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Abstract

One primary focus in multimodal feature extraction is to find
the representations of individual modalities that are maxi-
mally correlated. As a well-known measure of dependence,
the Hirschfeld-Gebelein-Rényi (HGR) maximal correlation be-
comes an appealing objective because of its operational mean-
ing and desirable properties. However, the strict whitening
constraints formalized in the HGR maximal correlation limit
its application. To address this problem, this paper proposes
Soft-HGR, a novel framework to extract informative features
from multiple data modalities. Specifically, our framework
prevents the “hard” whitening constraints, while simultane-
ously preserving the same feature geometry as in the HGR
maximal correlation. The objective of Soft-HGR is straightfor-
ward, only involving two inner products, which guarantees the
efficiency and stability in optimization. We further generalize
the framework to handle more than two modalities and missing
modalities. When labels are partially available, we enhance the
discriminative power of the feature representations by making
a semi-supervised adaptation. Empirical evaluation implies
that our approach learns more informative feature mappings
and is more efficient to optimize.

Introduction
Human perception is typically more accurate when objects
are presented in multiple modalities, as information from
one sense often augments information from another. The
idea has risen recent interests to develop learning machines
which can extract correlation across modalities, through the
perception of equivalence, dependence or association. How-
ever, compared to the ease of human perception, identify-
ing the relationship among multiple sources is much harder
for machines. The reason lies in the facts that the varying
statistic properties carried by data from each source ob-
scure the correlation among modalities, which could be vital
for learning effective feature representations (Baltrušaitis,
Ahuja, and Morency 2018; Sohn, Shang, and Lee 2014).
Existing methods approaches this problem by Canonical
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Correlation Analysis (CCA) (Hotelling 1936; Akaho 2006;
Andrew et al. 2013), Euclidean distance minimization (Frome
et al. 2013), enforcing partial order (Vendrov et al. 2015), etc.

In statistic, the Hirschfeld-Gebelein-Rényi (HGR) max-
imal correlation (Hirschfeld 1935; Gebelein 1941; Rényi
1959), as a generalization from the Pearson’s correlation
(Pearson 1895), is well-known for its legitimacy as a mea-
sure of dependence. Such notion is appealing to multimodal
feature extraction for many reasons. For example, maximiz-
ing the HGR maximal correlation enables us to determine
the nonlinear transformations of two variables that are max-
imally correlated (Feizi et al. 2017). In the perspective of
the information theory, the HGR transformation carries the
maximum amount of information of X about Y , and vice
versa (Huang et al. 2017). As for generality, CCA (Hotelling
1936) and its variants (Bach and Jordan 2002; Akaho 2006;
Andrew et al. 2013) can be regarded as the realizations of the
HGR maximal correlation with different designs of transfor-
mation functions.

However, the HGR maximal correlation suffers from
two limitations. Firstly, HGR maximal correlation involves
whitening constraints which require each feature to be strictly
uncorrelated. Most commonly, the orthogonal geometry is
preserved by a whitening process (Andrew et al. 2013;
Wang et al. 2015b), which relies on the computation of matrix
inversion or decomposition. These operations are of high-
complexity and may have numerical stability issues for large
feature dimensions. Secondly, discriminativeness is not ex-
plicitly formulated in the objective of the HGR maximal
correlation. In fact, it can lead to desirable performance in
downstream supervised tasks only if all the discriminative in-
formation “accidentally” lies in the common subspace of dif-
ferent modalities. Such assumption may not hold true when
input modalities are weakly correlated and do not possess
much common information. In this case, the underlying dis-
criminative information is more likely to be omitted after
feature mapping, which leads to performance degradation.

To address these problems, we propose Soft-HGR, a novel
framework to learn correlated representation across modal-
ities without hard whitening constraints. The objective of
Soft-HGR consists of two inner products, one between the
feature mappings and the other between feature covariances.
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While the formulation rules out the whitening constraints, our
model is still able to preserve the same feature geometry as in
the original HGR formulation. Therefore, no additional decor-
relation process is required in optimization, which promises
scalability and stability to the algorithm. Besides, the simple
formulation of the Soft-HGR provides additional generaliz-
ability to the framework. Soft-HGR can be readily extended
to manage more than two modalities and missing modalities.
In the semi-supervised settings, we adapt the model to extract
the information not only about the dependence between dif-
ferent modalities, but has good predictive power to the labels.
Empirically, our method reveals superior efficiency, stability
and discriminative performance on real data.

