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Abstract

Scalability of distributed deep learning (DL) training with
parameter server architecture is often communication con-
strained in large clusters. There are recent efforts that use a
layer by layer strategy to overlap gradient communication
with backward computation so as to reduce the impact of
communication constraint on the scalability. However, the ap-
proaches cannot be effectively applied to the overlap between
parameter communication and forward computation. In this
paper, we propose and design iBatch, a novel communication
approach that batches parameter communication and forward
computation to overlap them with each other. We formulate
the batching decision as an optimization problem and solve it
based on greedy algorithm to derive communication and com-
putation batches. We implement iBatch in the open-source DL
framework BigDL and perform evaluations with various DL
workloads. Experimental results show that iBatch improves
the scalability of a cluster of 72 nodes by up to 73% over the
default PS and 41% over the layer by layer strategy.

Introduction
Deep learning (DL) (LeCun, Bengio, and Hinton 2015),
a class in machine learning (ML) field, has achieved re-
markable success across a wide range of applications, in-
cluding image recognition, object detection, and natural
language processing. In DL, deep neural network (DNN)
models achieve high accuracy through the use of deeply
layered structures with many parameters (He et al. 2016;
Szegedy et al. 2017).

In order to reduce the training time of DNN models in a sin-
gle compute node, DL frameworks (e.g., TensorFlow (Abadi
et al. 2016), BigDL (Wang et al. 2018c)) implement dis-
tributed DNN models, in which the training data is parti-
tioned over distributed clusters with multiple nodes by taking
advantage of data parallelism. Among the distribution imple-
mentations, parameter server (PS) architecture (Li et al. 2014;
Dai et al. 2015; Xing et al. 2015) is a common communica-
tion architecture that synchronizes parameter updates (i.e.,
gradients) among multiple nodes. PS separates the cluster
nodes into workers and servers. The servers serve as a dis-
tributed storage of model parameters. In the default setting,
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the one iteration execution contains four sequential opera-
tions. First, the workers pull the parameters from the servers.
Then, they conduct forward computation based on the pulled
parameters, and compute the gradients through backward
computation. Finally, they push the gradients during each
synchronization into the servers.

However, as the number of nodes in a cluster increases,
the distributed implementation with PS often scales poorly.
For instance, a recent study (Zhang et al. 2017) shows that
training VGG19-22K network that contains 229M (million)
parameters with open-source TensorFlow on 32 nodes can
be slower than training on a single node. The reason is
that when the number of nodes increases, more nodes share
the network bandwidth of the cluster so that the available
bandwidth for each node decreases (Ahmad et al. 2014;
Wang et al. 2018b). As the result, the parameter commu-
nication time and gradient communication time increase,
prolonging the execution time of one iteration. Thus, the
cluster network bandwidth becomes a severe bottleneck for
large-scale distributed DL training.

Previous efforts reduce the impact of communication con-
straint on the scalability of distributed DNN model training
from two aspects. From the aspect of algorithm, Gradient
Quantization (Zhou et al. 2016; Wen et al. 2017; Micikevi-
cius et al. 2018) and Sparsification (Aji and Heafield 2017;
Lin et al. 2018; Chen et al. 2018) reduce the gradient com-
munication time by cutting down the size of gradients in
communication. These techniques need to balance the trade-
off between the model accuracy and the size of gradients.
From the aspect of PS design, Poseidon (Zhang et al. 2017)
proposes a novel PS architecture, in which gradient commu-
nication is overlapped with backward computation layer by
layer to reduce the execution time of these two operations.
With the layer by layer strategy, the gradients of each layer
are pushed to the servers immediately after the backward
computation in the layer. However, Poseidon does not over-
lap parameter communication with forward computation.

