
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

How Does Knowledge of the AUC
Constrain the Set of Possible Ground-Truth Labelings?

Jacob Whitehill
Department of Computer Science
Worcester Polytechnic Institute

Worcester, MA, USA
jrwhitehill@wpi.edu

Abstract

Recent work on privacy-preserving machine learning has
considered how datamining competitions such as Kaggle
could potentially be “hacked”, either intentionally or inad-
vertently, by using information from an oracle that reports a
classifier’s accuracy on the test set (Blum and Hardt 2015;
Hardt and Ullman 2014; Zheng 2015; Whitehill 2016). For bi-
nary classification tasks in particular, one of the most common
accuracy metrics is the Area Under the ROC Curve (AUC),
and in this paper we explore the mathematical structure of
how the AUC is computed from an n-vector of real-valued
“guesses” with respect to the ground-truth labels. Under the
assumption of perfect knowledge of the test set AUC c = p/q,
we show how knowing c constrains the set W of possible
ground-truth labelings, and we derive an algorithm both to
compute the exact number of such labelings and to enumerate
efficiently over them. We also provide empirical evidence that,
surprisingly, the number of compatible labelings can actually
decrease as n grows, until a test set-dependent threshold is
reached. Finally, we show howW can be efficiently whittled
down, through pairs of oracle queries, to infer all the ground-
truth test labels with complete certainty.

Introduction and Related Work
Datamining contests such as Kaggle and KDDCup can
accelerate progress in many application domains by pro-
viding standardized datasets and a fair basis of compar-
ing multiple algorithmic approaches. However, their util-
ity will diminish if the integrity of leaderboard rankings
is called into question due to either intentional or ac-
cidental overfitting to the test data. Recent research on
privacy-preserving machine learning (Blum and Hardt 2015;
Zheng 2015) has shown how information on the accuracy
of a contestant’s guesses, returned to the contestant by an
oracle, can divulge information about the test data’s true la-
bels. Such oracles are often provided by the organizers of
the competition themselves. For example, in the 2017 Intel &
MobileODT Cervical Cancer Screening competition (Kaggle
2017), every contestant can submit her/his guesses up to 5
times per day, and for each submission the oracle returns the
log-loss of the guesses with respect to the ground-truth values
of the entire 512-element test set. The contestant can use the

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

accuracy information to improve (hopefully) the classifier
design and then re-submit.

AUC: For binary classification problems, one of the most
commonly used accuracy metrics is the Area Under the Re-
ceiver Operating Characteristics Curve (AUC). In contrast to
other accuracy metrics such as log-loss and 0/1 loss, which
can be computed as the sum of example-wise losses over each
example in the test set, the AUC statistic is computed over all
possible pairs of test examples, such that each pair contains
one example from each class. In a recent paper (Whitehill
2016), we showed that an oracle that provides contestants
with information on the AUC of their guesses can inadver-
tently divulge information on the ground-truth labels of the
test examples. The AUC can help the contestant to deduce
the labels of particular examples, as well as the number of
negative and positive examples; we provide examples below.

Labels of specific examples: Suppose that a tiny test set
contains just 4 examples; a contestant’s real-valued guesses
for these labels is ŷ = (0.2, 0.5, 0.9, 0.1); and an oracle
informs the contestant that her/his guesses have achieved an
AUC of exactly 0.75 = 3/4. How does perfect knowledge of
the AUC (i.e., no noise added) constrain the set of possible
binary ground-truth vectors for the test set? In this example,
it turns out that there is exactly one possible ground-truth
vector – namely y = (1, 0, 1, 0) – for which the AUC of the
contestant’s guesses is exactly 0.75. Hence, based on a single
oracle query, the contestant has managed to deduce the test
labels with complete certainty.

Number of negative and positive examples: Suppose
that the oracle reports an AUC of c = p/q, where p/q is a re-
duced fraction, i.e., p and q are relatively prime. If n0 and n1
are the numbers of negative and positive examples in the test
set (respectively), then q must divide the total number (n0n1)
of pairs containing one example from each class. Knowledge
of q thus constrains the set {(n0, n1) | n0 + n1 = n} of
possibilities for n0 and n1. For instance, if n = 1000 and
c = p/q = 450/479 ≈ 0.939, then (n0, n1) must be in the
set {(42, 958), (479, 521), (521, 479), (958, 42)} – i.e., only
4 choices instead of 999.

These simple examples raise more general questions: For a
test set with n examples and a fixed AUC of c = p/q (where
p, q ∈ Z), how many compatible binary ground-truth vectors
are there? Does this number grow monotonically in n, or
might there exist some “pathological” combinations of the

5425

number of test examples n, number of positively labeled
examples n1, and the contestant’s AUC c, such that this
number is small? If the number is small, can the solution
candidates be enumerated efficiently? This paper explores
these questions in some detail.

Related work: In recent years there has been growing in-
terest in the statistical validity of scientific results that are ob-
tained from adaptive data analyses, in which the results of one
experiment inform the design of the next (Dwork et al. 2015;
Hardt and Ullman 2014). For the particular application of
datamining contests – in which contestants can submit their
guesses to an oracle, receive information on their accuracy,
revise their guesses, and resubmit – a potential danger is
that the rankings and accuracy statistics of different con-
testants may be unreliable. Therefore, the design of algo-
rithms to generate contest leaderboards that are robust to
“hacking”, whether intentional as part of an attack or in-
advertently due to adaptive overfitting, has begun to gen-
erate significant research interest (Blum and Hardt 2015;
Zheng 2015). Blum and Hardt 2015 proposed an algorithm
(“Ladder”) that can reliably estimate the accuracy of a contes-
tant’s classifier on the true test data distribution, even when
the classifier has been adaptively optimized based on the
output of an oracle on the empirical test distribution.

