
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Learning Competitive and Discriminative Reconstructions for Anomaly Detection

Kai Tian,1 Shuigeng Zhou,1∗ Jianping Fan,2 Jihong Guan3

1Shanghai Key Lab of Intelligent Information Processing, and School of Computer Science, Fudan University, China
2Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC 28223 USA

3Department of Computer Science & Technology, Tongji University, China
1{ktian14, sgzhou}@fudan.edu.cn; 2jfan@uncc.edu; 3jhguan@tongji.edu.cn

Abstract
Most of the existing methods for anomaly detection use only
positive data to learn the data distribution, thus they usually
need a pre-defined threshold at the detection stage to deter-
mine whether a test instance is an outlier. Unfortunately, a
good threshold is vital for the performance and it is really
hard to find an optimal one. In this paper, we take the dis-
criminative information implied in unlabeled data into con-
sideration and propose a new method for anomaly detection
that can learn the labels of unlabelled data directly. Our pro-
posed method has an end-to-end architecture with one en-
coder and two decoders that are trained to model inliers and
outliers’ data distributions in a competitive way. This archi-
tecture works in a discriminative manner without suffering
from overfitting, and the training algorithm of our model is
adopted from SGD, thus it is efficient and scalable even for
large-scale datasets. Empirical studies on 7 datasets including
KDD99, MNIST, Caltech-256, and ImageNet etc. show that
our model outperforms the state-of-the-art methods.

Introduction
Anomaly detection is to identify the data that do not conform
to the expected normal patterns. These data may come from
a new class or some noisy data that has no meaning. Usu-
ally, we call these abnormal data outliers, and inliers for the
normal data. Anomaly detection is closely related with many
real-world applications such as outlier detection, novelty de-
tection in computer vision area (Khan and Madden 2009;
Chandola, Banerjee, and Kumar 2009; Khan and Madden
2014) and medical diagnoses, drug discovery in bioinfor-
matics (Wei et al. 2018). It can be categorized into one-class
learning, where the profile of negative class is not well de-
fined. According to the real application contexts, the nega-
tive data could be hard to collect or verify. Besides, there
could be any kind of abnormal data that are unpredictable.
Thus, those data are considered as novelties (or outliers),
while the positive data (or inliers) are well characterized by
the training data. It is hard to use traditional multiple class
classification methods to learn from only positive labeled
data due to the inertness of classifiers.

Over the past decades, researchers have proposed lots of
methods to deal with anomaly detection problems (Eskin
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2000; Chandola, Banerjee, and Kumar 2009; Liu, Hua, and
Smith 2014; Malhotra et al. 2016). Generally, these methods
either build a model configuration for normal data examples
and identify the examples that disobey the normal profiles as
outliers, or explicitly isolate outliers based on statistical or
geometric measures of abnormality. Usually, different mod-
els have different capacities to characterize the data distri-
bution. Most of the traditional methods are linear models
which have limited model capacity. Although kernel func-
tion can be used to improve their capacities, it is not suitable
for the context of high-dimensional and large-scale data.

Recently, deep learning methods have shown their pow-
erful representation ability and gained immense success
in many applications (Vincent et al. 2010; Krizhevsky,
Sutskever, and Hinton 2012; Bengio, Courville, and Vin-
cent 2013). However, due to the unavailability of negative
data, it is hard to train a supervised deep neural network for
one-class classification directly. Although some efforts have
been made to learn one-class classifier, most of them could
not establish a discriminative model for anomaly detection.
The detection is done by choosing a pre-defined threshold.
From the probability perspective, it can be explained as that
outliers should lie on the low-density regions of the model’s
distribution. However, since the outliers are not predictable,
it is hard to determine a threshold that works for all cases.
Meanwhile, as the model is only trained on the positive data,
overfitting is another key factor that may destroy the model’s
generalization performance. That is the reason why we can-
not simply train a DNN classifier based on positive data. Al-
though one can use some strategies such as early stopping
to avoid overfitting, it is very tricky and one can not decide
when to stop is best for the test data.