The trend of Gradient Quantization and Sparsification con-
tinues reducing the size of gradients in communication. As
the result, parameter communication accounts for an increas-
ingly large part of the total communication between the work-
ers and the servers. To this end, we propose to overlap param-
eter communication with forward computation so as to reduce
the execution time including parameter communication time
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and forward computation time. However, the layered model
structures of DNN pose severe challenges on the overlap
so that the straightforward layer by layer overlap strategy
cannot be effectively applied here. First, we find that pulling
parameters from the servers layer by layer brings significant
overhead in parameter communication. Second, the param-
eter communication time can be longer or shorter than the
forward computation time across layers so that the communi-
cation can only be partially overlapped with the computation.
For instance, the communication time is usually much longer
than the computation time in fully-connected layers, while
the computation time is usually much longer than the commu-
nication time in convolutional layers (Krizhevsky, Sutskever,
and Hinton 2012).

We propose and design iBatch, a novel communication
approach that batches parameter communication and forward
computation to overlap them with each other. Instead of us-
ing a constant batch size, iBatch uses communication and
computation batches with various sizes in order to maximize
the overlap. Specifically, we first profile the parameter com-
munication time and the forward computation time in DNN
model training. Then, we formulate the batching decision
as an optimization problem of execution time minimization
based on the profile. Finally, we use greedy algorithm that
maximizes the overlap to solve the optimization problem and
derive the batches.

In a nutshell, we make the following technical contribu-
tions: 1) We find the naive implementation of the layer by
layer strategy is not effective to overlap parameter communi-
cation with forward computation. 2) We design iBatch based
on problem formulation and algorithm design to conduct
the overlap through batching parameter communication and
forward computation. 3) We implement iBatch in the open-
source DL framework BigDL and perform comprehensive
evaluations with various DL workloads. Experimental results
show that iBatch achieves up to 45x speedup for VGG19-22K
network in a cluster of 72 nodes, 73% improvement over the
default PS (26x speedup) and 41% improvement over the
layer by layer strategy (32x speedup).

Related Work
Distributed DL frameworks with PS. Based on PS ar-
chitecture (Li et al. 2014; Dai et al. 2015), a number of
distributed DL frameworks have been developed. DistBe-
lief (Dean et al. 2012) is a distributed framework that
trains deep networks using asynchronous stochastic gradient
descent. TensorFlow (Abadi et al. 2016) is Google’s dis-
tributed DL framework that uses a dataflow graph to repre-
sent DL models and synchronizes model parameters via PS.
MXNet (Chen et al. 2015) is another DL framework that
uses PS for distributed execution and supports graph repre-
sentations for DL models. The above frameworks, however,
lack the benefits of tight integration with general-purpose
computational frameworks such as Apache Spark (Zaharia et
al. 2012). To this end, BigDL (Wang et al. 2018c) is proposed
as a distributed DL library for Spark. With BigDL, users can
write their DL applications as standard Spark programs that
can directly run on top of existing Spark clusters.

Distributed DL implementation based on PS has limited
scalability due to the high volume of communication in pa-
rameter synchronization. Thus, there are techniques to reduce
network communication. Poseidon (Zhang et al. 2017) uses
wait-free backpropagation that overlaps the backward prop-
agation computation with the gradient communication. It
also uses a hybrid communication scheme that optimizes the
number of bytes required to synchronize each layer. How-
ever, the layer by layer overlap strategy is not efficient for
overlapping the forward propagation computation with the
parameter communication.

Gradient Quantization and Sparsification that reduce the
size of data in communication are also extensively studied.
In gradient quantization, 1-bit SGD (Seide et al. 2014) is pro-
posed to reduce gradients transfer data size and achieved 10x
speedup in traditional speech applications. TernGrad (Wen
et al. 2017) uses 3-level gradients and DoReFa-Net (Zhou et
al. 2016) uses 1-bit weights with 2-bit gradients. In gradient
sparsification, threshold quantization (Strom 2015) and gradi-
ent dropping (Aji and Heafield 2017) are proposed to sparsify
the gradients by a single threshold based on the absolute
value. However, the threshold is hard to choose in practice.
AdaComp (Chen et al. 2018) proposes to automatically tune
the compression rate depending on local gradient activity.
DGC (Lin et al. 2018) reduces the communication bandwidth
through momentum correction, local gradient clipping, mo-
mentum factor masking, and warm-up training. These tech-
niques need to balance the trade-off between model accuracy
and the size of data in communication.