While the availability of an oracle in datamining contests
presents potential problems, it is also useful for helping con-
testants to focus their efforts on more promising algorithmic
approaches. Our research is thus related to privacy-preserving
machine learning and differential privacy (e.g., (Dwork 2011;
Chaudhuri and Monteleoni 2009; Blum, Ligett, and Roth
2013)), which are concerned with how to provide useful
aggregate statistics without disclosing private information
about particular examples in the dataset. The AUC statistic,
in particular, has been investigated in the context of privacy:
(Stoddard, Chen, and Machanavajjhala 2014) proposed an
algorithm for computing “private ROC” curves and associ-
ated AUC statistics. (Matthews and Harel 2013) showed how
an attacker who already knows most of the test labels can
estimate the remaining labels if he/she gains access to an
empirical ROC curve, i.e., a set of classifier thresholds and
corresponding true positive and false positive rates.

In previous work (Whitehill 2016), we showed a weak
form of lower bound on the number of possible binary ground-
truth vectors y ∈ {0, 1}n for which the contestant’s guesses
ŷ achieve any fixed AUC c. Specifically, for every AUC value
c = p/q ∈ (0, 1), there exists an infinite sequence of dataset
sizes (n = 4q, 8q, 12q, . . .) such that the number of satisfying
ground-truth vectors y ∈ {0, 1}n grows exponentially in n.
However, this result does not preclude the possibility that
there might be certain pathological cases – combinations
of p, q, n0, and n1 – for which the number of satisfying
ground-truth vectors is actually much smaller. Conceivably,
there might be values of n that lie between integer multiples
of 4q for which the number of satisfying solutions is small.
Moreover, the lower bound in (Whitehill 2016) applies only
to datasets that contain at least 4q examples and says nothing
about smaller (but possibly still substantial) datasets.

Main contributions: The novel contributions of our paper
are the following: (1) We show how a pair of oracle queries

can retrieve the ground-truth label of any test example k.
(2) We derive an algorithm to compute the exact number
of n-dimensional binary ground-truth vectors for which a
contestant’s real-valued vector of guesses achieves a fixed
AUC, along with an algorithm to efficiently generate all such
vectors. (3) Based on (1) and (2) above, we describe a novel
attack to infer all the test set labels in typically far fewer
than 2n oracle calls. (4) We provide empirical evidence that
the number of satisfying binary ground-truth vectors can
actually decrease with increasing n, until a test set-dependent
threshold is reached.

Notation and Assumptions
Let y = (y1, . . . , yn) ∈ {0, 1}n be the ground-truth binary
labels of n test examples, and let ŷ = (ŷ1, . . . , ŷn) ∈ Rn
be the contestant’s real-valued guesses. Let L1(y) = {i :
yi = 1} and L0(y) = {i : yi = 0} represent the index
sets of the examples that are labeled 1 and 0, respectively.
Similarly define n1(y) = |L1(y)| and n0(y) = |L0(y)| to
be the number of examples labeled 1 and 0 in y, respectively.
For brevity, we sometimes write simply n1, n0, L0, or L1 if
the argument to these functions is clear from the context.

We assume that the contestant’s guesses ŷ1, . . . , ŷn are all
distinct (i.e., ŷi = ŷj ⇐⇒ i = j). In machine learning
applications where classifiers analyze high-dimensional, real-
valued feature vectors, this is common.

Importantly, but without loss of generality, we assume
that the test examples are ordered according to ŷ1, . . . , ŷn,
i.e., ŷi > ŷj ⇐⇒ i > j. This significantly simplifies the
notation.

Finally, we assume that the oracle provides the contestant
with perfect knowledge of the AUC c = p/q, where p/q is a
reduced fraction (i.e., the greatest common factor of p and q
1) on the entire test set, and that the contestant knows both p
and q.

AUC Accuracy Metric
The AUC has two mathematically equivalent definitions
(Tyler and Chen 2000; Agarwal et al. 2005): (1) the AUC is
the Area under the Receiver Operating Characteristics (ROC)
curve, which plots the true positive rate against the false
positive rate of a classifier on some test set. The ROC thus
characterizes the performance of the classifier over all possi-
ble thresholds on its real-valued output, and the AUC is the
integral of the ROC over all possible false positive rates in the
interval [0, 1]. (2) The AUC represents the fraction of pairs
of test examples – one labeled 1 and one labeled 0 – in which
the classifier can correctly identify the positively labeled ex-
ample based on the classifier output. Specifically, since we
assume that all of the contestant’s guesses are distinct, then
the AUC can be computed as:

AUC(y, ŷ) =
1

n0n1

∑
i∈L0

∑
j∈L1

I[ŷi < ŷj] (1)

Equivalently, we can define the AUC in terms of the number
of misclassified pairs h:

AUC(y, ŷ) = 1− h(y, ŷ)

n0n1

5426

where
h(y, ŷ) =

∑
i∈L0

∑
j∈L1

I[ŷi > ŷj]

As is evident in Eq. 1, all that matters to the AUC is the
relative ordering of the ŷi, not their exact values. Also, if
all examples belong to the same class and either n1 = 0 or
n0 = 0, then the AUC is undefined. Finally, the AUC is a
rational number because it can be written as the fraction of
two integers p and q, where q must divide n0n1.

