
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Improving GAN with Neighbors Embedding and Gradient Matching

Ngoc-Trung Tran,∗ Tuan-Anh Bui,∗ Ngai-Man Cheung
ST Electronics - SUTD Cyber Security Laboratory

Singapore University of Technology and Design

Abstract

We propose two new techniques for training Generative Ad-
versarial Networks (GANs) in the unsupervised setting. Our
objectives are to alleviate mode collapse in GAN and im-
prove the quality of the generated samples. First, we propose
neighbor embedding, a manifold learning-based regulariza-
tion to explicitly retain local structures of latent samples in
the generated samples. This prevents generator from produc-
ing nearly identical data samples from different latent sam-
ples, and reduces mode collapse. We propose an inverse t-
SNE regularizer to achieve this. Second, we propose a new
technique, gradient matching, to align the distributions of the
generated samples and the real samples. As it is challenging
to work with high-dimensional sample distributions, we pro-
pose to align these distributions through the scalar discrim-
inator scores. We constrain the difference between the dis-
criminator scores of the real samples and generated ones. We
further constrain the difference between the gradients of these
discriminator scores. We derive these constraints from Tay-
lor approximations of the discriminator function. We perform
experiments to demonstrate that our proposed techniques are
computationally simple and easy to be incorporated in exist-
ing systems. When Gradient matching and Neighbour embed-
ding are applied together, our GN-GAN achieves outstanding
results on 1D/2D synthetic, CIFAR-10 and STL-10 datasets,
e.g. FID score of 30.80 for the STL-10 dataset. Our code is
available at: https://github.com/tntrung/gan

Introduction
Generative Adversarial Networks (GANs) (Goodfellow et
al. 2014; Goodfellow 2016) are popular methods for training
generative models. GAN training is a two-player minimax
game between the discriminator and the generator. While the
discriminator learns to distinguish between the real and gen-
erated (fake) samples, the generator creates samples to con-
fuse the discriminator to accept its samples as “real”. This is
an attractive approach. However, stabilizing the training of
GAN is still an on-going important research problem.

Mode collapse is one of the most challenging issues when
training GANs. Many advanced GANs have been proposed
to improve the stability (Nowozin, Cseke, and Tomioka
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2016; Arjovsky, Chintala, and Bottou 2017; Gulrajani et al.
2017). However, mode collapse is still an issue.

In this work, we propose two techniques to improve GAN
training. First, inspired by t-distribution stochastic neigh-
bors embedding (t-SNE) (Maaten and Hinton 2008), which
is a well-known dimensionality reduction method, we pro-
pose an inverse t-SNE regularizer to reduce mode col-
lapse. Specifically, while t-SNE aims to preserve the struc-
ture of the high-dimensional data samples in the reduced-
dimensional manifold of latent samples, we reverse the pro-
cedure of t-SNE to explicitly retain local structures of la-
tent samples in the high-dimensional generated samples.
This prevents generator from producing nearly identical data
samples from different latent samples, and reduces mode
collapse. Second, we propose a new objective function for
the generator by aligning the real and generated sample dis-
tributions, in order to generate realistic samples. We achieve
the alignment via minimizing the difference between the dis-
criminator scores of the real samples and generated ones. By
using the discriminator and its scores, we can avoid work-
ing with high-dimensional data distribution. We further con-
strain the difference between the gradients of discriminator
scores. We derive these constraints from Taylor approxima-
tion of the discriminator function. Our principled approach
is significantly different from the standard GAN (Goodfel-
low et al. 2014): our generator does not attempt to directly
fool the discriminator; instead, our generator produces fake
samples that have similar discriminator scores as the real
samples. We found that with this technique the distribution
of the generated samples approximates well that of the real
samples, and the generator can produce more realistic sam-
ples.

