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Abstract

Decomposing complex time series into trend, seasonality, and
remainder components is an important task to facilitate time
series anomaly detection and forecasting. Although numer-
ous methods have been proposed, there are still many time
series characteristics exhibiting in real-world data which are
not addressed properly, including 1) ability to handle season-
ality fluctuation and shift, and abrupt change in trend and re-
minder; 2) robustness on data with anomalies; 3) applicabil-
ity on time series with long seasonality period. In the paper,
we propose a novel and generic time series decomposition al-
gorithm to address these challenges. Specifically, we extract
the trend component robustly by solving a regression prob-
lem using the least absolute deviations loss with sparse reg-
ularization. Based on the extracted trend, we apply the the
non-local seasonal filtering to extract the seasonality compo-
nent. This process is repeated until accurate decomposition is
obtained. Experiments on different synthetic and real-world
time series datasets demonstrate that our method outperforms
existing solutions.

Introduction
With the rapid growth of the Internet of Things (IoT) net-
work and many other connected data sources, there is an
enormous increase of time series data. Compared with tra-
ditional time series data, it comes in big volume and typi-
cally has a long seasonality period. One of the fundamen-
tal problems in managing and utilizing these time series
data is the seasonal-trend decomposition. A good seasonal-
trend decomposition can reveal the underlying insights of
a time series, and can be useful in further analysis such
as anomaly detection and forecasting (Hochenbaum, Val-
lis, and Kejariwal 2017; Laptev, Amizadeh, and Flint 2015;
Hyndman and Khandakar 2008; Wu et al. 2016). For exam-
ple, in anomaly detection a local anomaly could be a spike
during an idle period. Without seasonal-trend decomposi-
tion, it would be missed as its value is still much lower than
the unusually high values during a busy period. In addition,
different types of anomalies correspond to different patterns
in different components after decomposition. Specifically,
the spike & dip anomalies correspond to abrupt change of
remainder, and the change of mean anomaly corresponds to
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abrupt change of trend. Similarly, revealing the trend of time
series can help to build more robust forecasting models.

As the seasonal adjustment is a crucial step for time se-
ries where seasonal variation is observed, many seasonal-
trend decomposition methods have been proposed. The most
classical and widely used decomposition method is the STL
(Seasonal-Trend decomposition using Loess) (Cleveland et
al. 1990). STL estimates the trend and the seasonality in an
iterative way. However, STL still suffers from less flexibil-
ity when seasonality period is long and high noises are ob-
served. In practice, it often fails to extract the seasonality
component accurately when seasonality shift and fluctuation
exist. Another direction of decomposition is X-13-ARIMA-
SEATS (Bell and Hillmer 1984) and its variants such as
X-11-ARIMA, X-12-ARIMA (Hylleberg 1998), which are
popular in statistics and economics. These methods incorpo-
rate more features such as calendar effects, external regres-
sors, and ARIMA extensions to make them more applica-
ble and robust in real-world applications, especially in eco-
nomics. However, these algorithms can only scale to small or
medium size data. Specifically, they can handle monthly and
quarterly data, which limits their usage in many areas where
long seasonality period is observed. Recently, more decom-
position algorithms have been proposed (Dokumentov, Hyn-
dman, and others 2015; Livera, Hyndman, and Snyder 2011;
Verbesselt et al. 2010). For example, in (Dokumentov, Hyn-
dman, and others 2015), a two-dimensional representation
of the seasonality component is utilized to learn the slowly
changing seasonality component. Unfortunately, it cannot
scale to time series with long seasonality period due to the
cost to learn the huge two-dimensional structure.

Although numerous methods have been proposed, there
are still many time series characteristics exhibiting in real-
world data which are not addressed properly. First of all, sea-
sonality fluctuation and shift are quite common in real-world
time series data. We take a time series data whose seasonal-
ity period is one day as an example. The seasonality com-
ponent at 1:00 pm today may correspond to 12:30 pm yes-
terday, or 1:30 pm the day before yesterday. Secondly, most
algorithms cannot handle the abrupt change of trend and re-
mainder, which is crucial in anomaly detection for time se-
ries data where the abrupt change of trend corresponds to
the change of mean anomaly and the abrupt change of resid-
ual corresponds to the spike & dip anomaly. Thirdly, most
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methods are not applicable to time series with long season-
ality period, and some of them can only handle quarterly or
monthly data. Let the length of seasonality period be T , we
need to estimate T − 1 parameters to extract the seasonality
component. However, in many IoT anomaly detection appli-
cations, the typical seasonality period is one day. If a data
point is collected every one minute, then T = 1440, which
is not solvable by many existing methods.

