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Abstract
Unsupervised domain adaptation methods aim to alleviate
performance degradation caused by domain-shift by learn-
ing domain-invariant representations. Existing deep domain
adaptation methods focus on holistic feature alignment by
matching source and target holistic feature distributions,
without considering local features and their multi-mode
statistics. We show that the learned local feature patterns are
more generic and transferable and a further local feature dis-
tribution matching enables fine-grained feature alignment. In
this paper, we present a method for learning domain-invariant
local feature patterns and jointly aligning holistic and local
feature statistics. Comparisons to the state-of-the-art unsuper-
vised domain adaptation methods on two popular benchmark
datasets demonstrate the superiority of our approach and its
effectiveness on alleviating negative transfer.

Introduction
Many machine learning algorithms assume that the train-
ing and testing data are drawn from the same feature space
with the same distribution. However, this assumption rarely
holds in practice as the data distribution is likely to change
over time and space. Though the state-of-the-art deep con-
volutional features show invariant to low-level variations to
some degree, they are still susceptible to domain-shift, as we
can not manually label sufficient training data that cover di-
verse application domains (Csurka 2017; Zhou et al. 2018;
Hong et al. 2018). The typical solution is to further fine-
tune the learned deep models on task-specific datasets. How-
ever, it is often prohibitively difficult and expensive to obtain
enough labeled data to properly finetune the large-scale pa-
rameters employed by deep networks. Instead of recollect-
ing labeled data and retraining the model for every possible
new scenario, unsupervised domain adaptation methods at-
tempt to alleviate the performance degradation by transfer-
ring discriminative features from neighboring labeled source
domains using only unlabeled target data (Ganin et al. 2016;
Tzeng et al. 2017).

Unsupervised domain adaptation methods assume shared
label space with different feature distributions across source
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Figure 1: Comparisons of (a) holistic feature alignment and
(b) local feature alignment. The learned local feature pattern
“Chair” could not only be shared across domains but also
between the category “Chair” and category “Computer”, as
shown in (b).

and target domains. These methods usually bridge different
domains by learning domain-invariant discriminative repre-
sentations, and directly apply the classifier learned from only
source labels to target domain (Ben-David et al. 2010). To
reduce domain discrepancy, previous methods usually align
source and target in a shared subspace (Gong et al. 2012;
Fernando et al. 2013). Recently, deep neural networks have
been exploited to map both domains into a domain-invariant
feature space and learn more transferable representations
(Zhou et al. 2014; Tzeng et al. 2017; Pei et al. 2018). This is
generally achieved by optimizing the learned representations
to minimize some measures of domain discrepancy such as
maximum mean discrepancy (Long et al. 2015), reconstruc-
tion loss (Ghifary et al. 2016), correlation distance (Sun
and Saenko 2016), or adversarial loss (Tzeng et al. 2017).
Among them, the adversarial learning based deep domain
adaptation methods have become increasingly prevalent and
achieved the top performances.

Though existing deep domain adaptation methods have
achieved excellent performances (Csurka 2017), they mainly
focus on aligning source and target holistic representations
(Ganin et al. 2016; Tzeng et al. 2017), without exploiting the
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more primitive and transferable local feature patterns. Com-
paring to local feature patterns, holistic representations, usu-
ally the final fully-connected layers of deep neural networks,
are tailored to capture more current task related semantics
and hence less transferable to novel domains (Yosinski et al.
2014), especially when source labels are scarce. In contrast,
local feature patterns only focus on smaller parts of images
that could be shared not only across different domains but
also between multiple categories, as shown in Figure 1(b),
thus are more generic and less susceptible to limited train-
ing labels. Further, existing domain adaptation methods fail
to consider the complex multi-mode distributions of local
features, which limits their capability to achieve fine-grained
local feature alignment.

Motivated by the above limitations of existing domain
adaptation methods, we propose to learn transferable lo-
cal feature patterns for unsupervised domain adaptation and
jointly align holistic features and local features for fine-
grained alignment. The local feature space is firstly par-
titioned into several well-separated cells with a cluster of
generic local feature patterns. We then achieve feature align-
ment by simultaneously enforcing both holistic distribution
consistency over the aggregated local features and local fea-
ture alignment within each separated local feature pattern
cells, as shown in Figure1(b). The contributions of our work
are as follows:

• Different from most existing domain adaptation methods
which focus on aligning holistic features, we propose to
exploit local features for unsupervised domain adaptation.
We show that our learned local feature patterns are more
generic and transferable.