In summary, our main contributions are as follows:
• We proposed Soft-HGR, based on the HGR maximal cor-

relation, to extract informative features from multimodal
data. The objective is simple and easy to implement;

• We proposed an alternative strategy to learn the HGR trans-
formations without explicit whitening constraints. The op-
timization is more efficient and reliable;

• We generalize our framework to handle more than two
modalities and missing modalities, and to incorporate dis-
criminative information for semi-supervised tasks.

Background: The HGR Maximal Correlation
The HGR maximal correlation (Hirschfeld 1935; Gebelein
1941; Rényi 1959) generalizes the well-known Pearson’s cor-
relation (Pearson 1895) as a general measure of dependence.
While it was originally defined on one feature, the multi-
feature extension is straightforward. For joint distributed
random variables X and Y with ranges X and Y , the HGR
maximal correlation with k features is defined by:

ρ(k) (X,Y ) = sup
f :X→Rk, 1kE[f ]=0,Cov(f)=I

g:Y→Rk,E[g]=0,Cov(g)=I

E
[
fT(X)g(Y )

]
(1)

where f = [f1, f2, ..., fk]
T, g = [g1, g2, ..., gk]

T, and the
supremum is taken over all sets of Borel measurable func-
tions with zero-mean and identity covariance. As a legitimate
measure of dependence, the HGR maximal correlation satis-
fies many fundamental properties which are rarely provided.
For example, the correlation coefficient is bounded by 0 and
1, corresponding to the case when two random variables are
independent, or there exists a deterministic relationship be-
tween X and Y (Rényi 1959).

There are many reasons why HGR maximal correlation
is appealing to multimodal feature extraction. For example,
finding the HGR maximal correlation also leads us to the non-
linear transformation f and g. These transformations are the
most “informative” ones, in the view of information theory,
as f(X) carries the maximum amount of the information
towards Y and vice versa (Huang et al. 2017).

Connections to CCA Based Models
One strand of research on correlation extraction is based
on the work of Hotelling on CCA (Hotelling 1936), which
is later extended to Kernal CCA (Bach and Jordan 2002;

Figure 1: Architecture of Soft-HGR

Akaho 2006) and Deep CCA (Andrew et al. 2013). In fact,
CCA based models share a very similar objective to the HGR
maximal correlation, except their transformation functions
are restricted to certain forms. More specifically, CCA and
Kernel CCA find optimal feature mappings in linear and re-
producing kernel Hilbert space, respectively. Deep CCA takes
a different approach, in which the f and g are implemented
as deep neural networks. Assuming the infinite expressive
power of the neural structure, the f and g have the capability
to approximate the HGR transformations.

Limitations
An impediment to HGR maximal correlation is that the
whitening constraints bring high computational complexity
to the optimization. Existing models introduce a decorrela-
tion step which forces the covariance to be an identity matrix.
The decorrelation process is not scalable since it relies on
the computation of the matrices inversion and decomposition,
whose time complexity is O(k3). Besides, the optimization
in practice often encounters gradients explosion as we choose
large k, because the covariance matrices become ill-posed.
Some works are proposed to address the problem. Soft-CCA
(Chang, Xiang, and Hospedales 2018) introduces a decor-
relation regularizer based on the l1 penalty to replace the
hard whitening constraints. Correlational Neural Network
(Chandar et al. 2016), inspired by autoencoder, introduces
an addition reconstruction loss to replace the whitening con-
straints. However, both methods break the original feature
geometry of the HGR maximal correlation.

Besides, the features extracted from the HGR maximal
correlation are not necessarily suitable for downstream dis-
criminative tasks. As a dimension deduction process, there
are inevitably some information about data that is discarded
during transformation f : RX → Rk. This is acceptable if the
primary goal is to model the correlation between modalities.
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However, if f is utilized for future discriminative tasks, we
may expect some performance loss.