To address those issues, we propose a new model
named Competitive Reconstruction Autoencoder (CoRA).
Our model has the benefits of both supervised and un-
supervised approaches. We formulate a transductive semi-
supervised method for anomaly detection, which uses posi-
tive training data and unlabeled test data for learning.

Fig. 1 demonstrates the differences of the learning proce-
dure between our method and most existing approaches. The
proposed architecture, different from classical auto-encoder,
comprises one encoder and two decoders. These two de-
coders are designed to compete during the reconstruction
procedure, one of them is learned to reconstruct positive
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Figure 1: Comparison of the training/testing process among
supervised methods, unsupervised methods and our method.
The blue solid arrows indicate the training data flow. The
red dashed arrows indicate the data flow of testing stage.
Unsupervised methods and our method do not have a sep-
arate testing stage, they discriminate the outliers during the
training stage.

data which is referred to as inlier decoder, while the other
is learned to reconstruct outliers which is referred to as out-
lier decoder. With the guidance of the positive training data,
inlier decoder can build a proper profile for positive class,
while most of the anomaly data will be assigned to the out-
lier decoder. Discriminative labeling is done by comparing
the reconstruction errors of these two decoders. After train-
ing, the final assignments constitute the predictions for the
unlabelled (or test) data.

It is known that auto-encoder will learn different feature
subspaces for different data spaces. As our two competitive
decoders share one encoder, it is reasonable to add a regu-
larization term on the subspace to maximize the separability
of the positive data and outliers, which will further improve
CoRA. Thus, in this paper we propose a manifold regularizer
to preserve the data structures of positive data and outliers in
subspace.

In this paper, we propose a transductive semi-supervised
anomaly detection approach that can be trained in an end-to-
end manner. Our work is featured by the following merits:
• Novel architecture. A new transductive semi-supervised

deep neural network framework implemented by an auto-
encoder with one encoder and two competitive decoders
is proposed for anomaly detection problems.

• New criterion. While the previous reconstruction-based
algorithms use thresholds as the classification criterion,
we propose a new scheme to make the decision, which
can help us get rid of this hyper-parameter selection.

• Robustness. Extensive experiments show that the pro-
posed model is more robust to the outlier ratio than many
state-of-the-art methods.

• Efficient and scalable optimization procedure. We
adopt the stochastic gradient descent (SGD) to our model,
making it very efficient to train and can be used for large-
scale data.

• Comprehensive experiments. We comprehensively eval-
uate the proposed model and compare it with a number of
state-of-the-art methods on seven datasets.

Related Work
Anomaly detection belongs to one-class classification which
is also closely related to outlier detection or novelty detec-
tion. The common objective of these applications is to dis-
cover novel concept, which has rarely or never shown up and
is substantially different from the known concept.

Conventional researches often model the positive/target
class and reject the samples that do not following them.
Methods in this category usually estimate probability den-
sity function from positive data. By building up a paramet-
ric or non-parametric probability estimator from the positive
samples, including kernel density estimator (KDE) (Parzen
1962) and more recent robust kernel density estimator
(RKDE) (Kim and Scott 2012), one can identify an outlier
sample when it has low probability density. These methods
take the assumption that positive data are more densely dis-
tributed. Other statistical models such as PCA (De La Torre
and Black 2003; Candès et al. 2011; Xu, Caramanis, and
Mannor 2013) assume that positive data are more correlated
with each other than outliers and they get better reconstruc-
tion from the low-dimensional subspace.

Most deep learning approaches for anomaly detection are
built upon auto-encoders, where reconstruction error is used
to discriminate outliers from inliers. Those methods learn
from only positive data which induces some problems. On
the one hand, these methods need to pre-define a threshold to
determine the unlabelled samples, while it is hard to find an
optimal threshold. On the other hand, training auto-encoders
on positive data will suffer from the overfitting problem, es-
pecially when the number positive samples is small.

Recently, (Zhai et al. 2016) proposed a new energy-based
deep neural network to detect outliers. Instead of directly
using the reconstruction error as decision criterion, they
showed that energy could be another criterion for identify-
ing outliers. However, this method still need a pre-defined
threshold to discriminate outliers. Instead of autoenocders,
some researchers tried to solve one-class classification prob-
lem with generative adversarial networks (GANs). One of
them is to combine a denoising auto-encoder with a discrim-
inator and train them in an adversarial way (Sabokrou et al.
2018). The key idea is to enhance the decoder to reconstruct
inliers perfectly while distort the outliers. Although they
used discriminator of GAN to classify the samples, classi-
fication is actually based on a task-dependent threshold, i.e.
x is a outlier if f(x) < σ.