• We align the residuals of local features regarding to the
learned local feature patterns by minimizing an additional
conditional domain adversarial loss. With joint holistic
and local distribution matching, we enable fine-grained
cross-domain feature alignment.

• Exhaustive experimental results on standard domain
adaptation benchmarks demonstrate the promises of the
proposed method by outperforming the state-of-the-art
approaches. As a nontrivial byproduct, we provide com-
prehensive evaluations of local feature patterns from dif-
ferent levels for unsupervised domain adaptation.

Related Works
We first give a brief overview on existing domain adaptation
methods. Then, we present related works on local feature
aggregation.
Domain Adaptation methods seek to learn from neigh-
bouring source domains discriminative representations that
can be applied to target domains. This is usually achieved
by mapping samples from both domains into a domain-
invariant feature space to reduce domain discrepancy (Ben-
David et al. 2010). Previous methods usually seek to align
source and target feature through subspace learning (Gong
et al. 2012; Fernando et al. 2013; Pan et al. 2011). Recently
deep domain adaptation approaches become prevalent as
deep networks can learn more transferable representations

(Bengio, Courville, and Vincent 2013; Yosinski et al. 2014).
Different measures of domain discrepancy have been mini-
mized to align source and target distributions. Several meth-
ods propose to minimize the Maximum Mean Discrepancy
(MMD) loss between source and target (Long et al. 2015).
Ghifary et al. propose to reduce the discrepancy through
the auto-encoder based reconstruction loss (Ghifary et al.
2016). Recently, the adversarial learning based methods are
becoming popular (Ganin et al. 2016; Tzeng et al. 2017;
Pei et al. 2018). These methods are closely related to the
adversarial generative networks (GAN) (Goodfellow et al.
2014; Gulrajani et al. 2017). They aim to reduce domain dis-
crepancy by optimizing the feature learning network with
an adversarial objective produced by another discrimina-
tor network which is trained to distinguish features of tar-
get from features of source. All these methods only fo-
cus on transferring holistic semantics, without considering
the more generic local feature patterns and the multi-mode
statistics of local features.
Feature Aggregation Our work is also related to feature ag-
gregation methods, such as vectors of locally aggregated de-
scriptors (VLAD) (Jégou et al. 2010), bag of visual words
(BoW) (Sivic and Zisserman 2003), and Fisher vectors (FV)
(Perronnin and Dance 2007). Previously, these methods have
usually been applied to aggregate hand-crafted keypoint de-
scriptors, such as SIFT, as a post-processing step, and only
recently have them been extended to encode deep convolu-
tional features with end-to-end training (Arandjelovic et al.
2016). VLAD has been successfully applied to image re-
trieval (Yue-Hei Ng, Yang, and Davis 2015), place recog-
nition (Arandjelovic et al. 2016), action recognition (Gird-
har et al. 2017), etc. We build on the end-to-end trainable
VLAD, and extend it to learn generic local feature patterns
and facilitate local feature alignment for unsupervised do-
main adaptation.

Method
In this section, we describe the proposed unsupervised do-
main adaptation method. Given source domain datasetDs =
{(xsi , ysi )}

ns

i=1 of ns labeled examples and target domain
dataset Dt =

{
xtj
}nt

j=1
of nt unlabeled samples. The source

domain and target domain are sampled from joint distribu-
tion P (Xs,Ys) and Q(Xt,Yt), respectively, and P 6= Q.
The goal of unsupervised domain adaptation is to learn dis-
criminative features from source data and effectively transfer
them from source to target to minimize target domain errors.