Related Works
Addressing issues of GANs (Goodfellow 2016), including
gradient vanishing and mode collapse, is an important re-
search topic. A popular direction is to focus on improv-
ing the discriminator objective. The discriminator can be
formed via the f-divergence (Nowozin, Cseke, and Tomioka
2016), or distance metrics (Arjovsky and Bottou 2017;
Bellemare et al. 2017). And the generator is trained by fool-
ing the discriminator via the zero-sum game. Many meth-
ods in this direction have to regularize their discrimina-
tors; otherwise, they would cause instability issues, as the
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discriminator often converges much faster than the genera-
tor. Some regularization techniques are weight-clipping (Ar-
jovsky and Bottou 2017), gradient penalty constraints (Gul-
rajani et al. 2017; Roth et al. 2017; Kodali et al. 2017;
Petzka, Fischer, and Lukovnicov 2017; Liu 2018), con-
sensus constraint, (Mescheder, Nowozin, and Geiger 2017;
Mescheder, Geiger, and Nowozin 2018), or spectral norm
(Miyato et al. 2018). However, over-constraint of the dis-
criminator may cause the cycling issues (Nagarajan and
Kolter 2017; Mescheder, Geiger, and Nowozin 2018).

Issues of GAN can also be tackled via the optimizer
regularization: changing optimization process (Metz et al.
2017), using two-time scale update rules for better conver-
gence (Heusel et al. 2017), or averaging network parameters
(Yazıcı et al. 2018).

Regularizing the generator is another direction: i) It can be
achieved by modifying the generator objective function with
feature matching (Salimans et al. 2016) or discriminator-
score distance (Tran, Bui, and Cheung 2018) ii) Or, using
Auto-Encoders (AE) or latent codes to regularize the gen-
erator. AAE (Makhzani et al. 2016) uses AE to constrain
the generator. The goal is to match the encoded latent dis-
tribution to some given prior distribution by the minimax
game. The problem of AAE is that pixel-wise reconstruc-
tion with `2-norm would cause the blurry issue. And the
minimax game on the latent samples has the same problems
(e.g., mode collapse) as on the data samples. It is because
AE alone is not powerful enough to overcome these issues.
VAE/GAN (Larsen et al. 2015) combined VAE and GAN
into one single model and used feature-wise distance for
the reconstruction to avoid the blur. The generator is reg-
ularized in the VAE model to reduce the mode collapse.
Nevertheless, VAE/GAN has the similar limitation of VAE
(Kingma and Welling 2013), including re-parameterization
tricks for back-propagation, or, requirement to access to an
exact functional form of prior distribution. ALI (Dumoulin
et al. 2016) and BiGAN (Donahue, Krähenbühl, and Darrell
2016) jointly train the data/latent samples in GAN frame-
work. This method can learn the AE model implicitly after
training. MDGAN (Che et al. 2016) required two discrim-
inators for two separate steps: manifold and diffusion. The
manifold step manages to learn a good AE. The diffusion
step is similar to the original GAN, except that the con-
structed samples are used as real samples instead. InfoGAN
(Chen et al. 2016) learned the disentangled representation
by maximizing the mutual information for inducing latent
codes. MMGAN (Park et al. 2018) makes strong assump-
tion that manifolds of real and fake samples are spheres.
First, it aligns real and fake sample statistics by matching
the two manifold spheres (centre and radius), and then it ap-
plies correlation matrix to reduce mode collapse. Dist-GAN
(Tran, Bui, and Cheung 2018) constrains the generator by
the regularized auto-encoder. Furthermore, the authors use
the reconstructed samples to regularize the convergence of
the discriminator.

Auto-encoder can be also used in the discriminator objec-
tives. EBGAN (Zhao, Mathieu, and LeCun 2017) introduces
the energy-based model, in which the discriminator is con-
sidered as the energy function minimized via reconstruction

errors. BEGAN (Berthelot, Schumm, and Metz 2017) ex-
tends EBGAN by optimizing Wasserstein distance between
AE loss distributions.

Proposed method
Our proposed system with gradient matching (GM) and
neighbor embedding (NE) constraints, namely GN-GAN,
consists of three main components: the auto-encoder, the
discriminator, and the generator. In our model, we first train
the auto-encoder, then the discriminator and finally the gen-
erator as presented in Algorithm 1.