Soft-HGR
In this section, we detail our framework for Soft-HGR. We
commence by deriving the optimal solution for the HGR
maximal correlation with the whitening constraints. Then
we propose an alternative strategy, the low-rank approxima-
tion, to approach the HGR problem. we show our proposed
objective escapes whitening constraints but still arrives at
an equivalent optimum. Finally, we generalize Soft-HGR to
handle more than two data modalities and missing modalities,
and to incorporate supervised information.

The Optimal Feature Transformations
To simplify the discussions, we assume that X and Y are
discrete random variables with rangeX = {1, 2, ..., |X |} and
Y = {1, 2, ..., |Y|}, respectively. However, the discussion is
still valid when X and Y are multivariate and continuous in
nature.

We first introduce matrix B ∈ R|X |×|Y| as a function of
joint distribution PXY (Huang et al. 2017). The (x, y)-th
entry is defined as:

Bx,y =
PXY (x, y)√
PX(x)

√
PY (y)

(2)

As a summarization of the data, B has the following property:
Lemma 1. The largest singular value of B is 1, with the
corresponding left and right singular vectors given by:

u0 =
[√

PX(1),
√
PX(2), . . . ,

√
PX(|X |)

]T
v0 =

[√
PY (1),

√
PY (2), . . . ,

√
PY (|Y|)

]T (3)

Proof. For any ψ = [
√
PY (y) g(y), y = 1, 2, . . . , |Y|]T

that satisfies ||ψ||2 = 1, we have

||Bψ||22 =
∑
x

(∑
y

PXY (x, y)√
PX(x)

√
PY (y)

√
PY (y) g(y)

)2

=
∑
x

PX(x)

(∑
y

PXY (x, y)

PX(x)
g(y)

)2

=
∑
x

PX(x)E2 [g(Y )|X = x]

≤
∑
x

PX(x)E
[
g2(Y )|X = x

]
=E

[
g2(Y )

]
= ||ψ||22 = 1

(4)
Therefore the largest singular value σ0 = sup ||Bψ||2 ≤ 1.
The equality only holds when g(Y ) is the constant 1 and
ψ = v0. The derivation is similar for u0.

Below, we show that finding the most correlated feature
transformations for the maximal HGR correlation is equiva-
lent to solving the SVD for B̃ = B− u0v

T
0 .

Theorem 1. (Huang et al. 2017) Given the SVD of B =

UΣVT =
∑K

i=0 σiuiv
T
i , with 1 = σ0 ≥ σ1 ≥ ... ≥ σK ,

then optimal feature transformations for the HGR maximal
correlation are given by:

f∗i (x) = Ux,i/
√
PX(x), i = 1, ..., k, x ∈ X

g∗i (y) = Vy,i/
√
PY (y), i = 1, ..., k, y ∈ Y

(5)

Proof.

E
[
fT(X)g(Y )

]
=
∑
x∈X

∑
y∈Y

PXY (x, y)f
T(x)g(y)

=
∑
x∈X

∑
y∈Y

√
PX(x)fT(x)

PX,Y (x, y)√
PX(x)

√
PY (y)

√
PY (y)g(y)

= tr(ΦTBΨ)
(6)

In (6) we introduce new variables Φ ∈ R|X |×k and Ψ ∈
R|Y|×k, which are connected to f and g by:

Φ =
[√

PX(1)f(1), . . . ,
√
PX(|X |)f(|X |)

]T
Ψ =

[√
PY (1)g(1), . . . ,

√
PY (|Y|)g(|Y|)

]T (7)

Following the variables substitution, the objective of the
HGR maximal correlation can be reformulated as follows:

ρk (X,Y ) = max
f :X→Rk,E[f ]=0,Cov(f)=I

g:Y→Rk,E[g]=0,Cov(g)=I

E
[
fT(X)g(Y )

]
(8)

= max
Φ:ΦTu0=0,ΦTΦ=I

Ψ:ΨTv0=0,ΨTΨ=I

tr(ΦTBΨ) (9)

= max
Φ:ΦTΦ=I
Ψ:ΨTΨ=I

tr(ΦTB̃Ψ) (10)

As for the optimization problem in (10), the optimal Φ∗

and Ψ∗ should align the left and right singular vectors of B̃
respectively. Substituting {Φ∗,Ψ∗} back to {f ,g} leads us
to the solution in (5).