There are two technical challenges to enabling success-
ful domain adaptation: 1) promoting positive transfer of
relevant discriminative features by enforcing cross-domain
feature distribution consistency, and 2) reducing negative
transfer of irrelevant features by preventing false across-
domain feature alignment (Pan, Yang, and others 2010;
Pei et al. 2018). Motivated by the two challenges, we pro-
pose to simultaneously enhance positive transfer by learning
generic local feature patterns and alleviate negative trans-
fer by enforcing additional local feature alignment. As il-
lustrated in Figure 2, our method consists of three parts: I)
feature extractor, II) local feature patterns learning, and III)
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Figure 2: Pipeline of the proposed method: (I) feature extractor G, (II) local feature patterns learning, and (III) feature alignment.
We learn generic local feature patterns, and jointly align holistic features and local features.

feature alignment. We employ multiple convolutional layers
as the feature extractor to transform source and target data
into feature maps with each position in the map representing
a local feature. In the following sections, we describe how
to learn local feature patterns and achieve feature alignment.

Local Feature Patterns Learning

In this section, we learn a cluster of discriminative local fea-
ture patterns to enable joint holistic and local feature align-
ment. We employ the end-to-end trainable NetVLAD for lo-
cal feature patterns learning and local feature aggregation
over the extracted convolutional feature maps (Arandjelovic
et al. 2016). We first learn a initial cluster of local fea-
ture patterns and then adapt them for cross-domain transfer.
Given a collection of convolutional features from layer Ll,
we perform k-means clustering to obtain the initial K local
feature patterns, cl1, ..., c

l
K , represented by the K clustering

centers. For each image, a convolutional feature F lij at po-
sition (i, j) of its feature map from layer Ll is assigned a
similarity vector Skij , defined as:

Slij [k] =
e−α||F

l
ij−c

l
k||

2

Σk′ e
−α||F l

ij−clk′ ||
2 , (1)

which soft-assignsF lij to local feature pattern clk with weight
proportional to its distances to the k local feature patterns
in the feature space. Slij [k] ranges between 0 and 1, with
the highest similarity value assigned to the closest local fea-
ture pattern. α is a tunable hyper-parameter (positive con-
stant) and controls the decay of the similarity responses to
the magnitude of the distances. Note that for α→ +∞, F lij
is hard-assigned to the nearest local feature pattern. For the
dl dimensional feature map F l from Ll , the NetVLAD en-
coding converts it into a single dl ∗ K dimensional vector
V l ∈ Rdl∗k, describing the distribution of local features re-
garding the K local feature patterns. Formally, the encoding
of an image regarding layer Ll is represented as:

V l[d, k] =
M l∑
i=1

N l∑
j=1

Slij [k](F lij [d]− clk[d]), (2)

where F lij [d] and clk[d] are the dth dimension of feature F lij
and local feature pattern clk, respectively. F lij [d]−clk[d] is the
residual of feature F lij to local feature pattern clk; M l ×N l

denotes the feature map size. The intuition is that residuals
record the differences between the feature at each position
and the typical local feature patterns. The residuals are ag-
gregated inside each of the local feature pattern cell, and the
similarity vector defined above determines the contribution
of the residual of each feature to the total residuals. The out-
put is a matrix V with the k-th column V [·, k] representing
the aggregated residuals inside the k-th local feature pattern
cell. The columns of the matric are then stacked and nor-
malized into a dl ∗K dimensional aggregated descriptor Vh
which is fed into the classifier for classification and holistic
alignment.

We encourage the learned local feature patterns to be
well-separated and local features to distribute compactly
around them through minimizing a sparse loss Ls over the
information entropy of the similarity vectors:

Ls = −
1

Nl ∗Ml

Ml∑
i=1

Nl∑
i=1

max(

K∑
k=1

Sl
ij [k] logS

l
ij [k],m). (3)

where m is the information entropy threshold. S is the simi-
larity vector described in Equation 1, but here we use a much
smaller decay weight αs. Through the sparse loss minimiza-
tion, we expect sparse soft-assignments of local features to
the learned local feature patterns and less confusing bound-
ary local features lying between different local feature pat-
tern cells.