In this paper, we propose a robust and generic seasonal-
trend decomposition method. Compared with existing algo-
rithms, our method can extract seasonality from data with
long seasonality period and high noises accurately and effec-
tively. In particular, it allows fractional, flexible, and shifted
seasonality component over time. Abrupt changes in trend
and remainder can also be handled properly. Specifically,
we extract the trend component robustly by solving a re-
gression problem using the least absolute deviations (LAD)
loss (Wang, Li, and Jiang 2007) with sparse regulariza-
tions. After the trend is extracted, we apply the non-local
seasonal filtering to extract the seasonality component ro-
bustly. This process is iterated until accurate estimates of
trend and seasonality components are extracted. As a re-
sult, the proposed seasonal-trend decomposition method is
an ideal tool to extract insights from time series data for the
purpose of anomaly detection. To validate the performance
of our method, we compare our method with other state-
of-the-art seasonal-trend decomposition algorithms on both
synthetic and real-world time series data. Our experimental
results show that our method can successfully extract differ-
ent components on various complicated datasets while other
algorithms fail.

Note that time series decomposition approaches can be ei-
ther additive or multiplicative. In this paper we focus on the
additive decomposition, and the multiplicative decomposi-
tion can be obtained similarly. The remainder of this paper
is organized as follows: Section 2 briefly introduces the re-
lated work of seasonal-trend decomposition; In Section 3 we
discuss our proposed seasonal-trend decomposition method
in detail; the empirical studies are investigated in compari-
son with several state-of-the-art algorithms in Section 4; and
we conclude the paper in Section 5.

Related Work
As we discussed in Section 1, the “classical” method
(Macaulay 1931) continues to evolve from X-11, X-11-
ARIMA to X-13-ARIMA-SEATS and improve their capa-
bilities to handle seasonality with better robustness. A recent
algorithm TBATS (Trigonometric Exponential Smoothing
State Space model with Box-Cox transformation, ARMA er-
rors, Trend and Seasonal Components) (Livera, Hyndman,
and Snyder 2011) is introduced to handle complex, non-
integer seasonality. However, they all can be described by
the state space model with a lot of hidden parameters when
the period is long. They are suitable to process time series
with short seasonality period (e.g., tens of points) but suffer
from the high computational cost for time series with long
seasonality period and they cannot handle slowly changing
seasonality.

The Hodrick-Prescott filter (Hodrick and Prescott 1997),
which is similar to Ridge regression, was introduced to de-
compose slow-changing trend and fast-changing residual.
While the formulation is simple and the computational cost
is low, it cannot decompose trend and long-period seasonal-
ity. And it only regularizes the second derivative of the fitted
curve for smoothness. This makes it prone to spike and dip
and cannot catch up with the abrupt trend changes.

Based on the Hodrick-Prescott filter, STR (Seasonal-
Trend decomposition procedure based on Regres-
sion) (Dokumentov, Hyndman, and others 2015) which
explores the joint extraction of trend, seasonality and
residual without iteration is proposed recently. STR is
flexible to seasonal shift, and it can not only deal with
multiple seasonalities but also provide confidence intervals
for the predicted components. To get a better tolerance to
spikes and dips, robust STR using `1-norm regularization
is proposed. The robust STR works well with outliers.
But still, as the authors mentioned in the conclusion, STR
and robust STR only regularize the second difference of
fitted trend curve for smoothness so it cannot follow abrupt
change on the trend.

The Singular Spectrum Analysis (SSA) (Danilov 1997;
Golyandina, Nekrutkin, and Zhigljavsky 2001) is a model-
free approach that performs well on short time series. It
transforms a time series into a group of sliding arrays, folds
them into a matrix and then performs SVD decomposition
on this matrix. After that, it picks the major components
to reconstruct the time series components. It is very similar
to principal component analysis, but its strong assumption
makes it not applicable on some real-world datasets.

As a summary, when comparing different time series de-
composition methods, we usually consider their ability in the
following aspects: outlier robustness, seasonality shift, long
period in seasonality, and abrupt trend change. The complete
comparison of different algorithms is shown in Table 1.