Distributed DL frameworks without PS. There are DL
frameworks that make use of decentralized training to re-
move the burden of PS deployment in distributed environ-
ments while maintaining data parallelism. In MALT (Li et
al. 2015), workers exchange gradients with a subset of work-
ers selected by a Halton sequence. Due to the synchroniza-
tion delay, it suffers from slow convergence, especially for
complex neural network models. SFB (Xie et al. 2016) and
Ako (Watcharapichat et al. 2016) parallelize DL applications
using peer-to-peer communication.

Motivation
In this section, we first introduce the PS architecture for par-
allelizing DNN training on clusters. We then describe the
communication and computation overlap that takes advan-
tage of decomposing the procedure of DNN training into
a sequence of communication and computation operations.
Finally, we provide a case study to show the potential gain of
overlapping parameter communication and forward computa-
tion in a batch of layers.

Parameter Server Architecture
Most distributed ML/DL frameworks (e.g., Spark, MXNet,
TensorFlow, BigDL) employ the PS architecture to train DNN
models iteratively as shown in Figure 1. In this architecture,
there are two types of cluster nodes: servers and workers.
Specifically, the parameters in a DNN model are partitioned
among the servers and the training data are split among the
workers. In one iteration, each worker first pulls the parame-
ters from the servers and computes parameter updates (i.e.,
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Figure 1: The parameter server architecture.

gradients) locally through forward and backward propagation
computation using its data partition. The forward computa-
tion computes the value of an objective function (i.e., loss
function) based on the parameters. The backward computa-
tion generates the gradients based on the value of objective
function. The workers then push the gradients to the servers.
After receiving the gradients, the servers update the model
parameters based on Stochastic Gradient Descent algorithm.
There are different types of synchronizations between the
servers and the workers, such as BSP (Zaharia et al. 2012),
A-BSP (Wang et al. 2018a), SSP (Xing et al. 2015), and
ASP (Chilimbi et al. 2014).

Communication and Computation Overlap
In the default PS, each worker conducts four operations se-
quentially in one iteration: parameter communication (i.e.,
pulling parameters), forward computation, backward compu-
tation, and gradient communication (i.e., pushing gradients).
The four operations are defined as Pt, FCt, BCt, and Gt,
respectively, where t denotes the number of iterations. Thus,
the procedure of DNN training in iteration t can be notated
as [Pt, FCt, BCt, Gt].

The forward and backward computation is performed
through DNN layer by layer. If we define a forward and
a backward computation through the lth layer of a network
as fclt and bclt, respectively, the computation [FCt, BCt]
is notated as [fclt, fc

2
t , ..., fc

L
t , bc

L
t , bc

L−1
t , ..., bclt], where L

denotes the number of layers in the network. Meanwhile,
as every layer of a network contains an independent set of
parameters, Pt and Gt can be decomposed as [p1t , p
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L
t ]

and [gLt , g
L−1
t , ..., g1t ], respectively, where plt is defined as

pulling the parameters of layer l and glt is defined as pushing
the gradients of layer l. Thus, the training procedure can be
written as [p1t , ..., p
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illustrated in Figure 2(a). The communication and computa-
tion perform sequentially, waiting for each other to finish.

The communication can be overlapped with computation
based on two independencies in the training procedure: (1)
the parameter communication plt is independent of the for-
ward computation fcit (i < l); (2) the gradient communi-
cation glt is independent of the backward computation bcit
(i > l). As the result, two overlaps can be performed as
shown in Figures 2(b) and 2(c): (1) The overlap between
parameter communication and forward computation; (2) The
overlap between gradient communication and backward com-
putation. Previous efforts explored the latter overlap by over-
lapping gradient communication with backward computation
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(c) The overlap between gradient
communication and backward com-
putation in previous efforts.