Our method is closely related to some unsupervised ap-
proaches for anomaly detection or outlier removal. Different
from supervised methods that just learn from positive data,
unsupervised methods take the discriminative information
from the unlabeled data by introducing auxiliary labels, and
maximize the discrimination between inliers and outliers,
they iteratively refine the labels and finally output the predic-
tions. An unsupervised one-class learning (UOCL) method
was proposed in (Liu, Hua, and Smith 2014) by utilizing an
auxiliary label variable, and jointly optimizing the kernel-
based max-margin classifier and the soft-label assignment.
Another deep learning based unsupervised approach is dis-
criminative reconstruction auto-encoder (DRAE) (Xia et al.
2015), they also introduced discriminative labels for the un-
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Table 1: Comparison of state-of-the-art DNN-based models with our method from three perspectives.

Method Architecture Criterion Learning paradigm
DRAE (Xia et al. 2015) auto-encoder Discriminative Unsupervised

DSEBM (Zhai et al. 2016) DNN Threshold (energy) Supervised
DAOC (Sabokrou et al. 2018) GAN Threshold (score) Supervised

SSGAN (Kimura and Yanagihara 2018) GAN Threshold (score) Inductive semi-supervised
CoRA auto-encoder Discriminative Transductive semi-supervised
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Figure 2: The architecture of the CoRA model. Both training
data and test data are used for learning. All data share the
same encoder but have to choose one of the two different
decoders. The encoder aims to map positive data and un-
labelled data in the subspace separately. Green dotted lines
indicates that positive data in both training and test datasets
would be assigned to the inlier decoder, while the red dotted
line represents the assignment of abnormal data (or outliers).

labeled data and optimized the within-class variance of re-
construction error for both inliers and outliers in the learning
process of auto-encoder.

Note that our formulation for anomaly detection is differ-
ent from positive and unlabeled (PU) learning (Elkan and
Noto 2008) or inductive semi-supervised anomaly detec-
tion (Kimura and Yanagihara 2018). In both cases, it is as-
sumed that the unlabeled data that used for training share
the same distribution with the test data. In our case, simi-
lar to unsupervised approaches, only positive data and unla-
belled (or test) data are used for training. Our method be-
longs to transductive semi-supervised learning (Chapelle,
Scholkopf, and Zien 2009) where learning is to infer the cor-
rect labels for the given unlabeled data only.

For better understanding the differences between most ex-
isting deep learning models and our method, we present a
comparison of them from three perspectives in Table 1.

Competitive Reconstruction Auto-encoder
In this section, we present detailed description about our
competitive reconstruction auto-encoder (CoRA). We intro-

duce the architecture and the objective function of CoRA
first and then we show how to optimize this model.

Model Architecture

The proposed competitive reconstruction auto-encoder is
composed of three main modules: (1) encoder network E,
(2) inlier decoder network Din, and (3) outlier decoder net-
work Dout. The encoder maps the data into a common sub-
space shared by inliers and outliers.Din performs the recon-
struction for inlier samples while Dout acts as a reconstruc-
tor for outliers. Din and Dout work in a competitive way as
they both try to give low reconstruction error for the input
samples. However, each sample could only be interpreted
by one decoder. The architecture of the proposed model is
shown in Fig.2. It can be seen that both positive training data
and unlabeled test data are feeded into E. As the training
data are given as positive, we directly select Din to recon-
struct them. For unlabeled test data, the label is determined
by the reconstruction errors of two decoders.

Formally, letXp be the positive training data whereXp
i is

the i-th sample of Xp, i = 1, ...m. Similarly, let Xu be the
unlabeled data and Xu

j is the j-th sample of Xu, where j =
1, ..., n. In order to assign labels for each Xu

j , we propose
the following loss function.