Algorithm 1 Our GN-GAN model
1: Initialize discriminator, encoder and generator D,E,G re-

spectively. Niter is the number of iterations.
2: repeat
3: x← Random mini-batch of m data points from dataset.
4: z← Random n samples from noise distribution Pz

5: // Training the auto-encoder using x and z by Eqn. 1
6: E,G← minVAE(E,G)
7: // Training discriminator according to Eqn. 7 on x, z
8: D ← maxVD(D,G)
9: // Training the generator on x, z according to Eqn. 13.

10: G← minVG(D,G)
11: until Niter

12: return D,E,G

Neighbors embedding constraint for Auto-encoder
We use auto-encoder (AE) in our model for two reasons: i)
to prevent the generator from being severely collapsed. ii)
to regularize the generator in producing samples that resem-
ble real ones. However, using AE alone is not adequate to
avoid mode collapse, especially for high-dimensional data.
Therefore, we propose additional regularization as in Eq. 1:

VAE(E,G) = ||x−G(E(x))||2 + λrVR(E,G) (1)

Eq. 1 is the objective of our regularized AE. The first term
is reconstruction error in conventional AE. The second term
VR(E,G) is our proposed neighbors embedding constraint,
to be discussed. Here, G is GAN generator (decoder in AE),
E is the encoder and λr is a constant.

Mode collapse is a failure case of GAN when the gener-
ator often generates similar samples. The diversity of gen-
erated samples is small compared with those of the original
dataset. As discussed in previous work (e.g. (Tran, Bui, and
Cheung 2018)), with mode collapse, the generator would
map two far-apart latent samples to nearby data points in
the high-dimensional data space with high probability. This
observation motivates our idea to constrain the distances be-
tween generated data points in order to alleviate mode col-
lapse. In particular, the data point distances and the corre-
sponding latent sample distances should be consistent.

The motivation of our neighbors-embedding constraint
VR(E,G) is to constrain the relative distance among data
points and their corresponding latent points within the data
and latent manifold respectively (Fig. 1). In our model, we
apply the probabilistic relative distance (PRDist) in t-SNE
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Figure 1: Illustration of the neighbor-embedding (NE) con-
straint. NE regularizes the generator to produce high-
dimensional data samples such that latent sample distance
and data sample distance are consistent.

(Maaten and Hinton 2008), which takes into account the dis-
tributions of latent sample structure and data sample struc-
ture. t-SNE has been shown to preserve both the local struc-
ture of data space (the relation inside each cluster) and the
global structure (the relation between each pair of clusters).
Notably, our method applies PRDist in the reverse direc-
tion of t-SNE for different purpose. While t-SNE aims to
preserve significant structures of the high-dimensional data
in the reduced-dimensional samples, in our work, we aim
to preserve the structures in low-dimensional latent samples
in its high-dimensional mappings via the generator. Specifi-
cally, the objective is as shown in Eq. 2:

VR(E,G) =
∑
i

∑
j

pi,j log
pi,j
qi,j

(2)

The probability distribution of latent structure pi,j is a
joint, symmetric distribution, computed as below:

pi,j =
pi|j + pj|i

2n
(3)

pi|j and pj|i are the conditional probabilities, whose center
points are zj and zi respectively. Here, i and j are indices of
i-th and j-th samples respectively in a mini-batch of training
data. Accordingly, zi and zj are i-th and j-th latent samples.
n is the number of samples in the mini-batch. The condi-
tional probability pj|i is given by:

pj|i =
(1 + ||zj − zi||2/2σ2

z )
−1∑

k 6=i(1 + ||zk − zi||2/2σ2
z )
−1 (4)

where σz is the variance of all pairwise distances in a mini-
batch of latent samples. Similar to t-SNE method, the joint
distribution pi,j is to prevent the problem of outliers in high-
dimensional space.