Figure 2: The communication and computation overlap.

Figure 3: The parameter communication time and the forward
computation time in each layer in GoogLeNet.

layer by layer. Specifically, glt is performed immediately af-
ter finishing bclt so that glt and bcit (i > l) can be executed
concurrently without blocking each other. In contrast, iBatch
explores the former overlap through batching parameter com-
munication and forward computation.

Case Study
The straightforward layer by layer strategy cannot be ef-
fectively applied to overlap parameter communication with
forward computation due to two reasons. First, this strat-
egy brings significant overhead in parameter communication.
Specifically, the total parameter communication time depends
on two factors: the number of communications and the time
in each communication (Lee et al. 2017). The time in each
communication consists of a startup time (e.g., searching the
servers that store parameters and handling TCP connections)
and a transfer time. The startup time is independent of the
size of parameters in the communication and the transfer time
is in direct proportion to the size. Thus, if a worker pulls the
parameters in a neural network layer by layer, the number of
communications equals the number of layers in the network,
leading to significant overhead in the startup time.

Second, the parameter communication time can be longer
or shorter than the forward computation time across layers.
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(a) Sequential execution of communication and computation in the default PS without overlap.

(b) Overlap the communication with computation layer by layer.

(c) Overlap the communication with computation in a batch of layers with iBatch.

Figure 4: The procedure of parameter communication and forward computation with three communication approaches. The time
in each communication is divided into a startup time and a transfer time. The number denotes the layer in the network.

As the result, the communication can only be partially over-
lapped with the computation. To validate this, we created a
BigDL cluster containing 6 workers and 6 servers and ran
the representative GoogLeNet (Szegedy et al. 2015) using
the data from Imagenet (Krizhevsky, Sutskever, and Hinton
2012). Figure 3 illustrates the communication time and the
computation time in each layer (adjacent convolutional layer
and pooling layer are regarded as one layer since there are no
parameters in pooling layers). The result shows that the com-
munication and computation time varies across layers. The
communication time is much longer than the computation
time in fully-connected layers (e.g., layer 11). The compu-
tation time is much longer than the communication time in
convolutional layers (e.g., layer 2).

According to the time in Figure 3, we present the procedure
of parameter communication and forward computation with
the default PS, the layer by layer strategy, and iBatch in
Figure 4. In the default PS, a worker pulls all parameters from
the servers once and then conducts the forward computation
layer by layer. Figure 4(a) illustrates the timeline of this
procedure. The figure shows that there is only one startup
time since the number of communications is one. However,
this procedure is highly sequential, in which the computation
waits for the communication to finish.

With the layer by layer strategy, a worker pulls the parame-
ters from the servers layer by layer and conducts the forward
computation in each layer once the corresponding parameters
are pulled from the servers. We present the timeline of this
procedure in Figure 4(b). The figure shows that the communi-
cation is partially overlapped with the computation. However,
this strategy brings significant overhead (i.e., multiple startup
time) since the number of communications equals the num-
ber of layers. In some layers (e.g., layers 10 and 11), the
forward computation has to wait for a long time before the
communication finishes, prolonging the execution time.

iBatch proposes to overlap the communication with the
computation in a batch of layers as shown in Figure 4(c). Con-
cretely, a worker pulls all parameters through three batches.

The first batch pulls the parameters from layers 1 to 5. The
second batch pulls the parameters from layers 6 to 10. The
third batch pulls the parameters from layers 11 to 12. Com-
pared with the layer by layer strategy, the startup time is
saved in iBatch since the number of communications is re-
duced to three. Also, with iBatch, more communication is
overlapped with the computation in this case, leading to a
significant reduction in the execution time.

iBatch Design and Implementation
The goal of iBatch is to minimize the execution time includ-
ing the total parameter communication time and the forward
computation time. We first formulate the batching decision
as an optimization problem of execution time minimization
based on the profile of the parameter communication time
and the forward computation time. Then, we use greedy al-
gorithm that maximizes the overlap to solve the problem and
derive communication and computation batches.