Table 1: Comparison of different time series decomposition
algorithms (Y: Yes / N: No)

Algorithm Outlier
Robustness

Seasonality
Shift

Long
Period

Abrupt
Trend Change

Classical N N N N
ARIMA/SEATS N N N N
STL N N Y N
TBATS N N N Y
STR Y Y N N
SSA N N N N
Our RobustSTL Y Y Y Y

Robust STL Decomposition
Model Overview
Similar to STL, we consider the following time series model
with trend and seasonality

yt = τt + st + rt, t = 1, 2, ...N (1)

where yt denotes the observation at time t, τt is the trend in
time series, st is the seasonal signal with period T , and the rt
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denotes the remainder signal. In seasonal-trend decomposi-
tion, seasonality typically describes periodic patterns which
fluctuates near a baseline, and trend describes the continu-
ous increase or decrease. Thus, usually it is assumed that
the seasonal component st has a repeated pattern which
changes slowly or even stays constant over time, whereas
the trend component τt is considered to change faster than
the seasonal component (Dokumentov, Hyndman, and oth-
ers 2015). Also note that in this decomposition we assume
the remainder rt contains all signals other than trend and
seasonality. Thus, in most cases it contains more than white
noise as usually assumed. As one of our interests is anomaly
detection, we assume rt can be further decomposed into two
terms:

rt = at + nt, (2)
where at denotes spike or dip, and nt denotes the white
noise.

In the following discussion, we present our RobustSTL
algorithm to decompose time series which takes the afore-
mentioned challenges into account. The RobustSTL algo-
rithm can be divided into four steps: 1) Denoise time se-
ries by applying bilateral filtering (Paris, Kornprobst, and
Tumblin 2009); 2) Extract trend robustly by solving a LAD
regression with sparse regularizations; 3) Calculate the sea-
sonality component by applying a non-local seasonal filter-
ing to overcome seasonality fluctuation and shift; 4) Adjust
extracted components. These steps are repeated until con-
vergence.

Noise Removal
In real-world applications when time series are collected,
the observations may be contaminated by various types of
errors or noises. In order to extract trend and seasonality
components robustly from the raw data, noise removal is in-
dispensable. Commonly used denoising techniques include
low-pass filtering (Baxter and King 1999; Christiano and
Fitzgerald 2003), moving/median average (Osborn 1995;
Wen and Zeng 1999), and Gaussian filter (Blinchikoff and
Krause 2001). Unfortunately, those filtering/smoothing tech-
niques destruct some underlying structure in τt and st in
noise removal. For example, Gaussian filter destructs the
abrupt change of τt, which may lead to a missed detection
in anomaly detection.

Here we adopt bilateral filtering (Paris, Kornprobst, and
Tumblin 2009) to remove noise, which is an edge-preserving
filter in image processing. The basic idea of bilateral filter-
ing is to use neighbors with similar values to smooth the
time series {yt}Nt=1. When applied to time series data, the
abrupt change of trend τt, and spike & dip in at can be fully
preserved.

Formally, we use {y′t}Nt=1 to denote the filtered time series
after applying bilateral filtering:

y′t =
∑
j∈J

wt
jyj , J = t, t± 1, · · · , t±H (3)

where J denotes the filter window with length 2H + 1, and
the filter weights are given by two Gaussian functions as

wt
j =

1

z
e
− |j−t|

2

2δ2
d e
−
|yj−yt|

2

2δ2
i , (4)

where 1
z is a normalization factor, δ2

d and δ2
i are two param-

eters which control how smooth the output time series will
be.

After denoising, the decomposition model in Eq. (1) is
updated as

y′t = τt + st + r′t (5)

r′t = at + (nt − n̂t) (6)

where the n̂t = yt − y′t is the filtered noise.

Trend Extraction
The joint learning of τt and st in Eq. (5) is challenging. As
the seasonality component is assumed to change slowly, we
first perform seasonal difference operation for the denoised
signal y′t to mitigate the seasonal effects, i.e.,

gt = ∇T y
′
t = y′t − y′t−T

= ∇T τt +∇T st +∇T r
′
t

=

T−1∑
i=0

∇τt−i + (∇T st +∇T r
′
t), (7)

where ∇Txt = xt − xt−T is the seasonal difference op-
eration, and ∇xt = xt − xt−1 is the first order difference
operation.