Similarly, the probability distribution of data sample
structure qi,j is the joint, symmetric computed from two
conditional probabilities as below:

qi,j =
qi|j + qj|i

2n
(5)

where qj|i is the conditional probability of pairwise distance
between samples G(zj) and the center point G(zi), com-
puted as follow:

qj|i =
(1 + ||G(zj)−G(zi)||2/2σ2

x)
−1∑

k 6=i(1 + ||G(zk)−G(zi)||2/2σ2
x)
−1 (6)

σx is the variance of all pairwise distances of data samples
in the mini-batch. The regularization term VR(E,G) is the
dissimilarity between two joint distributions: pi,j and qi,j ,
where each distribution represents the neighbor distance dis-
tribution. Similar to t-SNE, we set the values of pi,i and qj,j
to zero. The dissimilarity is Kullback-Leibler (KL) diver-
gence as in Eq. 2. {zi} is a merged dataset of encoded and
random latent samples, and {G(zi)} is a merged dataset of
reconstruction and generated samples. Here, the reconstruc-
tion samples and their latent samples are considered as the
anchor points of data and latent manifolds respectively to
regularize the generation process.

Discriminator objective
VD(D,G)

= (1− α)Ex logD(x) + αVC + Ez log(1−D(G(z))

− λpVP
(7)

Our discriminator objective is shown in Eq. 7. Our model
considers the reconstructed samples as “real” represented by
the term VC = Ex logD(G(E(x)), so that the gradients
from discriminator are not saturated too quickly. This con-
straint slows down the convergence of discriminator, similar
goal as (Arjovsky, Chintala, and Bottou 2017), (Miyato et
al. 2018) and (Tran, Bui, and Cheung 2018). In our method,
we use a small weight for VC with α = 0.05 for the discrim-
inator objective. We observe that VC is important at the be-
ginning of training. However, towards the end, especially for
complex image datasets, the reconstructed samples may not
be as good as real samples, resulting in low quality of gen-
erated images. Here, E is the expectation, λp is a constant,
VP = Ex(||∇x̂D(x̂)|| − 1)2 and x̂ = µx + (1 − µ)G(z), µ
is a uniform random number µ ∈ U [0, 1]. VP enforces suffi-
cient gradients from the discriminator even when approach-
ing convergence. Fig. 2 illustrates gradients at convergence
time.

We also apply hinge loss similar to (Miyato et al. 2018) by
replacing log(D(x)) with min(0,−1 + D(x)). We empiri-
cally found that hinge loss could also improve the quality
of generated images in our model. Here, because D(x) ∈
(0, 1), the hinge loss version of Eq. 7 (ignore constants) is
as follows:

Vh
D(D,G) = (1− α)ExD(x) + αVC − EzD(G(z))− λpVP (8)

Generator objective with gradient matching
In this work, we propose to train the generator via aligning
distributions of generated samples and real samples. How-
ever, it is challenging to work with high-dimensional sample
distribution. We propose to overcome this issue in GAN by

5193



using the scalar discriminator scores. In GAN, the discrimi-
nator differentiates real and fake samples. Thus, the discrim-
inator score D(x) can be viewed as the probability that sam-
ple x drawn from the real data distribution. Although exact
form of D(x) is unknown, but the scores D(x) at some data
points x (from training data) can be computed via the dis-
criminator network. Therefore, we align the distributions by
minimizing the difference between discriminator scores of
real and generated samples. In addition, we constrain the
gradients of these discriminator scores. These constraints
can be derived from Taylor approximation of discriminator
functions as followings.

Assume that the first derivative of D exists, and the train-
ing set has data samples {x}. For a sample point s, by first-
order Taylor expansion (TE), we can approximateD(s) with
TE at a data point x:

D(s) = D(x) +∇xD(x)(s− x) + ε(s, x) (9)

Here ε(.) is the TE approximation error. Alternatively, we
can approximate D(s) with TE at a generated sample G(z):

D(s) = D(G(z)) +∇xD(G(z))(s−G(z)) + ε(s, G(z))
(10)