Given a cluster and a neural network, we measure the
forward computation time in each layer in the network and
define the time in ith layer as Ci. For the parameter commu-
nication, we measure the startup time as well as the transfer
time in each layer. The startup time is notated as Ts and the
transfer time in ith layer is notated as T i

t .

Problem Formulation
According to the case study, the execution time consists of
three parts. The first part is the parameter communication
time in the first batch (e.g., layers 1 to 5 in Figure 4(c)). The
communication in this part cannot be overlapped with com-
putation since there are no parameters for any computation.
The second part is the parameter communication time from
the second batch to the last batch (e.g., layers 6 to 10 and lay-
ers 11 to 12 in Figure 4(c)). In this part, the communication
in one batch is independent of the computation in its previ-
ous batch so that the communication can be overlapped with
the computation. The third part is the forward computation
time in the last batch (e.g., layers 11 to 12 in Figure 4(c)).
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The computation in this part cannot be overlapped with any
communication since there is no communication in the part.

To formulate the execution time, the number of batches in
a L-layer network is notated as N and the batches are notated
as [[l0 + 1 = 1, l1], [l1 + 1, l2], ..., [lN−1 + 1, lN = L]],
where li denotes the last layer in batch i. In other words,
batch i includes layers from li−1+1 to li. For instance, batch
1 (i.e., the first batch) includes layers from 1 to l1. Batch N
(i.e., the last batch) includes layers from lN−1 + 1 to L. The
batches in Figure 4(c) is [[1, 5], [6, 10], [11, 12]].

Based on the notations, the first part in the execution time
is formulated as:

EXE1 = Ts +
∑

1≤i≤l1

T i
t (1)

In the second part, the number of communications is N-1. So,
the total startup time is (N−1)∗Ts and this part is formulated
as:

EXE2 = Ts +
∑

l1+1≤i≤l2

T i
t + ...+ Ts +

∑
lN−1+1≤i≤L

T i
t

= (N − 1) ∗ Ts +
∑

l1+1≤i≤L

T i
t

(2)
The third part is formulated as:

EXE3 =
∑

lN−1+1≤i≤L

Ci

(3)

We define the execution time as ExeT ime. Thus, we mini-
mize ExeT ime by solving the following optimization prob-
lem:

min EXETime = EXE1 + EXE2 + EXE3 (4)

subject to

Ts +
∑

lk+1≤i≤lk+1

T i
t >

∑
lk−1+1≤i≤lk

Ci 0 < k < N (5)

Objective Eq. 4 minimizes the sum of the three parts in the
execution time. Constraint Eq. 5 ensures the overlap between
the communication in batch k+1 and the computation in batch
k.

Algorithm Design
To minimize the execution time, li (0 < i < N ) in the
batches is derived one by one through greedy algorithm.
Specifically, we use two greedy algorithms that makes greedy
choices at each step to ensure that the objective function in
Eq. 4 is optimized. Each algorithm derives one candidate of
communication and computation batches. From two candi-
dates of the batches, we choose the one with the minimal
execution time to batch parameter communication and for-
ward computation.

Algorithm 1 generates li from l1 to lN . The first step (lines
2 to 5) that chooses l1 and l2 decides the communication time
EXE1 and the overlapping time between the communication
in the second batch and the computation in the first batch.
Thus, the greedy choice maximizes the overlapping time

while minimizing the communication time. Specifically, lines
2 to 3 first construct a set of pairs S2 that meet Constraint
Eq. 5. That is, for all pairs in S2, the communication in the
second batch can be overlapped with the computation in the
first batch. From S2, line 4 then selects the pairs with the
maximum overlapping time. Finally, from the pairs selected
by line 4, line 5 selects one with the minimum communication
time in the first batch. In the rest steps (lines 7 to 13), the
algorithm chooses one layer in one step. For instance, the
choice of layer lk decides the overlapping time between the
communication in batch k and the computation in batch k−1.
Thus, the greedy choice maximizes the overlapping time by
minimizing the difference between the communication time
in batch k and the computation time in batch k − 1.