Feature Alignment
In this section, we aim to align source and target features
based on the learned local feature patterns. We first describe
adversarial learning and holistic alignment, and then present
the additional local feature alignment.
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Adversarial Learning and Holistic Alignment We em-
ploy the popular adversarial learning for distribution match-
ing (Goodfellow et al. 2014; Gulrajani et al. 2017), as deep
domain adversarial networks have achieved the top domain
adaptation performances (Tzeng et al. 2017; Pei et al. 2018).
The adversarial domain adaptation procedure is a two-player
game, where the first player is the domain discriminator Dh
trained to distinguish source features from target features,
while the second player, the feature extractor G, is trained
to confuse the domain discriminator. By learning a best pos-
sible discriminator, the feature extractor is expected to learn
features that are best domain-invariant. We achieve holis-
tic alignment by matching the neural activation distributions
of the classification layer. To be noted, the classification
layer directly receives the aggregated local features over the
learned local feature patterns. Formally, holistic domain dis-
criminator the Dh and feature extractor G are trained to min-
imize loss LDh

and LGh
, respectively, and they are defined

as the following:

LDh
= − 1

ns

ns∑
i=1

(log(Dh(G(xs))))

− 1

nt

nt∑
i=1

(log(1− Dh(G(xt)))),

(4)

LGh
= − 1

nt

nt∑
i=1

(log(Dh(G(xt)))), (5)

where ns and nt are the number of training samples from
source and target, respectively.

Local Feature Alignment Existing adversarial domain
adaptation methods only match the cross-domain holistic
feature distributions and fail to consider the complex dis-
tributions of local features. As a result, multi-mode local
feature patterns may be poorly aligned. Hence, we pro-
pose to further align the local features regarding the learned
local feature patterns by minimizing an additional condi-
tional domain adversarial loss (Mirza and Osindero 2014;
Isola et al. 2017). For each convolutional feature F lij at po-
sition (i, j) from layer Ll, we hard-assign it to the near-
est local feature pattern alij , and alij = arg maxk(Slij [k]).
We align the residuals of local features to the assigned lo-
cal feature patterns, and enforce that, within each local fea-
ture pattern cell, the residuals of local features from both
domains distribute similarly. We find aligning the residuals,
other than the original convolutional features, enables easier
optimization and fine-grained alignment. Formally, an addi-
tional local feature discriminator Dl is trained to minimize
loss LDl

defined as:

LDl
= −

1

ns

ns∑
n=1

1

Nl ∗Ml

Ml∑
i=1

Nl∑
j=1

(log(Dl(F
l
ij − cl[alij ], a

l
ij)))

−
1

nt

nt∑
n=1

1

Nl ∗Ml

Ml∑
i=1

Nl∑
j=1

(log(1− Dl(F
l
ij − cl[alij ], a

l
ij))),

(6)

where F lij − cl[alij ] donates the residual of feature F lij to
its assigned local feature pattern alij . For local feature align-
ment, the feature extractor network G is trained to minimize
loss LGl

defined as:

LGl
= −

1

nt

nt∑
n=1

1

Nl ∗Ml

Ml∑
i=1

Nl∑
j=1

(log(D(F l
ij − cl[alij ], a

l
ij))). (7)

To enable discriminative feature transferring, the feature
extractor G is also trained to minimize the classification loss
Lc using source labels, defined as:

Lc = − 1

ns

ns∑
i=1

yi · log ŷi, (8)

where yi is the true label of the source sample xi, and ŷi is
its predicted possibility.

Integrating all objectives together, the final loss for the
feature extractor G to minimize is

L = Lc + λhLGh
+ λlLGl

+ λsLs, (9)

where λh, λl and λs are hyper-parameter that trade-offs the
objectives in the unified optimization problem. By optimiz-
ing the feature extractor network with the integrated loss,
we aim to learn well-separated local feature patterns and si-
multaneously transfer category-related holistic features and
generic local feature patterns.

Implementation and Learning
Implementation Details We use the VGG16 network (Si-
monyan and Zisserman 2014) as the backbone network and
exploit the last convolutional layer, conv5 3, for local fea-
ture patterns learning and local alignment. We share the pa-
rameters of the source and target feature extractors. We ap-
pend a single-layer classifier on the top of the aggregated
local features. We keep the number of local feature patterns
fixed to be 32. For local feature aggregation, we use a large
α = 5000.0 to encourage independent residual accumula-
tion within each local feature pattern cell. We use a small
similarity decay αs = 0.005 and a small sparsity threshold
m = 0.02. Since the dimensionality of the aggregated local
features are large, 512 ∗ 32, we use a dropout of 0.5 over it
to avoid over-fitting. For adversarial feature alignment, the
holistic discriminator Dh consists of 3 fully connected lay-
ers: two hidden layers with 768 and 1536 units, respectively,
followed by the final discriminator output. We use larger 3-
layer local adversarial discriminator Dl with 2048 and 4096
units for the two hidden layers. We implement our model in
Tensorflow and train it using Adam optimizer.