Iterative Attack to Deduce Each Example
Here we show that the binary label yk of each example k
can be deduced through a pair of oracle queries. In particular,
when deducing example k, we set ŷk to either 1 or 0; set
the guesses for the remaining n− 1 examples all to distinct
values (so that there are no ties) that are greater than 0 and
less than 1; and then submit the vector of guesses to the
oracle. If the AUC achieved by ŷ is higher when ŷk = 1 than
when ŷk = 0, then we know that yk = 1. Thus, in total 2n
oracle queries are required to infer the labels of the entire test
set definitively.
Proposition 1. Let y be a vector of n binary labels, and let ŷ
be the corresponding vector of guesses. Let c1 and c0 be the
AUC resulting when we set ŷk = 1 and ŷk = 0, respectively,
and the values of all the other guesses to any distinct values
in the open interval (0, 1). Then c1 > c0 ⇐⇒ yk = 1.

Proof. Suppose yk = 1. Based on Equation 1, we can com-
pute the number of correctly classified pairs first without
example k, then with example k, and then add them together:

n0n1c1 =
∑
i∈L0

∑
j∈L1

I[ŷi < ŷj]

=
∑
i∈L0

∑
j∈L1\{k}

I[ŷi < ŷj] +
∑
i∈L0

I[ŷi < ŷk]

=
∑
i∈L0

∑
j∈L1\{k}

I[ŷi < ŷj] + n0

since ŷk = 1 which is greater than all other guesses. By
similar reasoning, we have:

n0n1c0 =
∑
i∈L0

∑
j∈L1\{k}

I[ŷi < ŷj] + 0

since ŷk = 0 which is less than all other guesses. Therefore,
c1 > c0. If yk = 0, then an analogous argument proves that
c0 > c1.

This attack enables the inference of all n test examples
using 2n queries. In the next section, we show how a single
oracle query can sometimes narrow down the set of ground-
truth possibilities more quickly.

Computing the Exact Number of Binary
Labelings for which AUC=c

We are interested in determining the number of unique binary
vectors y ∈ {0, 1}n such that the contestant’s guesses ŷ ∈
Rn achieve a fixed AUC of c. The bulk of the effort is to

derive a recursive formula for the number of unique binary
vectors with a fixed number n1 of 1s that give the desired
AUC value.

Intuition: Given a real-valued vector ŷ representing the
contestant’s guesses and a corresponding binary vector y
representing the ground-truth test labels, the number h(y, ŷ)
of misclassified pairs of examples (such that each pair con-
tains one example from each class) can be increased by 1 by
“left-swapping” any occurrence of 1 in y (at index j′) with a
0 that occurs immediately to the left of it (i.e., at index j′−1)
– see Figure 1. To generate a vector y such that h(y, ŷ) = d
for any desired d ∈ {0, . . . , q}, we start with a vector r in
“right-most configuration” – i.e., where all the 0s occur to the
left of all the 1s – because (as we will show) h(r, ŷ) = 0. We
then apply a sequence of multiple left-swaps to each of the 1s
in r, and count the number of ways of doing so such that the
total number is d. Because we want to determine the number
of unique vectors y such that h(y, ŷ) = d, we restrict the
numbers s1, . . . , sn1

of left-swaps applied to the n1 different
1s in r (where the first 1 is left-swapped s1 times, the second
1 is left-swapped s2 times, etc.) so that si ≥ sj for all i < j.
This results in a proof that the number of possible ground-
truth binary labelings, for any given value of n1 and for which
a given vector of guesses misclassifies d pairs of examples,
is equal to the number of points in a n1-dimensional discrete
simplex {(s1, . . . , sn1

) ∈ Zn1 |
∑
i si = d, si ≥ 0 ∀i}

that has been truncated by the additional constraint that
n0 ≥ s1 ≥ . . . ≥ sn1

.
To get started: Since we assume (without loss of gen-

erality) that the contestant’s guesses are ordered such that
ŷi < ŷj ⇐⇒ i < j, then we can simplify the definition of
h to be:

h(y, ŷ) =
∑
i∈L0

∑
j∈L1

I[i > j] (2)

Now we define “left-swap” and “right-most configuration”
more precisely:
Definition 1. For any y ∈ {0, 1}n and i ∈ {2, . . . , n}
where yi = 1 and yi−1 = 0, define the (partial) func-
tion σ : {0, 1}n × Z+ → {0, 1}n such that σ(y, i) =
(y1, . . . , yi, yi−1, yi+1, . . . , yn). Function σ is said to per-
form a left-swap on y from index i.
Definition 2. For any y ∈ {0, 1}n, i ∈ {2, . . . , n}, and
k < i where yi = 1 and yi−1 = . . . = yi−k = 0, define the
(partial) function ρ : {0, 1}n × Z+ × Z+ → {0, 1}n, where
ρ(y, i, k) = σ(y, i) for k = 1, and

ρ(y, i, k) = σ(. . . (σ(σ︸ ︷︷ ︸
k

(y, i), i− 1), . . .), i− (k − 1))

for k > 1. Function ρ is said to perform k consecutive left-
swaps on y from index i.
Example 1. Let y = (y1, y2, y3, y4, y5) ∈ {0, 1}5.
Then σ(y, 4) = (y1, y2, y4, y3, y5) and ρ(y, 4, 3) =
(y4, y1, y2, y3, y5).
Definition 3. Let y be a vector of n binary labels such that
n1 entries are 1. Let L1(y) = {p1, . . . , pn1

}, ordered such
that pi < pj ⇐⇒ i < j, be the indices of the 1s in the
vector. Then we say y is in a right-most configuration iff
pi = n− n1 + i for every i ∈ {1, . . . , n1}.