Our goal is to enforce the distribution of generated sam-
ple p(G(z)) to be similar to that of real sample p(x). For a
given s, its discriminator score D(s) can be approximated
by first-order TE at x with error ε(s, x). Note that, here
we define ε(s, x) to be the approximation error of D(s)
with first-order TE at point x. Likewise, ε(s, G(z)) is the
approximation error of D(s) with first-order TE at point
G(z). If x and G(z) were from the same distribution, then
Exε(s, x) ≈ Ezε(s, G(z)). Therefore, we propose to enforce
Exε(s, x) = Ezε(s, G(z)) when training the generator. Note
that Ex(D(s)) = Ez(D(s)) = D(s), because D(s) is a con-
stant and is independent of x and z. Therefore, we propose to
enforce Ex(D(s)) − Exε(s, x) = Ez(D(s)) − Ezε(s, G(z))
in order to align p(G(z)) to real sample distribution p(x).
From Eq. 9, we have:

Ex(D(s))− Exε(s, x)

= Ex(D(x)) + Ex(∇xD(x)(s− x))

= Ex(D(x)) + Ex∇xD(x)s− Ex∇xD(x)x

(11)

From Eq. 10, we have:

Ez(D(s))− Ezε(s, G(z))

= Ez(D(G(z))) + Ez∇xD(G(z))s− Ez∇xD(G(z))G(z)
(12)

To equate Eqs. 11 and 12, we enforce equality of corre-
sponding terms. This leads to minimization of the following
objective function for the generator:

VG(D,G) = ||ExD(x)− EzD(G(z))||
+ λ1m||Ex(∇xD(x))− Ez(∇xD(G(z)))||2

+ λ2m||Ex(∇xD(x)Tx)− Ez(∇xD(G(z))TG(z))||2
(13)

Figure 2: We compare our method and Dist-GAN (Tran,
Bui and Cheung 2018) on the 1D synthetic dataset of three
Gaussian modes. Figures are the last frames of the demo
videos (can be found here: https://github.com/tntrung/gan).
The blue curve is discriminator scores, the green and orange
modes are the training data the generated data respectively.

Here, we use `1-norm for the first term of generator objec-
tive, and `2-norm for two last terms. Empirically, we ob-
serve that using `2-norm is more stable than using `1-norm.
λ1m = λ2m = 1.0. In practice, our method is more sta-
ble when we implement Ex(∇xD(x)) as Ex||∇xD(x)|| and
Ex(∇xD(x)Tx) as Ex||∇xD(x)Tx|| in the second and third
term of Eq. 13. Note that this proposed objective can be used
in other GAN models. Note also that a recent work (Tran,
Bui, and Cheung 2018) has also used the discriminator score
as constraint. However, our motivation and formulation are
significantly different. In the experiment, we show improved
performance compared to (Tran, Bui, and Cheung 2018).

Experimental Results
Synthetic 1D dataset
For 1D synthetic dataset, we compare our model to Dist-
GAN (Tran, Bui, and Cheung 2018), a recent state-of-the-
art GAN. We use the code (https://github.com/tntrung/gan)
for this 1D experiment. Here, we construct the 1D synthetic
data with 3 Gaussian modes (green) as shown in Fig. 2. It is
more challenging than the one-mode demo by Dist-GAN.

We use small networks for both methods. Specifically, we
create the encoder and generator networks with three fully-
connected layers and the discriminator network with two
fully-connected layers. We use ReLU for hidden layers and
sigmoid for the output layer of the discriminator. The dis-
criminator is smaller than the generator to make the train-
ing more challenging. The number of neurons for each hid-
den layer is 4, the learning rate is 0.001, λp = 0.1 for both
method, λ1m = λ2m = 0.1 for our generator objective.

Fig. 2 shows that our model can recover well three modes,
while Dist-GAN cannot (see attached video demos in the
supplementary material). Although both methods have good
gradients of the discriminator scores (decision boundary) for
the middle mode, it’s difficult to recover this mode with
Dist-GAN as gradients computed over generated samples
are not explicitly forced to resemble those of real samples
as in our proposed method. Note that for this 1D experiment
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Figure 3: Examples of the number of modes (classes) and
registered points of compared methods.