Learning Procedure We train our network in a three-step
approach. In the first step, classifier training, we initialize
the local feature patterns using k-means clustering, freeze
them, and only train the one-layer classifier by minimizing
the source classification loss with a learning rate of 0.01. In
the second step, source finetuning, we jointly finetune the
classifier, local feature patterns, and the last two convolu-
tional layers with a learning rate of 0.0001, and minimize the
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source classification loss combined with the sparsity loss. In
the third step, domain adaptation, we simultaneously train
the classifier, local feature patterns, and the last two convo-
lutional layers with a learning rate of 0.0001 to minimize
the final joint loss described in Equation 9. Only finetuning
and adapting the last two convolutional layers of VGG16
help to prevent overfitting to small datasets, reduce GPU
memory footprint, and enable faster training. We set hyper-
parameters λh = 0.2, λl = 0.1 and λs = 0.1.

Experiments
We now evaluate our method with the state-of-the-art do-
main adaptation approaches on benchmark datasets. We
experiment on the popular Office-31 dataset (Saenko et
al. 2010) and the recently introduced Office-home dataset
(Venkateswara et al. 2017).
Office-31 (Saenko et al. 2010) This dataset is widely used
for visual domain adaptation. It consists of 4,652 images and
31 categories collected from three different domains: Ama-
zon (A), with 2817 images from amazon.com, Webcam (W)
and DSLR (D), with 795 images and 498 images taken by
web camera and digital SLR camera in different environ-
mental settings, respectively. We evaluate all methods on the
challenging settings of A ↔ W and A ↔ D. The W ↔ D
performances are not reported as D and W are two similar
domains and the domain shift is very small.
Office-home (Venkateswara et al. 2017) This is a very chal-
lenging domain adaptation dataset, which comprises 15,588
images with 65 categories of everyday objects in office and
home settings. Some example samples are shown in Figure
3. There are 4 significantly different domains: Art (Ar) with
2427 painting, sketches or artistic depiction images, Clipart
(Cl) with 4365 images, Product (Pr) containing 4439 images
and Real-World (Rw) with 4357 regularly captured images.
We report performances of all 12 transfer tasks to enable
thorough evaluations: Ar ↔ Cl, Ar ↔ Pr, Ar ↔ Rw,
Cl↔ Pr, Cl↔ Rw, and Pr ↔ Rw.

Figure 3: Example images of the Office-home dataset.

Compared Methods We perform comparative studies of
our method against the state-of-the-art deep domain adapta-
tion methods: Deep CORAL (D-CORAL) (Sun and Saenko
2016), Deep Adaptation Network (DAN) (Long et al. 2015),
Domain Adversarial Neural Network (DANN) (Ganin et
al. 2016), Adversarial Discriminative Domain Adaptation

(ADDA) (Tzeng et al. 2017), and Wasserstein Distance
Guided Representation Learning (WD-GRL) (Shen et al.
2018). All these deep methods only align the holistic rep-
resentations for domain adaptation. D-CORAL proposes to
align the second-order statistics. DAN matches multi-layer
deep features using multi-kernel MMD. DANN exploits ad-
versarial learning for aligning deep features and enforces
them indistinguishable for a additional domain discrimina-
tor. ADDA is a generalized framework for adversarial deep
domain adaptation and unties weight sharing across do-
mains. WD-GRL employs the Wasserstein distance to guide
the adversarial learning of domain-invariant features.
Setup We follow standard evaluation protocols for unsuper-
vised domain adaptation: using all labeled source data and
all unlabeled target data. We report the results averaged from
three random experiments. The VGG16 network is used as
the backbone model and the convolutional layers are initial-
ized with parameters pre-trained on ImageNet dataset. The
fully connected layers of our model are randomly initialized,
while for comparing models they are initialized with param-
eters pre-trained on ImageNet dataset. To further explore the
transferability of holistic features, we also report the perfor-
mances of DAN and ADDA with fully-connected layers ran-
domly initialized. In this case, to avoid overfitting, we use
two smaller fully connected layers with 1024 and 128 hid-
den units, respectively, as done in (Motiian et al. 2017), and
we denote them as DAN(s) and ADDA(s), respectively. To
verify the importance of local feature alignment, we report
results of our method in two different settings: 1) only holis-
tic features are aligned (λh = 0.2, λl = 0), denoted as Our
(H); 2) holistic features and local features are jointly aligned
(λh = 0.2, λl = 0.1), denoted as Our (H+L).