Note that in Eq. (7),
∑T−1

i=0 ∇τt−i dominates gt as we as-
sume the seasonality difference operator on st and r′t leads
to significantly smaller values. Thus, we propose to recover
the first order difference of trend signal∇τt from gt by min-
imizing the following weighted sum objective function

N∑
t=T+1

|gt−
T−1∑
i=0

∇τt−i|+λ1

N∑
t=2

|∇τt|+λ2

N∑
t=3

|∇2τt|, (8)

where ∇2xt = ∇(∇xt) = xt − 2xt−1 + xt−2 denotes the
second order difference operation. The first term in Eq. (8)
corresponds to the empirical error using the LAD (Wang,
Li, and Jiang 2007) instead of the commonly used sum-of-
squares loss function due to the its well-known robustness to
outliers. Note that here we assume that gt ≈

∑T−1
i=0 ∇τt−i.

This assumption may not be true in the beginning for some
t, but since the proposed framework employs an alternating
algorithm to update trend τt and seasonality st iteratively,
later we can remove ∇T st +∇T r

′
t from gt to make it hold.

The second and third terms are first-order and second-order
difference operator constraints for the trend component τt,
respectively. The second term assumes that the trend differ-
ence ∇τt usually changes slowly but can also exhibit some
abrupt level shifts; the third term assumes that the trends are
smooth and piecewise linear such that ∇2xt = ∇(∇xt) =
xt − 2xt−1 + xt−2 are sparse (Kim et al. 2009). Thus, we
expect the trend component τt can capture both abrupt level
shift and gradual change.

The objective function (8) can be rewritten in an equiva-
lent matrix form as

||g −M∇τ ||1 + λ1||∇τ ||1 + λ2||D∇τ ||1, (9)
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where ||x||1 =
∑

i |xi| denotes the `1-norm of the vector x,
g and ∇τ are the corresponding vector forms as

g = [gT+1, gT+2, · · · , gN ]T , (10)

∇τ = [∇τ2,∇τ3, · · · ,∇τN ]T , (11)
M and D are (N − T )× (N − 1) and (N − 2)× (N − 1)
Toeplitz matrix, respectively, with the following forms

M=


T ones︷ ︸︸ ︷

1 · · · 1
1 · · · 1

. . .
1 · · · 1

, D=


1 −1

1 −1
. . .
1 −1

 .
To facilitate the process of solving the above optimization

problem, we further formulate the three `1-norms in Eq. (9)
as a single `1-norm, i.e.,

||P∇τ − q||1, (12)

where the matrix P and vector q are

P =

M(N−T )×(N−1)

λ1I(N−1)×(N−1)

λ2D(N−2)×(N−1)

 ,q =

[
g(N−T )×1

0(2N−3)×1

]
.

The minimization of the single `1-norm in Eq. (12) is equiv-
alent to the linear program as follows

min

[
0
1

]T [∇τ
v

]
s.t.

[
P −I
−P −I

] [
∇τ
v

]
≤
[
q
−q

]
,

(13)

where v is auxiliary vector variable. Let denote the out-
put of the above optimization is [∇τ̃ , ṽ]T with ∇τ̃ =
[∇τ̃2,∇τ̃3, · · · ,∇τ̃N ]T , and further assume τ̃1 = τ1 (which
will be be estimated later). Then, we can get the relative
trend output based on τ1 as

τ̃ rt = τ̃t − τ1 = τ̃t − τ̃1 =

{
0, t = 1∑t

i=2∇τ̃i, t ≥ 2
. (14)

Once obtaining the relative trend from the denoised time
series, the decomposition model is updated as

y′′t = y′t − τ̃ rt = st + τ1 + r′′t , (15)

r′′t = at + (nt − n̂t) + (τt − τ̃t). (16)

Seasonality Extraction
After removing the relative trend component, y′′i can be con-
sidered as a “contaminated seasonality”. In addition, sea-
sonality shift makes the estimation of si even more diffi-
cult. Traditional seasonality extraction methods only consid-
ers a subsequence yt−KT , yt−(K−1)T , · · · , yt−T (or associ-
ated sequences) to estimate st, where T is the period length.
However, this approach fails when seasonality shift happens.

In order to accurately estimate the seasonality com-
ponent, we propose a non-local seasonal filtering. In the
non-local seasonal filtering, instead of only considering

yt−KT , · · · , yt−T , we consider K neighborhoods cen-
tered at yt−KT , · · · , yt−T , respectively. Specifically, for
y′′t−kT , its neighborhood consists of 2H + 1 neighbors
y′′t−kT−H , y

′′
t−kT−H+1, · · · , y′′t−kT , y′′t−kT+1, · · ·, y′′t−kT+H .