For the maximization problem in (10), the whitening con-
straints over ΦTΦ and ΨTΨ are inevitable as they assure
the selected features to be mutually orthogonal in the func-
tional space. In the next subsection, we show an alternative
formulation for this problem.

Alternative: The Low-rank Approximation
Instead of solving the SVD, we approach this problem by
discovering the low-rank approximation of B̃, where all the
cross-modal interactions lies in. Recall the variable equiva-
lence in (7), we approximate the B̃ by:

min
f ,g

1

2
‖B̃−ΦΨT‖2F

s.t. E [f(X)] = E [g(Y )] = 0.

(11)
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Note that we do not impose constraints on the cov(f(X)) or
cov(g(Y )). We will soon argue that this formulation leads
to the same feature geometry as the one in (10). In order to
solve this problem, we introduce the following theorem:

Theorem 2. (Eckart-Young-Mirsky Theorem) (Eckart and
Young 1936) Suppose A = UΣVT, then Ar = UrΣrV

T
r

=
∑r

i=1 σiuiv
T
i is the optimal solution to the following

low-rank approximation problem:

min
Ar

‖A−Ar‖2F

s.t. rank(Ar) ≤ r.
(12)

Therefore, the optimal Φ∗ and Ψ∗ should follow:

Φ∗Ψ∗
T
=

k∑
i=1

σiuiv
T
i = U1:kΣ1:kVT

1:k (13)

The Φ and Ψ is not unique. Given any constant decom-
position of Σ1:k = H1H

T
2 , there is an associated solution

Φ∗ = U1:kH1,Ψ
∗ = V1:kH2. Equivalent expression for f

and g is:

f∗i (x) = [U1:kH1]x,i /
√
PX(x), i = 1, ..., k, x ∈ X

g∗i (y) = [V1:kH2]x,i /
√
PY (y), i = 1, ..., k, y ∈ Y

(14)

Since H1 are H2 are invertable, one can conclude that the
optimal feature transformation for Soft-HGR (14) and for the
HGR maximal correlation (5) are linearly transformable from
the one to the other. Namely, they span the same feature space,
i.e. span{f1, f2, ..., fk} = span{f∗1 , f∗2 , ..., f∗k} (resp. for
g) and therefore describe same amount of information. One
way to understand this equivalence is to imagine that the
HGR features are feed into a linear dense layer, and output
Soft-HGR features with same dimensions.

The Soft-HGR Objective
Thus far, we prove that the low-rank approximation of B̃ also
leads to the optimal feature transformation. Based on this
idea, now we develop the operational objective for Soft-HGR.
By expanding (11), we have:

1

2
‖B̃−ΦΨT‖2F (15)

=
1

2
‖B̃‖2F − tr(ΦTB̃Ψ) +

1

2
tr(ΦTΦΨTΨ) (16)

where the norm of B̃ given the data is a constant. Minimizing
the last two terms with respect to f and G leads us to the
Soft-HGR objective:

max
f ,g

E
[
fT(X)g(Y )

]
− 1

2
tr (cov(f(X)) cov(g(Y )))

s.t. E [f(X)] = E [g(Y )] = 0.
(17)

The proposed Soft-HGR consists of two inner products, one
between feature mappings and the other between feature
covariance. The first term in (17) is consistent to the objec-
tive of the HGR maximal correlation, and the second term

Algorithm 1 Evaluate Soft-HGR on a mini-batch
Input:

Paired data samples of two modalities in a mini-batch of
size m: (x(1),y(1)), · · · , (x(m),y(m))
Two branches of parameterized neural networks with k
output units: f and g

Output:
The objective value of Soft-HGR

1: Subtract the mean of features:
f(x(i))← f(x(i))− 1

m

∑m
j=1 f(x(j)), i = 1, · · · ,m

g(y(i))← g(y(i))− 1
m

∑m
j=1 g(y(j)), i = 1, · · · ,m

2: Compute the empirical covariance:
cov(f)← 1

m−1
∑m

i=1 f(x(i))f(x(i))T

cov(g)← 1
m−1

∑m
i=1 g(y(i))g(y(i))T

3: Compute the empirical Soft-HGR objective:
1

m−1
∑m

i=1 f(x
(i))Tg(y(i))− 1

2 tr(cov(f) cov(g))

is considered as a soft regularizer to replace the whitening
constraints.