Competitive Reconstruction Loss

Previous work (Xia et al. 2015) showed that the reconstruc-
tion error of an auto-encoder, trained on samples from the
target class, is a useful measure for novelty sample detec-
tion. Concretely, if an auto-encoder is trained to reconstruct
target class samples (inliers), the reconstruction error for
novelty samples would be high. In order to model the dis-
tributions of positive data and outliers separately. We design
a competitive mechanism for our model. By the guidance
of positive data, Din is trained to learn the distribution of
target class. For unlabeled data which may be inliers or out-
liers, if the reconstruction error of Din is small than that
of Dout, it could be an inlier with high probability. In this
paper, we use mean square error as the reconstruction er-
ror for all our experiments. For simplicity, we define the re-
constructions for sample x as Rin(x) = Din

(
E(x)

)
and

Rout(x) = Dout

(
E(x)

)
.
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The competitive reconstruction loss is defined as

LCR =
∥∥∥Xp −Rin

(
Xp
)∥∥∥2

2

+

n∑
j=1

(
yj

∥∥∥Xu
j −Rin

(
Xu
j

)∥∥∥2
2

+ (1− yj)
∥∥∥Xu

j −Rout
(
(Xu

j

)∥∥∥2
2

) (1)

where yj , j = 1, ..., n is the label assignment for the j-th
sample, and it is evaluated by

yj =

{
1,

∥∥∥Xu
j −Rin

(
Xu

j

)∥∥∥2
2
<
∥∥∥Xu

j −Rout

(
(Xu

j

)∥∥∥2
2

0, otherwise
(2)

Note that yj is updated for each iteration. We will give de-
tailed description on how to optimize the model later. We
omit the average of the sum notation for clarity.

As mentioned before, CoRA maps different data to dif-
ferent regions in the subspace. Thus, an intuitive idea is to
preserve the data structures of positive data and abnormal
data in the subspace, so that similar examples stay close in
subspace. We propose a structure-preserving regularization
term to improve the performance of our model.

Subspace Structure-preserving Regularization
In addition to competitive loss, we also propose a regulariza-
tion term to keep the data structure in subspace. Subspace
regularization has been explored in previous works (Agar-
wal, Gerber, and Daume 2010; Liu, Hua, and Smith 2014;
Yao et al. 2015). Here we employ a block symmetric affin-
ity matrix, as we use both positive data and unlabeled test
data for training. Formally, we build the affinity matrix of
the training samples as W :

W =

{
exp

(
−D(xi,xj)

ε2

)
i ∈ Nj or j ∈ Ni

0 else
(3)

where D(xi, xj) is the distance measure of the data. Ni is
the neighborhood of the i-th data point. ε > 0 is the band-
width parameter. In our method, W can be formulated as

W =

[
Wpp Wpu

Wup Wuu

]
(4)

whereWpp andWuu indicate the affinity matrix among pos-
itive data and unlabeled data respectively, Wpu and Wup all
represent the affinity matrix between positive data and un-
labeled data. As for unlabeled data, we set Wuu to a zero
matrix in order to avoid subspace structure being destroyed
by the uncertain structure of unlabeled data. In other words,
we do not consider the manifold structure among unlabeled
data due to the existence of uncertainty.

The manifold regularizer can be defined as

LR =

n+m∑
i,j=1

Wij

(
E(xi)− E(xj)

)2
(5)

Algorithm 1 Training Algorithm of CoRA
Input: positive data Xp, unlabeled test data Xu, encoder
parameter θE , decoder parameters θDin

, θDout

Initialize parameters.
repeat

Sample an unlabeled batch dataBu and a positive batch
data Bp, |Bp| = |Bu|.
/* Forward propagation */
B̂p = Din

(
E(Bp)

)
B̂iu = Din

(
E(Bu)

)
/* Reconstruction on Din*/

B̂ou = Dout
(
E(Bu)

)
/* Reconstruction on Dout*/

for each unlabeled sample i = 1 to |Bu| do

if
∥∥∥B̂iui −Bui ∥∥∥2

2
<
∥∥∥B̂oui −Bui ∥∥∥2

2
then

Assign Bui inlier decoder Din.
else

Assign Bui outlier decoder Dout.
end if
Compute LCR according to Eq. 1

end for
Compute loss LR with Eq. 3, 4, 5.
Optimize L with SGD, and back propagate.

until convergence

where E(xi) denotes the encoder feature of sample xi. This
regularization term can force the encoder to map similar ex-
amples into a neighborhood. Note that there may be a confu-
sion: the sizes of positive data and unlabeled data are differ-
ent, how could we formalizeW in Eq. (4). It is a problem re-
lated to the optimization algorithm, which will be explained
in the next subsection.