Table 1: Network structures for 1D synthetic data in our ex-
periments.

din dout Nh dh
Encoder (E) 2 2 2 64

Generator (G) 2 2 2 64
Discriminator (D) 2 1 2 64

and the 2D experiment in the next section, we only evalu-
ate our model with gradient matching (+GM), since we find
that our new generator with gradient matching alone is al-
ready good enough; neighbors embedding is more useful for
high-dimensional data samples, as will be discussed.

Synthetic 2D dataset
For 2D synthetic data, we follow the experimental setup on
the same 2D synthetic dataset (Tran, Bui, and Cheung 2018).
The dataset has 25 Gaussian modes in the grid layout (red
points in Fig. 4) that contains 50K training points. We draw
2K generated samples for evaluating the generator. How-
ever, the performance reported in (Tran, Bui, and Cheung
2018) is nearly saturated. For example, it can re-cover en-
tirely 25 modes and register more than 90% of the total num-
ber of points. It’s hard to see the significant improvement of
our method in this case. Therefore, we decrease the number
of hidden layers and their number of neurons for networks
to be more challenging. For a fair comparison, we use equiv-
alent encoder, generator and discriminator networks for all
compared methods.

The detail of network architecture is presented in Table
1. din = 2, dout = 2, dh = 64 are dimensions of in-
put, output and hidden layers respectively. Nh is the num-
ber of hidden layers. We use ReLU for hidden layers and
sigmoid for output layers. To have a fair comparison, we
carefully fine-tune other methods to ensure that they can
perform their best on the synthetic data. For evaluation, a
mode is missed if there are less than 20 generated samples
registered in this mode, which is measured by its mean and
variance of 0.01. A method has mode collapse if there are
missing modes. For this experiment, the prior distribution
is the 2D uniform [−1, 1]. We use Adam optimizer with
learning rate lr = 0.001, and the exponent decay rate of
first moment β1 = 0.8. The parameters of our model are:
λp = 0.1, λ1m = λ2m = 0.1. The learning rate is decayed

every 10K steps with a base of 0.99. This decay rate is to
avoid the learning rate saturating too quickly that is not fair
for slow convergence methods. The mini-batch size is 128.
The training stops after 500 epochs.

In this experiment, we compare our model to several state-
of-the-art methods. ALI (Donahue, Krähenbühl, and Dar-
rell 2016), VAE-GAN (Larsen et al. 2015) and Dist-GAN
(Tran, Bui, and Cheung 2018) are recent works using en-
coder/decoder in their models. WGAN-GP (Gulrajani et al.
2017) is one of the state-of-the-arts. We also compare to
VAE-based methods: VAE (Kingma and Welling 2014) and
β-VAE (Higgins et al. 2016). The numbers of covered (reg-
istered) modes and registered points during training are pre-
sented in Fig. 3. The quantitative numbers of last epochs
are in Table 2. In this table, we also report the Total Vari-
ation scores to measure the mode balance (Tran, Bui, and
Cheung 2018). The result for each method is the average of
eight runs. Our method outperforms all others on the num-
ber of covered modes. Although WGAN-GP and Dist-GAN
are stable with larger networks and this experimental setup
(Tran, Bui, and Cheung 2018), they are less stable with our
network architecture, miss many modes and sometimes di-
verge.VAE based method often address well mode collapse,
but in our experiment setup where the small networks may
affect the reconstruction quality, consequently reduces their
performance. Our method does not suffer serious mode col-
lapse issues for all eight runs. Furthermore, we achieve a
higher number of registered samples than all others. Our
method is also better than the rest with Total Variation (TV).

In addition, we follow (Thanh-Tung, Tran, and Venkatesh
2018) to explore the gradient map of the discriminator scores
of compared methods: standard GAN, WGAN-GP, Dist-
GAN and ours as shown in Fig. 4. This map is important
because it shows the potential gradient to pull the generated
samples towards the real samples (red points). The gradient
map of standard GAN is noisy, uncontrolled and vanished
for many regions. The gradient map of WGAN-GP has more
meaningful directions than GAN. Its gradient concentrates
in the centroids (red points) of training data and has gradi-
ents around most of the centroids. However, WGAN-GP still
has some modes where gradients are not towards the ground-
truth centroids. Both Dist-GAN and our method show better
gradients than WGAN-GP. The gradients of our method are
more informative for the generator to learn when they guide
better directions to all real ground-truths.