Algorithm 1
Greedy algorithm that generates li from l1 to lN−1

1: /* The first step */
2: Derive set S1 that contains all pairs of [l1, l2];
3: From S1, select pairs that meet Eq. 5 and form them as set S2;
4: From S2, select pairs with the maximum

∑
1≤i≤l1

Ci;
5: From the selected pairs, choose one with the minimum

Ts +
∑

1≤i≤l1
T i
t ;

6: /* The rest steps */
7: Previous two layers in batches: lk−1 = l2, lk−2 = l1,;
8: repeat
9: Define current layer as lk;

10: From [lk−1 + 1, L], select all lx that meet
Ts +

∑
lk−1+1≤i≤lx

T i
t >

∑
lk−2+1≤i≤lk−1

Ci;
11: From the selected lx, choose one as lk that has the minimum

Ts +
∑

lk−1+1≤i≤lk
T i
t −

∑
lk−2+1≤i≤lk−1

Ci;
12: lk−2 = lk−1;
13: lk−1 = lk;
14: until lk−1 = L;

Algorithm 2 generates li from lN−1 to l1. The first step
(lines 2 to 5) that chooses lN−1 and lN−2 decides the com-
putation time EXE3 and the overlapping time between the
communication in the last batch and the computation in batch
N − 1. Thus, the greedy choice maximizes the overlapping
time while minimizing the computation time. Specifically,
lines 2 to 3 first construct a set of pairs S2 that meet Con-
straint Eq. 5. That is, for all pairs in S2, the communication
in the last batch can be overlapped with the computation in
batch N − 1. From S2, line 4 then selects the pairs with the
maximum overlapping time. Finally, from the pairs selected
by line 4, line 5 selects one with the minimum computation
time in the last batch. In the rest steps (lines 7 to 13), the algo-
rithm chooses one layer in one step. For example, the choice
of layer lk decides the overlap between the communication in
batch k+1 with the computation in batch k. Thus, the greedy
choice maximizes the overlapping time by minimizing the
difference between the communication time in batch k + 1
and the computation time in batch k.

Implementation
We have implemented iBatch in BigDL (ver-
sion 0.5.0) by modifying source files in package
com.intel.analytics.bigdl.

5293



Algorithm 2
Greedy algorithm that generates li from lN−1 to l1

1: /* The first step */
2: Derive set S1 that contains all pairs of [lN−1, lN−2];
3: From S1, select pairs that meet Eq. 5 and form them as set S2;
4: From S2, select pairs with the maximum∑

lN−2+1≤i≤lN−1
Ci;

5: From the selected pairs, choose one with the minimum∑
LN−1≤i≤L Ci;

6: /* The rest steps */
7: Next two layers in batches: lk+1 = lN−2, lk+2 = lN−1;
8: repeat
9: Define current layer as lk;

10: From [0, lk+1 - 1], select all lx that meet
Ts +

∑
lk+1+1≤i≤lk+2

T i
t >

∑
lx+1≤i≤lk+1

Ci;
11: From the selected lx, choose one as lk that has the minimum

Ts +
∑

lk+1+1≤i≤lk+2
T i
t −

∑
lk+1≤i≤lk+1

Ci;
12: lk+2 = lk+1;
13: lk+1 = lk;
14: until lk+1 = 0;

Computation and communication profile. The
forward function in AbstractModule.scala takes a
layer as input and performs the forward computation of the
layer. Thus, the forward computation time Ci is profiled by
measuring the runtime of this function. The getWeights
function in AllReduceParameter.scala
first locates the parameters (i.e., on which
servers) using function getWeightBlockId
and then calls function fetchBlockSync in
BlockTransferService.scala to transmit the
parameters from the first layer to the last layer. Thus, the
transfer time T i

t is profiled by measuring the runtime of
fetchBlockSync. The runtime difference between
getWeights and fetchBlockSync is regarded as Ts.