Optimization
Competitive reconstruction auto-encoder is optimized to
minimize the following loss function:

L = LCR + λLR (6)

where λ > 0 is a hyperparameter that controls the relative
importance of the regularization terms. We tuned λ for dif-
ferent tasks and observed that λ = 0.1 produces promising
results for all our experiments. To optimize this loss func-
tion, stochastic gradient descent (SGD) method is adopted
for training our model. As we use mini-batch SGD, for each
iteration we sample the same number of positive data such
that W can be calculated as in Eq. (4). The detailed opti-
mization algorithm is described in Alg. 1.

Discussions
The learning procedure. To understand the learning proce-
dure of CoRA, we explore the reconstruction results of in-
lier decoder and outlier decoder for different learning itera-
tions. As shown in Fig. 3, in the very beginning of training,
both decoders give similar reconstruction for different sam-
ples. However, after a few epochs, the inlier (positive) de-
coder begins to generate better reconstruction on target class
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(a) Initialization. (b) Epoch = 20. (c) Epoch = 50. (d) Epoch = 100.

(e) Initialization. (f) Epoch = 20. (g) Epoch = 50. (h) Epoch = 100.

Figure 3: The evolution of reconstruction residual in the learning process of CoRA.

Figure 4: Performance comparison on KDD99 dataset.

In most of our experiments, images are represented by fea-
tures extracted from a pre-trained Vgg-16 network (?) on
ImageNet. We use the features after the first fully connected
layer and the feature dimension is 4096. On MNIST and
Fashion-MNIST, we directly use raw pixels as inputs for
all methods. As some approaches are restricted to simple
multiple-layer neural networks, we use the same architec-
ture for most of the networks for fair comparison.

Evaluation Metrics Similar to previous works (?), we
utilize F1 and AUC scores to measure performance. For
most image datasets, we report the mean performance of
all classes. Note that for discriminative algorithms such as
DRAE, AUC may not suitable for evaluation. For our model,
we calculate AUC with the transformed reconstruction resid-
ual in order to compare it with other supervised approaches.

Experimental Results
Results on KDD99 We first evaluate our CoRA method
on low-dimensional dataset. Since feature dimension of
KDD99 is 41 which is quite small, we compare CoRA with
several traditional methods that are effectiveness on low-
dimension datasets, including PCA, KDE, LOF and OC-
SVM. For deep learning models, we select deep energy-
based model (DSEBM) (?) and discriminative auto-encoder
(DRAE) (?) for comparison. The results are shown in Fig. 4.
We can see that CoRA achieves the best performance in
terms of both F1 and AUC scores. Although conventional
methods such as PCA and OC-SVM perform comparably to
deep neural network models including DSEBM and DRAE,
the training of deep learning models is about 10 times faster
than the conventional methods.

Table 2: Performance on ImageNet-20, Caltech-101 and
CIFAR-10. The best performance in each column is in bold.

Dataset ImageNet-20 Caltech-101 CIFAR-10
Method F1 AUC F1 AUC F1 AUC

AE 0.911 0.907 0.919 0.923 0.828 0.822
DSEBM 0.926 0.923 0.923 0.892 0.867 0.872
DRAE 0.930 - 0.968 - 0.862 -
DAOC 0.945 0.939 0.956 0.944 0.876 0.869
CoRA 0.960 0.964 0.954 0.985 0.910 0.897

Results on MNIST/Fashion-MNIST Raw pixels are used
as input features for these two datasets, and the feature di-
mension is 784. In our experiments, the architecture of the

Figure 3: Reconstruction results of CoRA after different training iterations. In each figure, samples in the 1st line are positive
data, the 2nd line gives the reconstruction of the inlier decoder for the positive samples. Samples in the 3rd line are unlabeled
data, the 4th line gives the reconstruction of the inlier decoder and the 5th line gives the reconstruction of the outlier decoder,
all for the unlabeled samples.

than the outlier decoder. Finally, with the convergence of the
learning procedure, the inlier decoder generates bad recon-
struction for outliers which like distorted positive samples.
Although the outlier decoder can output understandable re-
constructions for positive samples, they all have some dis-
tortion. Thus, the positive samples are assigned to the inlier
decoder, and outlier samples are assigned to outlier decoder.