Furthermore, we model the seasonality component st as
a weighted linear combination of y′′j where y′′j is in the
neighborhood defined above. The weight between y′′t and y′′j
depends not only in how far they are in the time dimension
(i.e., the difference of their indices t and j), but also depends
on how close y′′t and y′′j are. Intuitively, the points in the
neighborhood with similar seasonality to yt will be given a
larger weight. In this way, we automatically find the points
with most similar seasonality and solve the seasonality shift
problem. In addition, abnormal points will be given smaller
weights in our definition and makes the non-local seasonal
filtering robust to outliers.

Mathematically, the operation of seasonality extraction by
non-local seasonal filtering is formulated as

s̃t =
∑

(t′,j)∈Ω

wt
(t′,j)y

′′
j (17)

where the wt
(t′,j) and Ω are defined as

wt
(t′,j) =

1

z
e
− |j−t

′|2

2δ2
d e

−
|y′′j −y

′′
t |

2

2δ2
i (18)

Ω = {(t′, j)|(t′ = t− k × T, j = t′ ± h)} (19)
k = 1, 2, · · · ,K; h = 0, 1, · · · , H

by considering previous K seasonal neighborhoods where
each neighborhood contains 2H + 1 points.

To illustrate the robustness of our non-local seasonal
filtering to outliers, we give an example in Figure 1(a).
Whether there is outlier at current time point t (dip), or at
historical time point around t−T (spike), the filtered output
s̃t (red curve) would not be affected as show in Figure 1(a).
Figure 1(b) illustrates why seasonality shift is overcome by
the non-local seasonal filtering. As shown in the red curve
in Figure 1(b), when there is ∆t shift in the season pattern,
as long as the previous seasonal neighborhoods used in the
non-local seasonal filter satisfy H > ∆t, the extracted sea-
son can follow this shift.

After removing the season signal, the remainder signal is

r′′′t = y′′t − s̃t = at + (nt − n̂t) + (τt − τ̃t) + (st − s̃t).

(a) Outlier robustness (b) Season shift adaptation

Figure 1: Robust and adaptive properties of the non-local
seasonal filtering (red curve denotes the extracted seasonal
signal).
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Final Adjustment
In order to make the seasonal-trend decomposition unique,
we need to ensure that all seasonality components in a pe-
riod sums to zero, i.e.,

∑i=j+T−1
i=j si = 0. To this end, we

adjust the obtained seasonality component from Eq. (17) by
removing its mean value, which also corresponds to the es-
timation of the trend point τ1. Formally, we have

τ̂1 =
1

T bN/T c

TbN/Tc∑
t=1

s̃t. (20)

Therefore, the estimates of trend and seasonal components
are updated as follows:

ŝt = s̃t − τ̂1, (21)

τ̂t = τ̃ rt + τ̂1. (22)

And the estimate of remainder can be obtained as

r̂t = r′′′t + n̂t or r̂t = yt − ŝt − τ̂t. (23)

Furthermore, we can derive different components of the es-
timated r̂t, i.e.,

r̂t =

{
at + nt + (st − ŝt) + (τ1 − τ̂1), t = 1
at + nt + (st − ŝt) + (τt − τ̃t), t ≥ 2

(24)

Eq. (24) indicates that the remainder signal r̂t may con-
tain residual seasonal component (st− ŝt) and trend compo-
nent (τt − τ̃t). Also in the trend estimation step, we assume∑T−1

i=0 ∇τt−i can be approximated using gt. Similar to al-
ternating algorithm, after we obtained better estimates of τt,
st, and rt, we can repeat the above four steps to get more
accurate estimates of the trend, seasonality, and remainder
components. Formally, the procedure of the RobustSTL al-
gorithm is summarized in Algorithm 1.