Table 1: Accuracy (%) on the Office31 dataset for unsuper-
vised domain adaptation.

Method A→W A→D W→A D→A Avg

D-CORAL 69.23 68.52 59.53 60.53 64.45
DAN 70.35 69.56 61.38 60.92 65.55

WD-GRL 74.61 73.27 60.65 60.01 67.14
ADDA 75.24 73.64 60.34 60.75 67.49
DANN 74.03 73.52 62.23 61.73 67.88

ADDA(s) 64.89 64.84 48.66 50.07 57.12
DANN(s) 64.85 61.48 40.50 48.21 53.76

Ours(H) 82.63 75.02 63.47 64.16 71.32
Ours(H+L) 84.35 77.56 64.56 63.38 72.46

Results
The results on the Office-31 dataset are shown in Table 1.
The proposed method outperforms all the compared models,
though we do not use any pre-trained fully-connected lay-
ers. The average improvements of Our (H+L) over ADDA
and DANN are 4.97% and 4.58%, respectively. The obvi-
ous advantages of Our (H) over the compared holistic fea-
ture based models verify the superior transferability of the
learned local feature patters, as all of them enforce the simi-
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Table 2: Accuracy (%) on the Office-home dataset for unsupervised domain adaptation.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

D-CORAL 35.85 45.58 56.52 36.28 47.54 50.27 36.45 37.57 61.54 49.87 43.21 69.01 47.47
DAN 36.98 45.71 58.11 38.90 50.33 51.94 37.44 37.05 61.49 50.07 42.18 68.37 48.21

WD-GRL 36.37 44.54 58.12 37.65 51.54 52.46 36.73 37.98 63.08 50.04 44.49 70.15 48.60
ADDA 38.33 47.81 60.54 36.34 49.56 50.54 37.89 39.26 64.75 54.14 46.55 71.64 49.78
DANN 37.04 46.29 59.38 39.83 52.95 53.85 37.80 38.52 63.86 49.61 45.15 70.76 49.59

ADDA(s) 25.05 35.30 42.23 27.71 37.37 39.98 30.15 34.94 55.34 45.30 39.50 62.20 39.59
DANN(s) 23.16 33.75 41.91 25.96 38.72 37.73 29.20 35.00 50.80 42.02 38.19 61.03 38.12

Ours(H) 38.95 48.05 62.33 40.56 53.45 56.36 37.85 39.43 65.18 54.78 46.29 75.21 51.54
Ours(H+L) 41.53 53.66 64.90 41.53 54.57 57.66 38.87 40.08 65.97 55.13 47.18 76.02 53.10

lar holistic alignment. We observe that the improvements of
our method are more obvious when A acts as the source do-
main. Domain A comprises more training images with more
diversities, and thus more generic local feature patterns can
be learned, which effectively enhance positive feature trans-
fer.

The performances of ADDA and DANN drop signif-
icantly when the fully-connected layers are trained from
scratch using the source labels, and the averaged perfor-
mance gaps from the pretrained models are 10.37% and
14.12%, respectively. The performance drops are more dis-
tinct when D or W acts as the source domain, as these two
domains have much less training images and the learned
holistic representations severely overfit the source labels.
The results verify the inferior transferability of holistic rep-
resentations, especially when source labels are limited.

The performances of all methods on the Office-home
dataset are reported in Table 2. The proposed model Our
(H+L) achieves consistent improvements over the compari-
son methods. For Office-home dataset, the training images in
each category show more diversities as verified by the lower
in-domain classification accuracy described in its original
paper (Venkateswara et al. 2017). The model Our (H+L)
shows consistent advantages over the model Our (H), and
the advantages are manifested in settings when Art acts
as the source domain. Adaptations from Art to other do-
mains are more challenging as images from Art show more
diversities within each category while having nearly half
of the training samples of the other three domains. That
means more complex local feature patterns with less refer-
able points (holistic features) to be transferred from Art
source domain. In this case, enforcing additional local fea-
ture alignment promotes positive transfer of relevant local
features within each local feature pattern cell, and thus im-
proves performances.

