task 2: Using raw data. We used the raw training data
and predicted whether the test entries are equal to the maxi-
mum value of the rating scale (i.e., the underlying values are
at least the maximum value). For CMC methods, we set C
to the maximum value, i.e., C = 8 for FilmTrust and C = 5
for Movielens. For testing, we made positive prediction for
entries above C − 0.5 and negative prediction otherwise.

Protocols and evaluation metrics. In both experiments,
we first split the observed entries into three groups with ratio
(0.8, 0.1, 0.1), which were used as training, validation, and
test entries. Then for the first task, we artificially clipped the
training data atC. If a user or an item had no training entries,
we removed them from all matrices.

We measured the performance by the f1 score. Hyperpa-
rameters were selected by the f1 score on the validation en-
tries. We reported the mean and the standard error after five
independent runs.

Compared methods. We compared the proposed CMC
methods with the corresponding MC methods. The baseline
(indicated as “baseline”) is to make prediction positively for
all entries, for which the recall is 1 and the precision is the
ratio of the positive data. This is the best baseline in terms
of the f1 score without looking at data.

2https://www.librec.net/datasets.html
3http://grouplens.org/datasets/movielens/100k/

Table 3: Results of the two tasks measured in f1. Bold-face
indicates the highest score.

Data Methods Task 1 f1 Task 2 f1
Film DTr-CMC 0.47 (0.01) 0.46 (0.01)
Trust Fro-CMC 0.35 (0.01) 0.40 (0.01)

Fro-MC 0.27 (0.01) 0.35 (0.01)
Tr-CMC 0.36 (0.00) 0.39 (0.00)
Tr-MC 0.22 (0.00) 0.35 (0.01)
(baseline) 0.41 (0.00) 0.41 (0.00)

Movielens DTr-CMC 0.39 (0.00) 0.38 (0.00)
(100K) Fro-CMC 0.41 (0.00) 0.41 (0.01)

Fro-MC 0.21 (0.01) 0.38 (0.01)
Tr-CMC 0.40 (0.00) 0.40 (0.00)
Tr-MC 0.12 (0.00) 0.38 (0.00)
(baseline) 0.35 (0.00) 0.35 (0.00)

Results. The results are compiled in Table 3. In Task 1, by
comparing the results between CMC methods and their cor-
responding MC methods, we conclude that the CMC meth-
ods have improved the ability to recover clipped values in
real-world data as well. In Task 2, the CMC methods show
better performance for predicting entries of the maximum
value of rating than their MC counterparts.

Interestingly, we obtain the performance improvement by
only changing the loss function to be robust to ceiling ef-
fects and without changing the model complexity (such as
introducing an ordinal regression model). The computation
time of the proposed methods are reported in Appendix C.

7 Conclusion
In this paper, we showed the first result of exact recovery
guarantee for the novel problem of clipped matrix com-
pletion. We proposed practical algorithms as well as a
theoretically-motivated regularization term. We showed that
the clipped matrix completion methods obtained by modify-
ing ordinary matrix completion methods are more robust to
clipped data, through numerical experiments. A future work
is to specialize our theoretical analysis to discrete data to an-
alyze the ability of quantized matrix completion methods for
recovering discrete data from ceiling effects.
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