Algorithm 1 RobustSTL Algorithm Summary

Input: yt, parameter configurations.
Output: τ̂t, ŝt, r̂t

Step 1: Denoise input signal using bilateral filter

wt
j = 1

z e
− |j−t|

2

2δ2
d e
−
|yj−yt|

2

2δ2
i , y′t =

∑
j∈J w

t
jyj

Step 2: Obtain relative trend from `1 sparse model
∇τ̃ = arg min∇τ ||P∇τ − q||1(see Eq. (8), (9), (12))

τ̃ rt =

{
0, t = 1∑t

i=2∇τ̃i, t ≥ 2
,

y′′t = y′t − τ̃ rt
Step 3: Obtain season using non-local seasonal filtering

wt
(t′,j) = 1

z e
− |j−t

′|2

2δ2
d e

−
|y′′j −y

′′
t |

2

2δ2
i

s̃t =
∑

(t′,j)∈Ω w
t
(t′,j)y

′′
j

Step 4: Adjust trend and season
τ̂1 = 1

TbN/Tc
∑TbN/Tc

t=1 s̃t
τ̂t = τ̃ rt + τ̂1, ŝt = s̃t − τ̂1, r̂t = yt − ŝt − τ̂t

Step 5: Repeat Steps 1-4 for r̂t until convergence

Experiments
We conduct experiments to demonstrate the effectiveness of
the proposed RobustSTL algorithm on both synthetic and
real-world datasets.

Baseline Algorithms
We use the following three state-of-the-art baseline algo-
rithms for comparison purpose:

• Standard STL: It decomposes the signal into seasonality,
trend, and remainder based on Loess in an iterative man-
ner.

• TBATS: It decomposes the signal into trend, level, sea-
sonality, and remainder. The trend and level are jointly
together to represent the real trend.

• STR: It assumes the continuity in both trend and season-
ality signal.

To test the above three algorithms, we use R functions
stl, tbats, AutoSTR from R packages forecast1

and stR2. We implement our own RobustSTL algorithm in
Python, where the linear program (see Eqs. (12) and (13)) in
trend extraction is solved using CVXOPT `1-norm approxi-
mation3.

Experiments on Synthetic Data
Dataset To generate the synthetic dataset, we incorporate
complex season/trend shifts, anomalies, and noise to simu-
late real-world scenarios as shown in Figure 2. We first gen-
erate seasonal signal using a square wave with minor random
seasonal shifts in the horizontal axis. The seasonal period is
set to 50 and a total of 15 periods are generated. Then, we
add trend signal with 10 random abrupt level changes and
14 spikes and dips as anomalies. The noise is added by zero
mean Gaussian with 0.1 variance.

0 100 200 300 400 500 600 700
10

0

10
raw data
trend

0 100 200 300 400 500 600 700
2.5

0.0

2.5 season

0 100 200 300 400 500 600 700
5

0

5
remainder

Figure 2: Generated synthetic data where the top subplot
represents the raw data and the trend, the middle subplot
represents the seasonality, and the bottom subplot represents
the noise and anomalies.

1https://cran.r-project.org/web/packages/forecast/index.html
2https://cran.r-project.org/web/packages/stR/index.html
3https://cvxopt.org/examples/mlbook/l1.html
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remainder

(a) RobustSTL
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0 100 200 300 400 500 600 700
5
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(b) Standard STL
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(c) TBATS
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(d) STR

Figure 3: Decomposition results on synthetic data for a) Robust STL; b) Standard STL; c) TBATS; and d) STR.

Experimental Settings For the three baseline algorithms
STL, TBATS, and STR, their parameters are optimized us-
ing cross-validation. For our proposed RobustSTL algo-
rithm, we set the regularization coefficients λ1 = 10, λ2 =
0.5 to control the signal smoothness in the trend extraction,
and set the neighborhood parameters K = 2, H = 5 in the
seasonality extraction to handle the seasonality shift.

Decomposition Results Figure 3 shows the decomposi-
tion results for four algorithms. The standard STL is affected
by anomalies leading to rough patterns in the seasonality
component. The trend component also tends to be smooth
and loses the abrupt patterns. TBATS is able to respond to
the abrupt changes and level shifts in trend, however, the
trend is affected by the anomaly signals. It also obtains al-
most the same seasonality pattern for all periods. Mean-
while, STR does not assume strong repeated patterns for
seasonality and is robust to outliers. However, it cannot han-
dle the abrupt changes of trend. By contrast, the proposed
RobustSTL algorithm is able to separate trend, seasonality,
and remainders successfully, which are all very close to the
original synthetic signals.

To evaluate the performance quantitatively, we also com-
pare mean squared error (MSE) and mean absolute error
(MAE) between the true trend/season in the synthetic dataset
and the extracted trend/season from four decomposition al-
gorithms, which is summarized in Table 2. It can be ob-
served that our RobustSTL algorithm achieves much better
results than STL, STR, and TBATS algorithms.