CIFAR-10 and STL-10 datasets
For CIFAR-10 and STL-10 datasets, we measure the perfor-
mance with FID scores (Heusel et al. 2017). FID can de-
tect intra-class mode dropping, and measure the diversity as
well as the quality of generated samples. We follow the ex-
perimental procedure and model architecture in (Miyato et
al. 2018) to compare methods. FID is computed from 10K
real samples and 5K generated samples. Our default param-
eters are used for all experiments λp = 1.0, λr = 1.0, λ1m =
λ2m = 1.0. Learning rate, β1, β2 for Adam is (lr = 0.0002,
β1 = 0.5, β2 = 0.9). The generator is trained with 350K
updates for logarithm loss version (Eq. 7) and 200K for
“hinge” loss version (Eq. 8) to converge better. The dimen-
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Figure 4: Our 2D synthetic data has 25 Gaussian modes (red dots). The black arrows are gradient vectors of the discriminator
computed around the ground-truth modes. Figures from left to right are examples of gradient maps of GAN, WGAN-GP,
Dist-GAN and ours.

Table 2: Results on 2D synthetic data. Columns indicate the number of covered modes, and the number of registered samples
among 2000 generated samples, and two types of Total Variation (TV). We compare our model to state of the art models:
WGAN-GP and Dist-GAN.

Method #registered modes #registered points TV (True) TV (Differential)
GAN (Goodfellow et al. 2014) 14.25 ± 2.49 1013.38 ± 171.73 1.00 ± 0.00 0.90 ± 0.22

ALI (Donahue, Krähenbühl, and Darrell 2016) 17.81 ± 1.80 1281.43 ± 117.84 0.99 ± 0.01 0.72 ± 0.19
VAEGAN (Larsen et al. 2015) 12.75 ± 3.20 1042.38 ± 170.17 1.35 ± 0.70 1.34 ± 0.98

VAE (Kingma and Welling 2014) 13.48 ± 2.31 1265.45 ± 72.47 1.81 ± 0.71 2.16 ± 0.72
β-VAE (Higgins et al. 2016) 18.00 ± 2.33 1321.17 ± 95.61 1.17 ± 0.24 1.47 ± 0.28

WGAN-GP (Gulrajani et al. 2017) 21.71 ± 1.35 1180.25 ± 158.63 0.90 ± 0.07 0.51 ± 0.06
Dist-GAN (Tran, Bui, and Cheung 2018) 20.71 ± 4.42 1188.62 ± 311.91 0.82 ± 0.19 0.43 ± 0.12

Ours 24.39 ± 0.44 1461.83 ± 222.86 0.57 ± 0.17 0.31 ± 0.12

Figure 5: FID scores of our method compared to Dist-GAN.

sion of the prior input is 128. All our experiments are con-
ducted using the unsupervised setting.

In the first experiment, we conduct the ablation study with
our new proposed techniques to understand the contribution
of each component into the model. Experiments with stan-
dard CNN (Miyato et al. 2018) on the CIFAR-10 dataset. We
use the logarithm version for the discriminator objective (Eq.
7). Our original model is similar to Dist-GAN model, but
we have some modifications, such as: using lower weights
for the reconstruction constraint as we find that it can im-

Table 3: Comparing the FID score to the state of the art
(Smaller is better). Methods with the CNN and ResNet (R)
architectures. FID scores of SN-GAN, Dist-GAN and our
method reported with hinge loss. Results of compared meth-
ods are from (Miyato et al. 2018; Tran, Bui, and Cheung
2018).