5427

Proposition 2. Let r = (r1, . . . , rn) be a binary vector of
length n in right-most configuration such that n1 entries are
1. Let ŷ = (ŷ1, . . . , ŷn) be a vector of n real-valued guesses,
ordered such that ŷi < ŷj ⇐⇒ i < j. Then h(r, ŷ) = 0.

Proof. Since r is in right-most configuration, it is clear that
the right-hand side of

h(r, ŷ) =
∑

i∈L0(r)

∑
j∈L1(r)

I[i > j]

sums to 0.

Proposition 3. Let y be a vector of n binary labels, and
let z = σ(y, j′) be another vector of binary labels that is
produced by a single left-swap of y at index j′ ∈ {2, . . . , n},
where yj′ = 1 and yi′ = 0, and i′ = j′ − 1. Let ŷ be
a vector of real-valued guesses. Then the number of pairs
misclassified by ŷ w.r.t. z is one more than the number of
pairs misclassified by ŷ w.r.t. y – i.e., h(z, ŷ) = h(y, ŷ) + 1.

Proof. To shorten the notation, let L0 = L0(y),L1 =

L1(y), and let L̃0 = L0(z), L̃1 = L1(z). We can split the
summation in Equation 2 into four sets of pairs (see Figure
1): (a) those involving neither i′ nor j′; (b) those involving j′
but not i′; (c) those involving i′ but not j′; and (d) the single
pair involving both i′ and j′. By grouping the pairs this way,
we obtain:
h(z, ŷ)

=

 ∑
i∈

L̃0\{j′}

∑
j∈

L̃1\{i′}

I[i > j]

+

 ∑
i∈

L̃0\{j′}

I[i > i′]

+

 ∑
j∈

L̃1\{i′}

I[j′ > j]

+ I[j′ > i′]

Notice that L̃0 = (L0(y) \ {i′}) ∪ {j′}, and hence L0(y) \
{i′} = L̃0(z) \ {j′}. Similarly, L̃1 \ {i′} = L1 \ {j′}. Then
we have:
h(z, ŷ) =

∑
i∈

L0\{i′}

∑
j∈

L1\{j′}

I[i > j] +
∑
i∈

L0\{i′}

I[i > i′] +

∑
j∈

L1\{j′}

I[j′ > j] + I[j′ > i′]

Since i′ + 1 = j′, then there cannot exist any index i ∈
L0 \ {i′} whose value is “between” i′ and j′; in other words,
i > i′ ⇐⇒ i > j′ for every i ∈ L0 \ {i′}. Similarly,
j′ > j ⇐⇒ i′ > j for every j ∈ L1 \ {j′}. Hence:

h(z, ŷ) =
∑
i∈

L0\{i′}

∑
j∈

L1\{j′}

I[i > j] +
∑
i∈

L0\{i′}

I[i > j′] +

∑
j∈

L1\{j′}

I[i′ > j] + I[j′ > i′]

Finally, since I[j′ > i′] = 1 and I[i′ < j′] = 0, then:

h(z, ŷ) =
∑
i∈

L0\{i′}

∑
j∈

L1\{j′}

I[i > j] +
∑
i∈

L0\{i′}

I[i > j′] +

∑
j∈

L1\{j′}

I[i′ > j] + I[i′ > j′] + 1

= h(y, ŷ) + 1

Proposition 4. Suppose a dataset contains n examples, of
which n1 are labeled 1 and n0 = n − n1 are labeled 0.
Let Yn1

= {y ∈ {0, 1}n :
∑
i yi = n1}, and let Sn1

=
{(s1, . . . , sn1

) ∈ Zn1 : n0 ≥ s1 ≥ . . . ≥ sn1
≥ 0}. Then

Yn1
and Sn1

are in 1-to-1 correspondence.

Proof. Every binary vector y ∈ Yn1
of length n, of which

n1 entries are 1, can be described by a unique vector of
integers in the set Pn1

= {(p1, . . . , pn1
) ∈ Z+ : 1 ≤ p1 <

. . . < pn1
≤ n} specifying the indices of the 1s in y in

increasing order. In particular, Yn1
and Pn1

are in 1-to-1
correspondence with a bijection fp : Yn1

→ Pn1
. Hence,

if we can show a bijection fs : Pn1
→ Sn1

, then we can
compose fs with fp to yield a new function f : Yn1 → Sn1 ;
since the composition of two bijections is bijective, then f
will be bijective.