Furthermore, we investigate the distributions of recon-
struction residual between the inlier decoder and the out-
lier decoder on positive data/inliers and outliers dur-
ing training. The residual is defined as Rresidual(x) =

‖x−Rout(x)‖22 − ‖x−Rin(x)‖
2
2. The results are shown

in Fig. 4. We can see that both decoders have similar re-
construction error for inliers and outliers at the initialization
stage. However, as the training proceeds, the residuals are
different for inliers and outliers. After about 50 epochs, the
learning process begins to converge and the discrimination
between inliers and outliers becomes more and more clear.
However, as there always exist some outliers that are hard to
tell from inliers, thus there is a small overlap area.
The merits of CoRA. As mentioned before, our model
does not require a pre-defined threshold to discriminate out-
liers. This is quite important for many real-world applica-
tions. Another merit of our algorithm is that it does not suf-
fer from the overfitting problem while most reconstruction-
based models do. When the learning process converges, the
assignment of each unlabeled sample rarely changes, which
means CoRA is robust. Moreover, we do not impose any
restriction on the design of the auto-encoder. By exploiting
the representation learning ability of deep autoecoder, our
model is flexible for various data. Meanwhile, mini-batch
gradient descent optimization makes our approach efficient
in handling large-scale datasets, which is a basic require-
ment in the big data era.

Performance Evaluation

In this section, we evaluate CoRA for anomaly detection
task, and compare it with existing methods including the
state of the art ones. We use seven datasets including low-
dimensional data and image data.

Datasets
• KDD99. A classical anomaly detection dataset that

records the network attacks and normal connections. We
use a subset of it which is referred as KDD99 10-percent.
There are 494,021 instances, where 30% are outliers.

• MNIST. It has 70,000 training and test samples from 10
digit classes. For each class, we select the training positive
data and simulate outliers from the test data with different
ratios, from 10% to 50%.

• Fashion MNIST. The dataset composes of a training set
of 60,000 examples and a test set of 10,000 examples.
Each example is a 28 × 28 grayscale image, associated
with a label from 10 classes, each of which is a cloth cat-
egory. We preprocess it as for MNIST.

• ImageNet-20, This dataset consists of images in 20 se-
mantic concepts from ImageNet dataset, and each concept
contains about 2,800 images on average. For each con-
cept, outliers are simulated from the other concepts with
a ratio of 30%.

• Caltech-101. This dataset consists of 101 classes of im-
ages. Following previous work (Zhai et al. 2016), we
choose the 11 object categories that contain at least 100
images. For each category, outliers are sampled from
other categories with a ratio 30%.

• CIFAR-10. There are 50,000 training and 10,000 test im-
ages from 10 categories. Similar to Caltech-101, outliers
are sampled from other categories at the ratio of 30%.

• Caltech-256. This dataset contains 256 object classes
with a total of 30,607 images. Each category has at least
80 images. Following previous works (You, Robinson,
and Vidal 2017; Sabokrou et al. 2018), we randomly se-
lect images from n ∈ {1, 3, 5} categories as inliers, and
for those categories that have more than 150 images, only
the first 150 images are used. A certain number of out-
liers are randomly selected from the “clutter” category,
such that each experiment has exactly 50% outliers. We
repeat each experiment three times and report the average
performance.

In most of our experiments, images are represented by
features extracted from a pre-trained Vgg-16 network (Si-
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(a) Initialization. (b) Epoch = 20. (c) Epoch = 50. (d) Epoch = 100.

(e) Initialization. (f) Epoch = 20. (g) Epoch = 50. (h) Epoch = 100.