Follow the practice of Deep CCA, we design transforma-
tion functions f and g as parametric neural networks. As
long as the reachable functional space of the neural structures
covers the optimal feature transformation, the Soft-HGR and
the HGR maximal correlation will always lead us to the
equivalent solution.

Optimization
In practise, we do not usually have access to the joint proba-
bility distribution PXY , but rather paired multimodal samples
(x(1),y(1)), · · · , (x(m),y(m)) retrived from this distribution.
As common practices, we embrace SGD techniques that op-
erate on mini-batch of data to optimize the Soft-HGR. The
prominent concern here is how to the estimate of the sample
covariance with only partially seen mini-batches. In fact, we
find that simply using the batch covariance as a replacement
awards the best performance. This implies the Soft-HGR
actually decomposes the empirical B̃ over every mini-batch.
Only in this way the empirical PXY is always consistent with
the marginal distribution PX and PY , where the covariance
is evaluated on. The detailed procedure to calculate the Soft-
HGR objective is summarized in Algorithm 1. The overall
complexity of Soft-HGR is O(mk2), which is significantly
less compared to O(mk2 + k3) for normal HGR implemen-
tation, i.e. Deep CCA. It is also worth noting that our method
does not impose an upper bound on the feature dimension k.
The optimization is consistently stable for very large k.

Extension to More or Missing Modalities
The HGR maximal correlation is originally defined on two
random variables. In contrast to reconstruction models (Sri-
vastava and Salakhutdinov 2012; Zhao, Hu, and Wang 2015),
the multi-modal extension for correlation based models is not
straightforward. New modalities will bring additional whiten-
ing constraints, and the computational complexities scales
up. However, in Soft-HGR, the “soft” formulation provides
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more flexibility. Recall that the core idea behind the Soft-
HGR is to find an approximation of the B̃ matrix defined on
two modalities. In order to handle more than two modalities,
the multimodal Soft-HGR should be able to learn feature
transformations which recover all pairwise B̃ simultaneously.
Landing on this idea, let X1, . . . , Xd be d different modali-
ties, and f (1), . . . , f (d) be their corresponding transformation
functions, the multimodal Soft-HGR is defined as:

max
f (1),...,f (d)

E

 d∑
i 6=j

f (i)
T
(Xi)f

(j)(Xj)


− 1

2

d∑
i 6=j

tr
(
cov(f (i)(Xi)) cov(f

(j)(Xj))
)

s.t. f (i) : Xi → Rk;E
[
f (i)(Xi)

]
= 0;

i, j = 1, 2, . . . , d.
(18)

When d = 3, Figure 1 provides an illustration for (18)
with neural network implementations. The DNN structure for
each neural branches may vary, depending on the statistical
property of the inputs. The overall model extracts the features
from every neural branch, and maximize their pairwise Soft-
HGR in an additive manner. From an information theoretical
perspective, maximizing (18) is equivalent to extracting the
common information from multiple random variables.

Note that this generalization also provides solutions to
deal with data with partially missing modalities. To see this,
the first term in (18) can be applied only on the presented
modalities for each training sample, and the second term
is always measurable as it only depends on the marginal
distribution of individual modalities.

Incorporating Supervised Information
The primary goal of the above framework is to extract the
correlation between modalities. Therefore, any information
that is private to the individual modality is eliminated, re-
gardless of its discriminative power. The intuition behind the
supervised/semi-supervised adaptation is that feature extrac-
tion should be conducted under the guidance of supervised
labels, even if they are insufficient.

Assumed that a subset of bi-modal data is associated with
discrete labels Z with range Z = {1, 2, . . . , |Z|}. In order to
receive the supervised information from labels, we feed the
joint representation, the concatenation of individual feature
mappings, into a softmax classifier. The cross entropy loss is
added to the overall objective, with a hyper-parameter λ ∈
[0, 1] to trade off the strength of the unsupervised component:

L =(λ− 1) · E
[
logQZ|XY

]
− λE

[
fT(X)g(Y )

]
+
λ

2
tr (cov(f(X)) cov(g(Y )))

(19)

where

QZ=j|XY =
exp

([
fT(X),gT(Y )

]
θj
)∑|Z|

i=1 exp ([f
T(X),gT(Y )]θi)

(20)

Table 1: The linear correlation between features extracted
from the Soft-HGR and the HGR maximal correlation.