Computation and communication overlap. To batch
the forward computation, we implemented a new func-
tion iBatchforward that takes batch i as input and
calls forward to perform the computation from layers
li−1 + 1 to li. To batch the parameter communication,
we modified the function getWeights and rename it as
iBatchgetWeights. The modified function takes batch
i as input, locates the parameters in the batch, and transmits
the parameters from layers li−1 + 1 to li. Default PS imple-
mentation in BigDL uses one thread to run getWeights
and forward sequentially without the overlap. To en-
able the overlap, we implemented two threads that concur-
rently run iBatchgetWeights input with batch i and
iBatchforward input with the previous batch i− 1.

Evaluation Setup
Testbed
We conduct our experiments on a CPU cluster in a private
cloud. The cloud runs on 8 HP BL460c G6 blade servers
interconnected with 10Gbps global Ethernet. The number of
nodes in the cluster ranges from 1 to 72 to evaluate the scala-
bility of distributed DL. All nodes run Ubuntu Server 14.04

Table 1: Neural networks for evaluation.

Model # Params Dataset
GoogLeNet 5M ILSVRC12

Inception-V3 27M ILSVRC12
VGG19 143M ILSVRC12

VGG19-22K 229M ImageNet22K

with Linux kernel 4.4.0-64. To achieve high performance in
the forward and backward computation, BigDL uses Intel
Math Kernel Library and multithreaded programming in each
computation task.

Dataset and DL Models
Our experiments focus on the image classification applica-
tions where DL is most successfully applied. We use two
well-known image classification datasets. (1) ImageNet22K,
the largest public dataset for image classification, includ-
ing 14.2 million labeled images from 21841 categories. (2)
ILSVRC12, a subset of ImageNet22K that has 1.28 million
of training images;

The scalability of distributed DL is evaluated using differ-
ent neural networks: (1) GoogLeNet: a 22-layer convolutional
neural network with 5M parameters. (2) Inception-V3: an
improved version of GoogLeNet; (3) VGG19: a 16 convolu-
tional layers and 3 fully-connected layers network, in total
143M parameters; (4) VGG19-22K: an improved version
of VGG19 network (Zhang et al. 2017). The improved net-
work has 229M parameters. Table 1 lists their statistics and
configurations in.

Metrics
The performance metrics include scalability and normal-
ized execution time ExeT ime. The scalability denotes the
speedup on throughput (number of iterations finished per
hour) compared with single node DL. We evaluate the perfor-
mance of three communication approaches: iBatch, sequen-
tial execution in the default PS (default), and the layer by
layer overlap strategy (layer by layer). The performance is
compared with the ideal linear speedup. Note that the per-
formance metrics do not include DNN model accuracy since
iBatch does not impact the accuracy. iBatch does not change
the synchronization model in PS and it also does not change
any hyperparameters in DNN.

Evaluation
Scalability
Figure 5 plots the scalability with three communication ap-
proaches, in which the layer by layer strategy is not used
to speed up gradient communication and backward compu-
tation. Three approaches achieve almost linear speedup on
throughput when the cluster size is small (the number of
nodes≤ 6). The reason is that the number of nodes that share
the cluster network bandwidth is small so that the available
bandwidth for each node is high. Thus, the scalability is not
constrained by the communication time which is much less
than the computation time.
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(a) GoogLeNet. (b) Inception-V3. (c) VGG19. (d) VGG19-22K.

Figure 5: Speedup vs. number of nodes when training GoogleNet, Inception-V3, VGG19, and VGG19-22K.