Table 2: Comparison of MSE and MAE for trend and sea-
sonality components of different decomposition algorithms.

Algorithms Trend Season
MSE MAE MSE MAE

STR 1.6761 0.9588 0.8474 0.7508
Standard STL 0.9496 0.6806 0.1915 0.3004
TBATS 0.3150 0.3637 0.1839 0.2770
RobustSTL 0.0530 0.1627 0.0265 0.0750

Experiments on Real-World Data

Dataset The real-world datasets to be evaluated include
two time series. One is the supermarket and grocery stores
turnover from 2000 to 2009 (Alexandrov et al. 2012), which
has a total of 120 observations with the period T = 12.
We apply the log transform on the data and inject the trend
changes and anomalies to demonstrate the robustness (sug-
gested from (Alexandrov et al. 2012)). The input data can
be seen in the top subplot of Figure 4 (a). We denote it as
real dataset 1. Another time series is the file exchange count
number in a computer cluster, which has a total of 4032 ob-
servations with the period being 288. We apply the linear
transform to convert the data to the range of [0, 1] for the
purpose of data anonymization. The data can be seen in the
top subplot of Figure 5 (a). We denote it as real dataset 2.
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Figure 4: Decomposition results on real dataset 1 for a) RobustSTL; b) Standard STL; c) TBATS and d) STR.
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Figure 5: Decomposition results on real dataset 2 for a) Robust STL; b) Standard STL; and c) TBATS.

Experimental Settings For all four algorithms, period pa-
rameter T = 12 is used for real-world dataset 1, and T =
288 is used for dataset 2. The rest parameters are optimized
using cross-validation for the standard STL, TBATS, and
STR. For our proposed RobustSTL algorithm, we set the
neighbour window parameters K = 2, H = 2, the regu-
larization coefficients λ1 = 1, λ2 = 0.5 for real data 1, and
K = 2, H = 20, λ1 = 200, λ2 = 200 for real data 2. Notice
that as STR is not scalable to time series with long season-
ality period, we do not report the decomposition result of
dataset 2 for STR.

Decomposition Results Figure 4 and Figure 5 show the
decomposition results on both real-world datasets. Robust-

STL typically extracts smooth seasonal signals on real-
world data. The seasonal component can adapt to the chang-
ing patterns and the seasonality shifts, as seen in Figure 4
(a). The extracted trend signal recovers the abrupt changes
and level shifts promptly and is robust to the existence of
anomalies. The spike anomaly is well preserved in the re-
mainder signal. For the standard STL and STR, the trend
does not follow the abrupt change and the seasonal compo-
nent is highly affected by the level shifts and spike anoma-
lies in the original signal. TBATS can decompose the trend
signal that follows the abrupt change, however, the trend is
affected by the spike anomalies.

During the experiment, it is also observed that the com-
putation speed of RobustSTL is significantly faster than
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TBATS and STR (note the result for STR is not available
in Figure 5 due to its long computation time), as the algo-
rithm can be formulated as an optimization problem with `1-
norm regularization and solved efficiently. While the stan-
dard STL seems computational efficient, its sensitivity to
anomalies and incapability to capture the trend change and
level shifts make it difficult to be used on enormous real-
world complex time series data.

Based on the decomposition results from both the syn-
thetic and the real-world datasets, we conclude that the pro-
posed RobustSTL algorithm outperforms existing solutions
in terms of handling abrupt and level changes in the trend
signal, the irregular seasonality component and the season-
ality shifts, the spike & dip anomalies effectively and effi-
ciently.

Conclusion
In this paper, we focus on how to decompose complex long
time series into trend, seasonality, and remainder compo-
nents with the capability to handle the existence of anoma-
lies, respond promptly to the abrupt trend changes shifts,
deal with seasonality shifts & fluctuations and noises, and
compute efficiently for long time series. We propose a ro-
bustSTL algorithm using LAD with `1-norm regularizations
and non-local seasonal filtering to address the aforemen-
tioned challenges. Experimental results on both synthetic
data and real-world data have demonstrated the effectiveness
and especially the practical usefulness of our algorithm. In
the future we will work on how to integrate the seasonal-
trend decomposition with anomaly detection directly to pro-
vide more robust and accurate detection results on various
complicated time series data.
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