We can construct such an fs as follows:

fs(p1, . . . , pn1
) = (s1, . . . , sn1

) where si = n−n1+i−pi
We must first show that (s1, . . . , sn1

) = fs(p1, . . . , pn1
) ∈

Sn1
for every (p1, . . . , pn1

) ∈ Pn1
; in particular, we must

show that n0 ≥ s1 ≥ . . . ≥ sn1
≥ 0. Since every pi is an

integer, we have that pj − pi ≥ j − i for every j > i. Hence:

n− n1 + pj − pi ≥ n− n1 + j − i

We then add i to and subtract pj from both sides to obtain:

n− n1 + i− pi ≥ n− n1 + j − pj
si ≥ sj ∀j > i

The two boundary cases are sn1
:

sn1
= n− n1 + n1 − pn1

= n− pn1
≥ 0

and s1:

s1 = n− n1 + 1− p1 = n0 + 1− p1 ≤ n0

fs is 1-to-1: Suppose (s1, . . . , sn1
) = fs(p1, . . . , pn1

)
and (s′1, . . . , s

′
n1
) = fs(p

′
1, . . . , p

′
n1
), and suppose si = s′i

for each i. Then:

n− n1 + i− pi = n− n1 + i− p′i (3)
⇐⇒ (4)

pi = p′i (5)

for each i.
fs is onto: For every (s1, . . . , sn1

) ∈ Sn1
, we can find

(p1, . . . , pn1
) such that fs(p1, . . . , pn1

) = (s1, . . . , sn1
) by

5428

1 2 3 4 i′=5 j′=6 7 8 9 10

0 0 1 0 0 1 0 1 1 1

0 0 1 0 1 0 0 1 1 1

Guess ŷ

Label y

Label z

h(y, ŷ)=4

h(z, ŷ)=5

Figure 1: Illustration of how performing a left-swap on binary vector y at index j′ yields a new vector z such that the number of
misclassified pairs h(z, ŷ) is one more than h(y, ŷ). Specifically, ŷ misclassifies pairs (3, 4), (3, 5), (3, 7), and (6, 7) w.r.t. to y,
since for each such pair (i, j), ŷi < ŷj but yi > yj . In contrast, ŷ misclassifies (3, 4), (3, 6), (3, 7), (5, 6), and (5, 7) w.r.t. to z.

0 0 1 0 0 1 0 1 1 1

r

y

0 0 0 0 0 1 1 1 1 1

Figure 2: Illustration of how any binary vector y with n1 1s can be produced by repeatedly left-swapping the 1’s in a right-most
binary vector r. In the example above, the indices of the 1s in y are p1 = 3, p2 = 6, p3 = 8, p4 = 9, p5 = 10. Left-swaps of the
1s in r to produce y are indicated with blue arrows, with s1 = 3, s2 = 1, and s3 = s4 = s5 = 0.

setting pi = n− n1 + i− si for each i. It only remains to be
shown that 1 ≤ p1 < . . . < pn1

≤ n: For any j > i,

pj − pi = j − i+ si − sj

Since si ≥ sj (by definition of Sn1
), we have:

pj − pi ≥ j − i
> 0

and hence pj > pi. Moreover,

p1 = n− n1 + 1− s1
≥ n− n1 + 1− n0
≥ 1

and

pn1 = n− n1 + n1 − sn1

≤ n

Theorem 1. Suppose a dataset contains n examples, of
which n1 are labeled 1 and n0 are labeled 0. Let Y(d)

n1 =
{y ∈ {0, 1}n :

∑
i yi = n1 ∧ h(y, ŷ) = d}, and let

S(d)n1 = {(s1, . . . , sn1
) ∈ Zn1 : n0 ≥ s1 ≥ . . . ≥ sn1

≥
0 ∧

∑
i si = d}. Then Y(d)

n1 and S(d)n1 are in 1-to-1 corre-
spondence.

Proof. Since Y(d)
n1 ⊂ Yn1

and S(d)n1 ⊂ Sn1
, and since Yn1

and Sn1
are in 1-to-1 correspondence with bijection f (from

Proposition 4) then we must show only that the image of

Y(d)
n1 through f is S(d)n1 . Suppose that (s1, . . . , sn1

) = f(y)

for some y ∈ Y(d)
n1 . Then we can write y as

y = ρ(ρ(. . . (ρ︸ ︷︷ ︸
n1

(r, n−n1+1, s1), n−n1+2, s2) . . .), n, sn1
)

In other words, y ∈ Y(d)
n1 can be obtained from r (a binary

vector of length n, such that n1 elements are labeled 1, in
right-most configuration) by performing a sequence of con-
secutive left-swaps on the 1s in r. To see this, observe that the
first 1 in r is always immediately preceded by n0 0s; hence,
we can perform s1 ≤ n0 consecutive left-swaps on r from
index n − n1 + 1. (See Figure 2 for an illustration.) More-
over, after performing these consecutive left-swaps, then the
second 1 in r will be immediately preceded by s1 0s; hence,
we can perform s2 ≤ s1 consecutive left-swaps on r from
index n − n1 + 2. After performing these consecutive left-
swaps, then the third 1 in r will be immediately preceded by
s2 0s; and so on. After performing the consecutive left-swaps
for each of the 1s in r, then the position of the ith 1 in the
resulting vector is n−n1 + i− si = pi for each i, as desired.

Next, recall that, by Proposition 2, h(r, ŷ) = 0. Moreover,
by Proposition 3, each left-swap increases the value of h
by 1; hence, applying ρ to perform si consecutive left-swaps
increases the value of h by si. Summing over all 1s results in a
total of

∑n1

i=1 si misclassified pairs, i.e., h(y, ŷ) =
∑n1

i=1 si.
But since y ∈ Y(d)

n1 , we already know that h(y, ŷ) = d.
Therefore,

∑
i si = d, and hence (s1, . . . , sn1

) ∈ Y(d)
n1 .