(a) Inception-V3. (b) VGG19.

Figure 6: Speedup vs. number of nodes with Gradient Sparsi-
fication when training Inception-V3 and VGG19.

When the cluster size is medium (6 < the number of nodes
≤ 30), the available bandwidth for each node is less than that
in the small clusters and the communication time becomes
non-negligible compared with the computation time. Thus,
the scalability is constrained by the communication time. For
example, the default PS only achieves 26x, 25x, 23x, and 22x
speedup on 30 nodes for the four networks. The scalability
with the layer by layer strategy is better than that with the de-
fault PS, achieving 25x, 24x, 22x, and 21x speedup. Among
the three approaches, iBatch achieves has the best scalability
with 29x, 28x, 26x, and 25x speedup. Also, compared with
GoogLeNet and Inception-V3, the communication time in
VGG19 and VGG19-22K accounts for a larger part of the to-
tal execution time since the two VGG networks have a larger
size of parameters. Thus, the scalability of the two VGG
networks is worse than that of GoogLeNet and Inception-V3.

When the cluster size further increases (the number of
nodes > 30), the communication time accounts for an in-
creasingly large part of the total execution time, leading to
the worse scalability. However, the scalability with iBatch is
much better than that with the other two approaches. For in-
stance, iBatch achieves 45x speedup on 72 nodes in VGG19-
22K, 73% improvement over the default PS (26x speedup)
and 41% improvement over the layer by layer strategy (32x
speedup). iBatch has the best performance improvement in
VGG19-22K since the communication time in the network is
larger than that in the other three networks.

Although the scalability with iBatch is much better than
that with the other two approaches, it is not close to the ideal
scalability with linear speedup since the scalability is still
constrained by the gradient communication time. To remove
the constraint, we apply a simple Gradient Sparsification tech-
nique (Aji and Heafield 2017) on the gradient communication.

(a) Inception-V3. (b) VGG19.

Figure 7: Execution time decomposed into the overlapping
time, the non-overlapping communication time, and the non-
overlapping computation time in two networks on 72 nodes.

Figure 6 further illustrates the scalability with the technique
using two different neural networks. The result shows that
iBatch achieves almost linear speedup on 72 nodes in two
networks. Note that there is no technical challenge for the
combination between iBatch and the Gradient Sparsification
technique. iBatch batches parameter communication and for-
ward computation, which does not impact gradient communi-
cation that can be optimized by the Gradient Sparsification
technique.

Execution Time
Figure 7 plots the normalized execution time ExeT ime
in Inception-V3 and VGG19 when the cluster size is 72.
Specifically, the time is decomposed into the overlapping
time, the non-overlapping communication time, and the non-
overlapping computation time. The result shows that the
overlapping time in the default PS is zero since the communi-
cation and the computation are performed sequentially. The
layer by layer strategy can overlap the communication with
the computation to some extent. The overlapping time in
iBatch is longer than that in the layer by layer strategy, show-
ing that batching the communication and the computation is
more effective in the overlap. Also, since the layer by layer
strategy brings significant communication overhead, its the
non-overlapping communication time is longer than that in
iBatch.

Conclusion
In this paper, we propose and design iBatch, a novel com-
munication approach that batches parameter communication
and forward computation to overlap them with each other.
Given a network and a cluster, we first profile the parameter
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communication time and the forward computation time in the
network training. Then, we formulate the batching decision
as an optimization problem of execution time minimization
and use greedy algorithm that maximizes the overlap to solve
the problem as well as derive communication and computa-
tion batches. We have implemented iBatch in the open-source
DL framework BigDL and performed evaluations with var-
ious DL workloads. Experimental results show that iBatch
improves the scalability of a cluster of 72 nodes by up to
73% over the default PS and 41% over the layer by layer
strategy. In future work, we plan to extend iBatch to other
DL frameworks (e.g., TensorFlow).
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