Negative transfer happens when features are falsely
aligned and domain adaptation causes deteriorated perfor-
mances. Existing holistic feature distribution matching eas-
ily induce negative transfer when the distributions between
source and target are inherently different. Consider the case
when source domain is much smaller or larger than target.
We aim to evaluate the robustness of domain adaptation
methods against negative transfer in a more common sce-
nario where source domain is much larger than target. In
this case, there are many source points in the feature space
(semantic features) that are irrelevant to the target domain.

We experiment with setting, 31-25, on the four transfer tasks
constructed from the Office-31 dataset, by removing the last
6 classes in alphabet order from the target domain. For ex-
ample, we perform domain adaptation on transfer task A31-
D25, where the source domain A has 31 classes but the target
domain W only contains 25 classes. The results are reported
in Table 3. As we can see, there are obvious negative transfer
for top-performing domain adaptation methods DANN and
ADDA. Both of them under-perform the finetuned VGG16
net on most of the transfer tasks and the averaged perfor-
mance drops are 2.59% and 10.34%, respectively. Our do-
main adaptation model Our (H+L) and Our (H) both outper-
form the unadapted model Our(w/o DA). The significant im-
provements bringed by our domain adaptation method prove
the advantage of exploiting generic local feature patterns in
combating negative transfer.

Table 3: Accuracy (%) on the Office31 dataset for unsuper-
vised domain adaptation from 31 to 25 categories.

Method A→W A→D W→A D→A Avg

VGG16(FT) 63.33 65.92 58.68 57.83 61.44
ADDA 63.21 59.79 44.74 36.65 51.10
DANN 62.12 62.31 59.46 51.49 58.85

Our(w/o DA) 62.51 63.67 56.47 56.35 59.75
Ours(H) 74.85 68.77 63.88 62.82 67.58

Ours(H+L) 75.49 70.05 67.67 63.14 69.09

Ablation Study
Comparison of Layers We compare the performances of
models trained and adapted from different convolutional lay-
ers, and the results are shown in Table 4. As we can see, the
performance trends are clear: higher layers achieve better
performances and the best performance is achieved by layer
conv5 3. Lower layers are more generic, however, much less
semantic features are captured if the higher layer features are
abandoned.
Number of Local Feature Patterns We explore the effects
of the size of local feature patterns on the Office-31 dataset.
We report the average accuracy of the four transfer tasks in
Table 5. As we can see, the performances are non-sensitive
to the size of local feature patterns. With larger sizes, we
achieve improved performances. Larger sizes of local fea-
ture patterns mean more complex local distributions, hence
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(a) VGG16 finetuned (b) DANN (c) Our (unadapted) (d) Our (H+L)

Figure 4: The t-SNE visualizations of holistic representations learned by (a) Fine-tuned VGG16 net, (b) DANN, (c) Our un-
adapted model, and (d) Adapted Our (H+L) (blue: A, red: W).

(a) VGG16 (b) DANN (c) Our (H) (d) Our (H+L)

Figure 5: The t-SNE visualizations of local features, conv5 3, of (a) VGG16 net, (b) DANN, (c) Our (H), and (d) Our (H+L)
(blue: A, red: W).

Table 4: Accuracy (%) on the Office31 dataset with convo-
lutional features from different layers.

Layers A→W A→D W→A D→A Avg

conv5 1 73.70 70.01 43.96 39.88 56.89
conv5 2 79.62 73.49 50.96 50.60 63.67
conv5 3 84.35 77.56 64.56 63.38 72.46

we need more powerful local discriminator Dl to distinguish
source from target. For example, for k = 64, the hidden
units number of the Dl are both 4096 for the two layers.

Table 5: Accuracy (% ) on the Office31 dataset with varying
size of local feature patterns.

Nunmber k=0 k=8 k=16 k=32 k=64

Accuracy 67.92 69.75 70.84 72.46 72.59

Alignment Visualization We visualize both the holistic rep-
resentations and local features using t-SNE embedding with
the A → W transfer task. In Figure 4, we visualize the net-
work activations of the last fully-connected layer of fine-
tuned VGG16 net, DANN, our unadapted model, and our
adapted model Our (H+L). For both the finetuned VGG16
and our unadapted model, target and source are poorly
aligned. For DANN, as shown in Figure 4(b), source and tar-
get representations are well aligned, but there are still many
boundary confusing points lying between different category
clusters. For our adapted model Our (H+L), source and tar-
get representations are much better aligned.