Figure 3: The evolution of reconstruction residual in the learning process of CoRA.

Figure 4: Performance comparison on KDD99 dataset.
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Figure 5: Performance comparison on KDD99 dataset.

monyan and Zisserman 2014) on ImageNet. We use the fea-
tures after the first fully connected layer and the feature di-
mension is 4096. On MNIST and Fashion-MNIST, we di-
rectly use raw pixels as inputs for all methods. As some ap-
proaches are restricted to simple multiple-layer neural net-
works, we use the same architecture for most of the networks
for fair comparison.

Evaluation Metrics Similar to previous works (Sabokrou
et al. 2018), we utilize F1 and AUC scores to measure perfor-
mance. For most image datasets, we report the mean perfor-
mance of all classes. Note that for discriminative algorithms
such as DRAE, AUC may not suitable for evaluation. For
our model, we calculate AUC with the transformed recon-
struction residual in order to compare it with other super-
vised approaches.

Experimental Results
Results on KDD99 We first evaluate our CoRA method
on low-dimensional dataset. Since feature dimension of
KDD99 is 41 which is quite small, we compare CoRA with
several traditional methods that are effectiveness on low-
dimension datasets, including PCA, KDE, LOF and OC-
SVM. For deep learning models, we select deep energy-
based model (DSEBM) (Zhai et al. 2016) and discriminative
auto-encoder (DRAE) (Xia et al. 2015) for comparison. The
results are shown in Fig. 5. We can see that CoRA achieves
the best performance in terms of both F1 and AUC scores.
Although conventional methods such as PCA and OC-SVM
perform comparably to deep neural network models includ-

ing DSEBM and DRAE, the training of deep learning mod-
els is about 10 times faster than the conventional methods.

Table 2: Performance on ImageNet-20, Caltech-101 and
CIFAR-10. The best performance in each column is in bold.

Dataset ImageNet-20 Caltech-101 CIFAR-10
Method F1 AUC F1 AUC F1 AUC

AE 0.911 0.907 0.919 0.923 0.828 0.822
DSEBM 0.926 0.923 0.923 0.892 0.867 0.872
DRAE 0.930 - 0.968 - 0.862 -
DAOC 0.945 0.939 0.956 0.944 0.876 0.869
CoRA 0.960 0.964 0.954 0.985 0.910 0.897

Results on MNIST/Fashion-MNIST Raw pixels are used
as input features for these two datasets, and the feature di-
mension is 784. In our experiments, the architecture of the
encoder is [784, 64, 32], the decoders use a symmetric ar-
chitecture. As PCA is a special case of auto-encoder with
a linear hidden layer, we omit PCA-based models in these
experiments. We compare CoRA with several state-of-the-
art methods including DSEBM, DRAE and deep adversarial
one-class learning (DAOC) method (Sabokrou et al. 2018).
auto-encoder (AE) is used as the baseline algorithm. The re-
sults are shown in Fig. 6.

When the outlier ratio is small (e.g. 0.1), DAOC slightly
outperforms CoRA on both datasets. The reason is that
when the number of outliers is small, the outlier decoder
of our model is not able to learn the anomaly data distribu-
tion well. However, CoRA still achieves comparable perfor-
mance to unsupervised method DRAE and the other state-
of-the-art algorithms, and it also outperforms the other tra-
ditional methods including AE.

With the increase of outlier ratio, most methods perform
worse. However, CoRA shows its robustness to outlier ratio.
As we can see, CoRA significantly outperforms all the other
methods on MNIST dataset when outlier ratio is larger than
0.2. Although similar trend can be observed on Fashion-
MNIST, most state-of-the-art methods perform worse than
on MNIST, since images in Fashion-MNIST are much more
blurred than those in MNIST.
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Table 3: Performance comparison on Caltech-256. Inliers are images taken from one, three, or five randomly chosen categories,
and outliers are randomly selected from category 257 — clutter with a ratio of 50%. In each row the best result is in bold and
the second best in italic typeface.