Summing over all possible n1
Based on Theorem 1, we can compute the number,
v(n0, n1, d)

.
= |S(d)n1 |, of binary vectors of length n =

5429

n0 + n1, such that n1 of the entries are labeled 1 and for
which h(y, ŷ) = d. Recall that the AUC can be computed
by dividing the number d of misclassified pairs by the total
number of example-pairs n0n1. Hence, to compute the to-
tal number, w(n, c), of binary vectors of length n for which
AUC(y, ŷ) = c, we must first determine the set N1 of possi-
ble values for n1, and then sum v(n0, n1, d) over every value
in N1 and the corresponding value d.

Suppose that the oracle reports an AUC of c = p/q, where
p/q is a reduced fraction, Since c represents the fraction of all
pairs of examples – one from each class – that are classified
by the contestant’s guesses correctly, then q must divide the
total number (n0n1) of pairs in the test set. Hence:

N1 = {n1 : (0 < n1 < n) ∧ (q | (n− n1)n1)}

Since it is possible that q < n0n1, we must scale (q − p) by
n0n1/q to determine the actual number of misclassified pairs
d. In particular, we define

d(n1) = (q − p)n0n1/q = (q − p)(n− n1)n1/q

Based on N1 and d(n1), we can finally compute:

w(n, c) =

∣∣∣∣∣ ⋃
n1∈N1

S(d(n1))
n1

∣∣∣∣∣
=

∑
n1∈N1

v(n− n1, n1, d(n1))

since the S(d(n1))
n1 are disjoint.

Recursion Relation
We can derive a recursion relation for v(n0, n1, d) as follows:
Given any binary vector r of length n, with n1 1s, in right-
most configuration, we can apply k ∈ {0, 1, . . . ,min(d, n0)}
left-swaps on r from index n − n1 + 1 (i.e., from the left-
most 1) to yield y = ρ(r, n − n1 + 1, k). Then the vector
(yn−n1−k+2, yn−n1−k+3, yn−n1−k+4, . . . , yn) (i.e., the last
n1−1+k elements of y) consists of k 0s followed by (n1−1)
1s; in other words, it is in right-most configuration. Thus, by
iterating over all possible k and computing for each choice
how many more left-swaps are necessary to reach a total of
d, we can define v recursively:

v(n0, n1, d) =

min(d,n0)∑
k=0

v(k, n1 − 1, d− k)

with initial conditions:

v(n0, n1, 0) = 1 ∀n0 ≥ 0, n1 ≥ 0

v(0, n1, d) = 0 ∀n1 ≥ 0, d > 0

v(n0, 0, d) = 0 ∀n0 ≥ 0, d > 0

Dynamic programming using a three-dimensional memoiza-
tion table can be used to compute v in time O(n0n1d).

The recursive algorithm above can also be used construc-
tively (though with large space costs) to compute the setW of
all binary vectors y of length n, of which n1 are 1, such that

Test Labels y
a 1 1 0 0 1 0 1 1 1 1 1
b 1 0 1 1 0 0 1 1 1 1 1
c 1 0 1 0 1 1 0 1 1 1 1
d 0 1 1 1 0 1 0 1 1 1 1
e 1 0 0 1 1 1 1 0 1 1 1
f 0 1 1 0 1 1 1 0 1 1 1
g 0 1 0 1 1 1 1 1 0 1 1
h 0 0 1 1 1 1 1 1 1 0 1

Table 1: Set W of possible ground-truth labelings y for
n0 = 3, n1 = 8, c = 17/24. Columns correspond to dif-
ferent test examples (indexed by their rank order in ŷ), and
rows correspond to different possible values of y. Each y
is generated by performing d = 7 left-shifts on the vector
(0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1).

h(y, ŷ) = d for any d. In order to apply this construction,
the test examples must first be sorted in increasing value of
the contestant’s guesses; the constructive algorithm is then
applied to generateW; and then the components of each of
the possible binary vectors must be reordered to recover the
original order of the test examples. An example of W for
n0 = 3, n1 = 8, c = p/q = 17/24 is shown in Table 1.

Growth of w(n, c) in n for fixed c

In prior work (Whitehill 2016) we showed that, for every
fixed rational c = p/q ∈ (0, 1), the number of possible bi-
nary ground-truth vectors for which the contestant’s guesses
achieve AUC of exactly c, grows exponentially in n. How-
ever, their result applies only to datasets that are at least
n = 4q in size. What can happen for smaller n?

Using the recursive formula from the section above, we
found empirical evidence that w(n, c) may actually be (ini-
tially) monotonically decreasing in n, until n reaches a
threshold (specific to q) at which it begins to increase again.
As an example with p = 1387 and q = 1440 (and hence
d = 1440 − 1387 = 53), we can compute the number of
possible binary labelings that are compatible with an AUC
of exactly c = p/q = 1387/1440 (which is approximately
96.3%) as a function of n:

n N1 w(n, c)
76 {36, 40} 657488
77 {32, 45} 654344
78 {30, 48} 650822
84 {24, 60} 622952
92 {20, 72} 572728
98 {18, 80} 529382
106 {16, 90} 468686

Here, w(n, c) decreases steadily until n = 106. We con-
jecture that w(n, c) is monotonically non-increasing in n for
n ≤ min{n0 + n1 : n0n1 = 2q}, for every fixed c. This
conjecture is consistent with some simulations we conducted
and is based on the following intuition: By definition, the
denominator (q) of the AUC c = p/q must divide n0n1. The
number of possible ground-truth labelings for fixed n and

5430

c depends, in part, on the set of tuples (n0, n1) such that
n0 + n1 = n and q | n0n1. (See section “Summing over all
possible n1” above.) When n grows to be at least 2q, then
many more possibilities for (n0, n1) may become feasible
because if (n0, n1) is feasible, then so is (2n0, n1), and so is
(n0, 2n1).