Feature dimensions

Linear correlation 10 20 40

Upper Bound 10 20 40

fHGR(X) and gHGR(Y) 1.36 2.37 3.40
fSHGR(X) and gSHGR(Y) 1.36 2.37 3.40
fSHGR(X) and fHGR(X) 9.99 20.00 39.99
gSHGR(Y) and gHGR(Y) 10.00 20.00 39.99

In semi-supervised settings, the supervised softmax loss,
the first term in (19), is only effective when labels are pre-
sented. The last two terms of (19) corresponds to the Soft-
HGR loss, which is evaluated independently from labels. The
gradients from the label Z are first backpropagated to the
individual feature mappings, then affect the feature selection.

Experiments
In this section, we evaluate Soft-HGR in the following as-
pects:

• To verify the relationship between the HGR features and
Soft-HGR feature is linear;

• To compare the efficiency and numerical stability of CCA
based models and Soft-HGR;

• To demonstrate the power of semi-supervised Soft-HGR
on discriminative tasks with limited labels;

• To show the performance of Soft-HGR on more than two
modalities and missing modalities.

Comparing Soft-HGR with HGR
The formulation of the Soft-HGR and the original HGR maxi-
mal correlation are equivalent except for the way they control
whitening. In this section, we compare two methods in terms
of linearity, efficiency and stability.

Linearity Check Based on the theory, the HGR and the
Soft-HGR transformations should span the same feature
space. To verify this, we randomly generated 100K data sam-
ples (xi, yi) from a randomly chosen joint distribution PXY ,
where X,Y ∈ {1, ..., 50} are both discrete random vari-
ables. The HGR feature {fHGR,gHGR} is obtained by directly
solving the SVD for B̃, which is calculated from empirical
joint distribution P̃XY . In order to retrieve the Soft-HGR fea-
tures {fSHGR,gSHGR}, we first turn the data into one-hot form
X,Y ∈ R100K×50 , then feed them into a two-branch one-
layer neural network optimized by Soft-HGR objective. Note
that when data are one-hot encoded, all possible functions
can be captured by linear operations. Finally, we apply all
learned functions to data and run linear CCA between every
two feature transformations. Recall that the HGR and Soft-
HGR features are linearly transformable from the one to the
other. Therefore, the linear correlation between {fSHGR(X),
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Table 2: Phonetic prediction accuracy obtained by different
methods on certain percentages of the labeled data in XRMB.

Percentages of labels

Method 10% 50% 100%

Baseline DNN 72.2% 81.2% 86.4%

PCA + DNN 71.5% 80.5% 85.2%
CCA + DNN 70.7% 79.9% 84.4%
Deep CCA + DNN 73.2% 80.1% 84.0%
Soft-HGR + DNN 73.0% 79.9% 83.7%
Soft CCA + DNN 69.4% 76.0% 78.8%
CorrNet 71.2% 79.7% 83.2%

Semi Soft-HGR 76.3% 85.0% 88.0%
Semi Soft CCA 73.6% 82.8% 85.5%

fHGR(X)} and between {gSHGR(Y), gHGR(Y)}, in the ideal
case, should reach the upper bound.

Table 1 summarizes the simulation result. The HGR and
the Soft-HGR extract exactly the same linear correlation
between X and Y on different choice of k. Besides, the
correlation between corresponding features from two models
is almost identical to the upper bound, which provides an
empirical evidence for our theory.

Efficiency and Stability In this subsection, we focus on
the efficiency and stability provided by two methods in opti-
mization. In particular, we compare the execution time and
maximally reachable feature dimension by applying both
models to the MNIST handwritten image dataset (LeCun et
al. 1998), which consists of 60K/10K gray-scale digit images
of size 28× 28 as training/testing sets. We follow the experi-
ment setting in (Andrew et al. 2013), and treat left and right
halves of digit images as two modalities X and Y . In order
to highlight efficiency difference brought by the objectives,
we restrict the all the feature transformation to take the linear
form. Therefore, the HGR maximal correlation degrades to
linear CCA. Both optimizations are executed on a Nvidia
Tesla K80 GPU with mini-batch SGD of 5K batchsize.