# categories Measure CoP REAPER OutlierPursuit LRR DPCP R-graph SSGAN DAOC CoRA
1 AUC 0.905 0.816 0.837 0.907 0.783 0.948 - 0.942 0.968
1 F1 0.880 0.808 0.823 0.893 0.785 0.914 0.977 0.928 0.967
3 AUC 0.676 0.796 0.788 0.479 0.798 0.929 - 0.938 0.962
3 F1 0.718 0.784 0.779 0.671 0.777 0.880 0.963 0.913 0.963
5 AUC 0.487 0.657 0.629 0.337 0.676 0.913 - 0.923 0.952
5 F1 0.672 0.716 0.711 0.667 0.715 0.858 0.945 0.905 0.950
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Figure 6: Performance comparison on MNIST (left) and
Fashion-MNIST (right).

Results on ImageNet-20/Caltech-101/CIFAR-10 Except
for DAOC (Sabokrou et al. 2018), most algorithms repre-
sent images by deep learning features. As DAOC uses auto-
encoder as the generator and is trained in adversarial man-
ner, we use the original pixel features as inputs to DAOC.
The architecture of auto-encoder for ImageNet-20 and CI-
FAR10 has two hidden layers with 256 and 128 units respec-
tively. As there are too few samples in Caltech-101, we use
a smaller architecture with two hidden layers. The encoder
architecture is [4096, 64, 32]. We use ReLU as the activation
function of the hidden layers. Table. 2 presents the results of
state-of-the-art methods and AE. On ImageNet-20, DSEBM
and DRAE achieve similar results while DAOC outperforms
both of them.

CoRA performs best on ImageNet-20. For Caltech-101,
DRAE achieves the best result in terms of F1 while CoRA
achieves the best result in terms of AUC. Meanwhile, CoRA
and DAOC have close performance in terms of F1 measure.
As mentioned before, the number of images in each con-
cept of Caltech-101 is less than that in ImageNet-20 and
CIFAR-10, it may not be sufficient for DAOC and CoRA
to learn the inlier concept. As for CIFAR-10, DRAE slightly
underperforms DSEBM, while DAOC outperforms the rest
of approaches but CoRA. CoRA significantly outperforms
the other methods in terms of both F1 and AUC.

Results on Caltech-256
As there are less images in each category, detecting out-
liers from Caltech-256 is much challenging. Considering
that Caltech-256 is a benchmark dataset for outlier detec-
tion task, in addition to DAOC, we compare our method
with 7 other methods therein designed specifically for de-
tecting outliers. Those methods include Coheerence Pur-
suit (CoP) (Rahmani and Atia 2017), OutlierPursuit (Xu,
Caramanis, and Sanghavi 2010), REAPER(Lerman et al.
2015), Dual Principal Component Pursuit (DPCP) (Tsakiris
and Vidal 2015), Low-Rank Representation (LRR) (Liu,
Lin, and Yu 2010), OutRank (Moonesignhe and Tan 2006),
and inductive semi-supervised GAN (SSGAN) (Kimura and
Yanagihara 2018).

We use similar setup as in (You, Robinson, and Vidal
2017), the experimental results are presented in Table 3. The
results of the other methods are from (Sabokrou et al. 2018)
and (Kimura and Yanagihara 2018). These results show that
even for a small number of training samples, our method
performs at least as well as the state-of-the-art algorithms,
and in many cases it superior to them. Furthermore, when
the inliers come from only one categories, CoRA slightly
underperforms SSGAN. When the number of inlier classes
increases to 3 or 5, CoRA outperforms the other 8 methods
in terms of both F1 and AUC.

Conclusion
In this paper, we propose a competitive reconstruction auto-
encoder model for transductive semi-supervised anomaly
detection task. Our model learns from positive data and unla-
beled test data, and predicts the labels of unlabelled data di-
rectly after learning. The two decoders are designed to com-
pete with each other to achieve lower reconstruction error.
With the guidance of positive data, inlier decoder is more
likely to build the configuration of positive class. The new
discriminative criterion does not need a pre-defined thresh-
old, which is different from most existing methods. More-
over, we adopt SGD to optimize this model, which enables
it to be efficient and scalable for large-scale datasets. Exper-
imental results on seven benchmark datasets shown that this
model can beat many state-of-the-art methods.
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