While the number of satisfying solutions in this example
for n = 106 is still in the hundreds of thousands, it is easily
small enough to allow each possibility to be considered indi-
vidually, as we explore below. We note that test sets on the
order of hundreds of examples are not uncommon; the Intel
& MobileODT Cervical Cancer Screening (Kaggle 2017)
and ASSISTments datamining competitions (Heffernan et al.
2017) are two examples.

A More Efficient Exploit
In the sections above, we showed (1) a simple mechanism
whereby a pair of oracle calls can reveal the label of any
example k; and (2) an algorithm for enumerating all possible
labelings compatible with the AUC c obtained by a vector of
guesses. Below we describe how these two mechanisms can
be combined to infer the identity of all test labels with fewer
than 2n oracle queries:

1. Submit a vector of guesses ŷ and obtain the AUC c.

2. Determine the setW of all possible ground-truth vectors
compatible with c and ŷ.

3. SetW1 =W .

4. For τ = 1, 2, . . .:

(a) If |Wτ | = 1, then return y ∈ Wτ .
(b) Choose the example k (where examples are numbered

according to their rank order in ŷ) whose label yk would
provide the greatest reduction in the number of com-
patible members of Wτ . This is equivalent to finding
k = argmink′ |0.5− |{y ∈Wτ : yk′ = 1}| /|Wτ ||.

(c) Submit a pair of oracle queries to infer the ground-truth
label of example k; call it l.

(d) ComputeWτ+1 = {y ∈ Wτ : yk = l}.
The loop at Step 4 is equivalent to traversing a binary tree
from the root downwards. While constructing a minimum-
height binary tree is NP-complete (Laurent and Rivest 1976),
heuristics such as maximizing the reduction in uncertainty
(Quinlan 2014) are often used, which we also use here.

Example 1: For the example (n0 = 3, n1 = 8, c = 17/24)
shown in Table 1, we could choose k = 1 during the first
iteration since there are 4 examples for which y1 = 1 and
4 examples for which y1 = 0. (Note that we could also
choose k = 2.) Suppose that, using a pair of oracle queries,
we deduce that y1 = 0. Then for the second iteration we
would choose k = 2 and infer y2 using another pair of oracle
queries, and so on. The binary decision tree is shown in
Figure 3. Since the height of the tree is 4, then only 2×4+1 =
9 total oracle queries are required (including the initial query
before the loop). This is fewer than the 2× 11 = 22 queries
using the naive approach presented earlier in the paper.

Example 2: Suppose we wished to infer the labels of a
dataset consisting of n = 106 examples, and our guesses

1

2

h 3

g 4

f d

3

2

e a

4

c b

0 1

Figure 3: Binary decision tree to deduce which element of
W is the actual ground-truth vector y. Each internal node
signifies the index (according to the rank order of ŷ) of the
example whose label should be inferred (using a pair of
oracle queries). Each left edge corresponds to a label of 0.
Leaf nodes indicate which ground-truth vector in Table 1 is
correct.

attained an AUC of c = p/q = 1387/1440 (as in the section
above). Then the number of satisfying solutions is 468686.
By following the algorithm listed above, we can iteratively
query the oracle to most quickly reduce the number of pos-
sible solutions down to 1. In this example, it turns out that
the maximum depth of any node in the decision tree is 35;
hence, at most 35× 2 + 1 = 71 queries (including the initial
one) need to be made to infer all 106 ground-truth labels
unambiguously. This is significantly less than 2× 106 = 212
using a naive strategy.

Discussion
Here we discuss some points raised by the anonymous re-
viewers regarding the practicality of the proposed attack.

Is there experimental evidence that labels can be in-
ferred in this way in a real competition? In order to per-
form the attack described in our paper in a real datamining
contest, we would need to find an ongoing competition that
fulfills several criteria:

(a) It uses AUC as the evaluation criterion.

(b) The size of the test set is modest, i.e., O(100) examples.

(c) The oracle returns the AUC on the entire test set, not just
a random subset.

(d) Contestants can submit multiple oracle queries during
the competition.

Many recent competitions fulfill several of these criteria.
For instance, the public leaderboard of the Intel-MobileODT
2017 competition fulfilled criteria (b), (c), and (d), but was
evaluated using log-loss instead of AUC. The KDD Cup 2015
fulfilled criteria (a), (c), and (d), but contained thousands of
test examples. There actually was one recent competition that
fulfilled all four criteria – the ASSISTments Data Mining
Competition 2017, with just 172 test examples. It may only
be a matter of time before a new competition arises that meets
all the criteria. A goal of our paper is to emphasize that doing
so would be a bad idea.

5431

To be clear: We do not claim that our attack is feasible
(computationally, or within the allowed number of oracle
queries) for all test sets, even when all the criteria above are
fulfilled. In the vast majority of cases, the competition would
not allow enough oracle queries, and/or the computational
time and storage costs would become intractable. However,
the purpose of our paper is to show that there exist test sets
on which attacks could successfully be waged.