Figure 2 compares the execution time on one training
epoch with different feature dimensions k. As we expected,
Soft-HGR is faster than CCA methods by orders of magni-
tude. In addition, the execution time of CCA method grows
quickly with the feature dimensions. This is undesirable in
real-world settings where k could be very large. It is also
worth noting that CCA experiences numerical issue when
feature dimension exceeds 350. The instability arises in that
the empirical covariance matrices over some mini-batches
become ill-posed, or even non-invertible.

Soft-HGR for Semi-supervised Learning
In this section we demonstrate how Soft-HGR are applied to
improve the performance of discriminative tasks. we evaluate
our model on the University of Wisconsin X-ray Microbeam
Database (XRMB) (Westbury 1994) for phonetic classifica-
tion. XRMB is a bi-modal Dataset consisting of articulatory
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Figure 2: Execution time of SGD on CCA and linear Soft-
HGR for one training epoch on MNIST data. When k is larger
than 350, CCA experiences numerical issues.
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Figure 3: The effect of hyper-parameter λ on AUC

and acoustic data. Followed the same preprocessing and re-
construction procedures as described in (Arora and Livescu
2013; Wang et al. 2015a), we obtain the total number of 160K
entries of acoustic and vectors articulatory vectors X ∈ R273

and Y ∈ R112, corresponding to 41 classes of labels Z.

Experiment Settings While both modalities X and Y are
available in the training phase, Y is not provided at the test
time. Namely, the model is evaluated by the classification
accuracy with only X observed. We expect using Y during
training to improve the classification performance, even if
they are absent in the test phase. In addition, we partially
mask out some portions of labels Z associated with the train-
ing data. These two restrictions are consistent with the real
world multimodal settings where facial movement data is
usually not obtainable, and labels are limited.

Comparing Models (1) Supervised DNN, which has four
hidden layers [1K, 1K, 1K, 1K]. It only takes raw feature X
as inputs and makes predictions on Z; Supervised DNN can
only deal with labeled data. (2) DNN on CCA features: the
DNN structure is the same as in (1) but it accepts transformed
f(X) as input. f(X) is obtained from PCA, CCA (Hotelling
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Table 3: AUC obtained by different methods using part of the labels or part of the modalities

Missing labels Missing modalities

Method No Missing 20% 50% 90% 20% 50%

LR 0.6625 0.6623 0.6618 0.6534 0.6588 0.6286
FM 0.6780 0.6728 0.6723 0.6543 0.6696 0.6449
Deep FM 0.6803 0.6765 0.6756 0.6613 0.6714 0.6450
Neural FM 0.6760 0.6768 0.6746 0.6570 0.6661 0.6574
Semi Soft-HGR 0.6972 0.6935 0.6906 0.6728 0.6823 0.6682

1936), Deep CCA (Andrew et al. 2013), Soft CCA (Chang,
Xiang, and Hospedales 2018), Correlational Neural Network
(CorrNet) (Chandar et al. 2016) and our model. Except for
PCA which extracts feature only from X, all other methods
are trying to find the most correlated f(X) to g(Y). For Deep
CCA, Soft CCA and our model, the selected f is a DNN
with two hidden layers: [1K, 1K] and g is linear. The output
feature dimensions k is chosen to be 80 for all methods, as
higher value leads to unstable gradients in Deep CCA. (3)
Semi-supervised Model: we construct semi-supervised Soft-
HGR as described in subsection Incorporating Supervised
Information, except that the top layer softmax function only
takes f(X) as input. In particular, we use DNN with four
hidden layers [1K, 1K, 1K, 1K] for f and linear function
for g. To see the equivalence, when λ = 0, the network
becomes the supervised DNN. For a fair comparison, we
also adapt semi-supervised Soft CCA in the same manner.
However, we found Deep CCA fails the adaptation because
the training is very unstable which prevents us to get a reliable
result. In all DNNs, batch normalization (Ioffe and Szegedy
2015) is applied before ReLU activation function to ensure
better convergence. The hyper-parameters for each model are
determined by their best average performance on validation
set on 5-fold cross validation. Table 2 reports the average
phonetic prediction accuracy.