In Figure 5, we visualize the network activations of the
last convolutional layer, conv5 3, to study the effects of lo-
cal alignment. As shown in Figure 5 (a), source and target
local features are poorly aligned for the VGG16 net. When

adapted with DANN and Our (H), local features are better
aligned, though both of the two models only match holis-
tic feature distributions. As our model encourages learning
well-separated local feature patterns by minimizing an addi-
tional sparsity loss, the local features learned by our model
distribute in more compact clusters (best view the zoomed-in
figure). When enforcing additional local alignment by Our
(H+L), local feature patterns tend to be equally shared by
source and target, and local features are better aligned within
each local feature pattern cluster.

Conclusions
We have presented a novel and effective approach to ex-
ploiting local features for unsupervised domain adaptation.
Unlike existing deep domain adaptation methods that only
transfer holistic representations, the proposed method learns
domain-invariant local feature patterns, and simultaneously
aligns holistic features and local features to enable fine-
grained feature alignment. Experimental results verified the
advantages of the proposed method over the state-of-the-art
unsupervised domain adaptation approaches. We have ex-
plored the performances of convolutional features from dif-
ferent layers for domain adaptation with the VGG16 net and
found that the last convolutional layer achieves the best per-
formances. Further, we showed that the proposed method
can effectively alleviate negative transfer.

Acknowledgments
This work is supported by the Zhejiang Provincial Natural
Science Foundation (LR19F020005), National Natural Sci-
ence Foundation of China (61572433, 61672125, 31471063,
61473259, 31671074) and thanks for a gift grant from Baidu
inc. We are also partially supported by the Hunan Provincial
Science and Technology Project Foundation (2018TP1018,
2018RS3065) and the Fundamental Research Funds for the
Central Universities.

5407



References
Arandjelovic, R.; Gronat, P.; Torii, A.; Pajdla, T.; and Sivic,
J. 2016. Netvlad: Cnn architecture for weakly supervised
place recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 5297–5307.
Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.;
Pereira, F.; and Vaughan, J. W. 2010. A theory of learning
from different domains. Machine learning 79(1-2):151–175.
Bengio, Y.; Courville, A.; and Vincent, P. 2013. Repre-
sentation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence
35(8):1798–1828.
Csurka, G. 2017. Domain adaptation for visual applications:
A comprehensive survey. arXiv preprint arXiv:1702.05374.
Fernando, B.; Habrard, A.; Sebban, M.; and Tuytelaars, T.
2013. Unsupervised visual domain adaptation using sub-
space alignment. In Proceedings of the IEEE international
conference on computer vision, 2960–2967.
Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle,
H.; Laviolette, F.; Marchand, M.; and Lempitsky, V. 2016.
Domain-adversarial training of neural networks. The Jour-
nal of Machine Learning Research 17(1):2096–2030.
Ghifary, M.; Kleijn, W. B.; Zhang, M.; Balduzzi, D.; and Li,
W. 2016. Deep reconstruction-classification networks for
unsupervised domain adaptation. In European Conference
on Computer Vision, 597–613. Springer.
Girdhar, R.; Ramanan, D.; Gupta, A.; Sivic, J.; and Russell,
B. 2017. Actionvlad: Learning spatio-temporal aggregation
for action classification. In CVPR, volume 2, 3.
Gong, B.; Shi, Y.; Sha, F.; and Grauman, K. 2012. Geodesic
flow kernel for unsupervised domain adaptation. In Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, 2066–2073. IEEE.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672–2680.
Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. C. 2017. Improved training of wasserstein
gans. In Advances in Neural Information Processing Sys-
tems, 5767–5777.
Hong, W.; Wang, Z.; Yang, M.; and Yuan, J. 2018. Condi-
tional generative adversarial network for structured domain
adaptation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 1335–1344.
Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017. Image-
to-image translation with conditional adversarial networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 1125–1134.
Jégou, H.; Douze, M.; Schmid, C.; and Pérez, P. 2010. Ag-
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