Does the proposed method apply if the AUC is re-
ported as a floating-point number instead of an exact
fraction p/q? Sometimes. Many competition oracles report
AUC results with 5 decimal digits. If the value of p/q can be
represented exactly using less than or equal to 5 digits, then
no information is lost. Even if it cannot be, there may still
be some useful information about (p, n0, n1) that can be ex-
tracted. Consider, for example, a competition of the size used
in the ASSISTments Datamining Competition, with n = 172
examples. If the actual values of n0 and n1 were 100 and
72, respectively, and if a contestant’s classifier achieved an
AUC of (say) 6500/(100 ∗ 72) which were truncated by the
oracle at 5 decimal figures (i.e., 0.90278), then the contestant
could greatly reduce the set of (n0, n1, p) that are compatible
with this result to just 18 possibilities. Moreover, through
subsequent oracle calls with slightly different AUCs (which
could be performed by adding noise to the guesses), then the
possible values can be whittled away further by intersecting
the subsets of feasible (n0, n1). Of course, having more than
just one possibility for (n0, n1, p) will weaken the attack, and
the attacker might need to make far more oracle queries (to
handle each possible tuple) to deduce the test set labels with
certainty. Speculatively, we could imagine that one might
generalize our proposed attack in this way, but this would
require further research.

What would happen if the oracle added noise to c?
Adding noise to the AUC returned by the oracle would likely
thwart the proposed attack because it assumes perfect knowl-
edge of p and q. However, in practice, datamining competi-
tion organizers are reluctant to add such noise to the oracle
responses. One possible reason is that it might bother con-
testants that they could receive a score that is (sightly) lower
than what they deserved.

Conclusions
We have investigated the mathematical structure of how the
Area Under the Receiver Operating Characteristics Curve
(AUC) accuracy metric is computed from the binary vector
of ground-truth labels and a real-valued vector of guesses. In
particular, we derived an efficient recursive algorithm with
which to count the exact number of binary vectors for which
the AUC of a fixed vector of guesses is some value c. We also
derived a constructive algorithm with which to enumerate all
such binary vectors. Finally, we showed a novel exploitation
mechanism whereby the setW of possible ground-truth vec-
tors can be iteratively whittled down using a binary decision
tree to a unique value y. As an important limitation noted
above, our algorithm assumes perfect knowledge of the AUC,
i.e., no noise added.

Future work: It would be interesting to explore more
sophisticated adaptive mechanisms of choosing guess vectors

ŷ; based on theW resulting from the first vector of guesses,
there might be a way of choosing the next guess vector ŷ
that results in a more efficient deduction of the ground-truth
values than the method we presented.

References
Agarwal, S.; Graepel, T.; Herbrich, R.; Har-Peled, S.; and
Roth, D. 2005. Generalization bounds for the area under the
ROC curve. In Journal of Machine Learning Research.
Blum, A., and Hardt, M. 2015. The ladder: A reliable leader-
board for machine learning competitions. arXiv preprint
arXiv:1502.04585.
Blum, A.; Ligett, K.; and Roth, A. 2013. A learning theory
approach to noninteractive database privacy. Journal of the
ACM (JACM) 60(2):12.
Chaudhuri, K., and Monteleoni, C. 2009. Privacy-preserving
logistic regression. In Advances in Neural Information Pro-
cessing Systems.
Dwork, C.; Feldman, V.; Hardt, M.; Pitassi, T.; Reingold,
O.; and Roth, A. L. 2015. Preserving statistical validity in
adaptive data analysis. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing.
Dwork, C. 2011. Differential privacy. In van Tilborg, H., and
Jajodia, S., eds., Encyclopedia of Cryptography and Security.
Springer US. 338–340.
Hardt, M., and Ullman, J. 2014. Preventing false discovery in
interactive data analysis is hard. In Foundations of Computer
Science (FOCS), 2014 IEEE 55th Annual Symposium on,
454–463. IEEE.
Heffernan, N.; Baker, R.; Woolf, B.; and Patikorn, T.
2017. ASSISTments data mining competition 2017.
https://sites.google.com/view/assistmentsdatamining/data-
mining-competition-2017.
Kaggle. 2017. Intel & mobileodt cervical cancer screen-
ing datamining competition. https://www.kaggle.com/c/intel-
mobileodt-cervical-cancer-screening.
Laurent, H., and Rivest, R. L. 1976. Constructing optimal
binary decision trees is np-complete. Information processing
letters 5(1):15–17.
Matthews, G. J., and Harel, O. 2013. An examination of data
confidentiality and disclosure issues related to publication of
empirical roc curves. Academic radiology 20(7):889–896.
Quinlan, J. R. 2014. C4. 5: programs for machine learning.
Elsevier.
Stoddard, B.; Chen, Y.; and Machanavajjhala, A. 2014. Dif-
ferentially private algorithms for empirical machine learning.
CoRR abs/1411.5428.
Tyler, C., and Chen, C.-C. 2000. Signal detection theory
in the 2AFC paradigm: attention, channel uncertainty and
probability summation. Vision Research 40(22):3121–3144.
Whitehill, J. 2016. Exploiting an oracle that reports AUC
scores in machine learning contests. In AAAI, 1345–1351.
Zheng, W. 2015. Toward a better understanding of leader-
board. arXiv preprint arXiv:1510.03349.

5432