Observations (1) Semi-supervised Soft-HGR achieves the
highest accuracy among all models, and the difference be-
comes more apparent when labels are insufficient. (2) The
discriminative performance of Deep CCA and Soft-HGR are
similar as they learns equivalent features. (3) f(X) trained
by various unsupervised models is not necessarily more dis-
criminative than raw feature X1. In fact, they only improve
classification when labels are extremely limited. In other
cases, their performances are inferior to the end-to-end DNN
because valuable information may be lost as f projects the
data into lower dimensions.

Soft-HGR for More or Missing Modalities
In this section we apply our method to recommender sys-
tem. In such problems, users Xu, items Xi, and context Xc

are three natural modalities. Extensive success achieved by
collaborative filtering techniques (Breese, Heckerman, and
Kadie 1998) demonstrates that the correlations between these
modalities are useful to infer user behaviors.

Specifically, we experiment with KKBox’s Music Rec-

ommendation Dataset (Chen et al. 2018). The goal is to
predict the chances of a user listening to a song repeti-
tively after the first listening event within a month. The bi-
nary labels Y = 1 represents the user listens to the song
again, and Y = 0 means the opposite. The user features
Xu and item (song) features Xi are explicitly given, and
we treat source system tab, source screen name
and source type as context features Xc. The categorical
features are one-/multi-hot encoded, and continuous ones are
normalized. The features corresponding to one modality are
concatenated into a single vector, resulting in Xu, Xi, and
Xc as 34656, 623691, and 45 dimensional feature vectors,
respectively. The test labels are not disclosed, therefore we
use the last 20% of 7M training data as test set1. We test
the model under two settings, where labels are insufficient
or one modality is missing. In the first setting, we conceal
20%/50%/90% of the labels in training data. In the second
scenarios, we randomly mask one of the three modalities as
missing in 20%/50% of both training and test data, the status
of whether data is missing is constructed as a binary flag in
the feature vector. The performances are evaluated by the
Area under the ROC curve (AUC).

Comparing Models We compare our model against to the
state-of-art predictive model for sparse data. These include
Shallow models: Logistic regression (LR) and Factoriza-
tion machines (FM) (Rendle 2010), and Deep models: Deep
FM (Guo et al. 2017), Neural FM (He and Chua 2017). For
models besides LR, the dimension of feature embedding
is set to 16. The DNN component for Deep FM, Neural
FM and Semi Soft-HGR has consistent structure [100, 100].
Semi-supervised Soft-HGR: The architecture for the un-
supervised part is designed mainly according to Figure 1.
However, since fully connected layers is not effective for
sparse features, a Bi-Interaction layer, proposed in (He and
Chua 2017), is inserted between the input and DNN structure.
The output features from three neural network branches are
forwarded to an average pooling layer. The output joint rep-
resentation is feed to a softmax function for prediction. The
hyper-parameter λ controls the participation of the Soft-HGR
loss. The comparing result is reported in Table 3. In order to
highlight the role of Soft-HGR loss, we plot the AUC versus
λ when Semi Soft-HGR is trained with all labels in Figure 3.

1The split is suggested by the 1st place solution. The last part
of the data is used for test set because the data are speculated to be
chronologically ordered.
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Observations (1) Semi-supervised Soft-HGR achieves sig-
nificantly better performance than all the baselines. (2) From
Figure 3 we can see the performance decreases as it is elim-
inated from the objective (i.e. λ = 0). Arguably, the per-
formance gain comes from the introduction of unsupervised
Soft-HGR objective.

Conclusion
In this paper, we propose a multimodal feature extraction
framework based on the HGR maximal correlation. Further,
we replace the intrinsic whitening constraints with a “soft”
regularizer which guarantees the efficiency and stability in
optimization. Our model is able to cope with more than two
modalities, missing modalities, and can be readily general-
ized to the semi-supervised setting. Extensive experiments
show that our proposed model outperforms state-of-the-art
multimodal feature selection methods in different scenarios.
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