Method CIFAR STL CIFAR (R)
GAN-GP 37.7 - -

WGAN-GP 40.2 55.1 -
SN-GAN 25.5 43.2 21.7 ± .21
Dist-GAN 22.95 36.19 -

Ours 21.70 30.80 16.47 ± .28

prove FID scores. We consider Dist-GAN as a baseline for
this comparison. FID is computed for every 10K iterations
and shown in Fig. 5. Our original model converges a little
bit slow at the beginning, but at the end, our model achieves
better FID score than Dist-GAN model. Once we replace
separately each proposed techniques, either the neighbors
embedding technique (+NE) or gradient matching (+GM),
into our original model, it converges faster and reaches a
better FID score than the original one. Combining two pro-
posed techniques further speeds up the convergence and
reach better FID score than other versions. This experiment
proves that our proposed techniques can improve the diver-
sity of generated samples. Note that in Fig. 5, we compared
Dist-GAN and our model (original) with only discriminator
scores. With GM, our model converges faster and achieves
better FID scores.
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Figure 6: Generated samples of our method. Two first samples are on CIFAR-10 with CNN and ResNet architectures, and the
last one is on STL-10 with CNN.

We compare our best setting (NE + GM) with a hinge
loss version (Eq. 8) with other methods. Results are shown
in Table 3. The FID score of SN-GAN and Dist-GAN are
also with hinge loss function. We also report our perfor-
mance with the ResNet (R) architecture (Miyato et al. 2018)
for CIFAR-10 dataset. For both standard CNN and ResNet
architectures, our model outperforms other state-of-the-art
methods with FID score, especially significantly higher on
STL-10 dataset with CNN and on CIFAR-10 dataset with
ResNet. For STL-10 dataset and the ResNet architecture, the
generator is trained with 200K iterations to reduce training
time. Training it longer does not significantly improve the
FID score. Fig. 6 are some generated samples of our method
trained on CIFAR-10 and STL-10 datasets.

Our proposed techniques are not only usable in our model,
but can be used for other GAN models. We demonstrate
this by applying them for standard GAN (Goodfellow et
al. 2014). This experiment is conducted on the CIFAR-10
dataset using the same CNN architecture as (Miyato et al.
2018). First, we regularize the generator of GAN by our
propose neighbors embedding or gradient matching sepa-
rately or their combination to replace the original generator
objective of GAN. When applying NE and GM separately,
each of them itself can significantly improve FID as shown
in Fig. 6. In addition, from Fig. 7, GM+NE achieves FID
of 26.05 (last iteration), and this is significant improvement
compared to GM alone with FID of 31.50 and NE alone
with FID of 38.10. It’s interesting that GM can also reduce
mode collapse, we let the further investigation of it in the
future work. Although both can handle the mode collapse,
NE and GM are very different ideas: NE is a manifold learn-
ing based regularization to explicitly prevent mode collapse;
GM aligns distributions of generated samples and real sam-
ples. The results (Figs. 5 and 7) show GM+NE leads to better
convergence and FID scores than individual techniques.

To examine the computational time of gradient matching
of our proposed generator objective, we measure its training
time for one mini-batch (size 64) with/without GM (Com-
puter: Intel Xeon Octa-core CPU E5-1260 3.7GHz, 64GB
RAM, GPU Nvidia 1080Ti) with CNN for CIFAR-10. It
takes about 53ms and 43ms to train generator for one mini-
batch with/without the GM term respectively. For 300K iter-

Figure 7: FID scores of GAN when applying our proposed
techniques for the generator, and its zoomed figure on the
right.

ations (one mini-batch per iteration), training with GM takes
about one more hour compared to without GM. The differ-
ence is not serious. Note that GM includes `1, `2 norms of
the difference of discriminator scores and gradients, which
can be computed easily in Tensorflow.

Conclusion
We propose two new techniques to address mode collapse
and improve the diversity of generated samples. First, we
propose an inverse t-SNE regularizer to explicitly retain lo-
cal structures of latent samples in the generated samples
to reduce mode collapse. Second, we propose a new gra-
dient matching regularization for the generator objective,
which improves convergence and the quality of generated
images. We derived this gradient matching constraint from
Taylor expansion. Extensive experiments demonstrate that
both constraints can improve GAN. The combination of our
proposed techniques leads to state of the art FID scores on
benchmark datasets. Future work applies our model for other
applications, such as: person re-identification (Guo and Che-
ung 2018), anomaly detection (Lim et al. 2018).
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