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Abstract
Multi-view Multi-instance Multi-label Learning (M3L) deals
with complex objects encompassing diverse instances, repre-
sented with different feature views, and annotated with multi-
ple labels. Existing M3L solutions only partially explore the
inter or intra relations between objects (or bags), instances, and
labels, which can convey important contextual information for
M3L. As such, they may have a compromised performance.
In this paper, we propose a collaborative matrix factorization
based solution called M3Lcmf. M3Lcmf first uses a hetero-
geneous network composed of nodes of bags, instances, and
labels, to encode different types of relations via multiple rela-
tional data matrices. To preserve the intrinsic structure of the
data matrices, M3Lcmf collaboratively factorizes them into
low-rank matrices, explores the latent relationships between
bags, instances, and labels, and selectively merges the data
matrices. An aggregation scheme is further introduced to ag-
gregate the instance-level labels into bag-level and to guide the
factorization. An empirical study on benchmark datasets show
that M3Lcmf outperforms other related competitive solutions
both in the instance-level and bag-level prediction.

Introduction
Multi-Instance Multi-Label learning (MIML) is a framework
for modeling complex objects, in which each object (or bag)
contains one or more instances and is annotated by several
semantic labels (Zhou et al. 2012). Let’s consider n bags
Bi = {xi1 ,xi2 , · · · ,xik} (i = 1, . . . , n), where each bag
encompasses ni ≥ 1 instances, and xij ∈ Rd is the feature
vector of the j-th instance of the i-th bag. The n bags and the
m =

∑n
i=1 ni instances are annotated with q distinct labels.

Yi ∈ R1×q is the q-dimensional label vector for the i-th bag.
Given a training dataset D = {(Bi,Yi)}ni=1 , MIML aims at
learning an instance-level f(x) ∈ Rq (or bag-level) predictor,
which maps the input features of instances (or bags) onto the
label space.

Most MIML algorithms focus on single view data, where
instances of bags are represented by one set of features.
However, in real-world applications, a multi-instance multi-
label object can often be represented via different views
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(Nguyen, Zhan, and Zhou 2013; Shao et al. 2016). For
example, as shown in Figure 1, three exemplar bags en-
compassing diverse instances are represented with V het-
erogenous feature views. Since there are multi-type rela-
tions between bags and between instances, learning from
multi-view bags is more difficult and challenging than the
recently heavily studied MIML task (Feng and Zhou 2017;
Zhu, Ting, and Zhou 2017).
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Figure 1: An illustrative example of multi-view multi-
instance multi-label objects. {Rv

ij}Vv=1 are the multi-type
relational data matrices between bags (objects), instances,
and labels across V heterogeneous feature views.

Several Multi-view Multi-instance Multi-label Learning
(M3L) approaches have been proposed to tackle this chal-
lenge (Nguyen, Zhan, and Zhou 2013; Nguyen et al. 2014;
Li et al. 2017; Yang et al. 2018). Nguyen, Zhan, and Zhou
(2013) pioneered an approach called M3LDA, which em-
ploys Latent Dirichlet Allocation (Blei, Ng, and Jordan 2003)
to explore the visual-label topics from the visual view and
the text-label topics from the text view, and then enforces
the predicted labels from the two respective views to be
consistent. Nguyen et al. (2014) introduced another M3L
approach, called MIMLmix, to leverage multiple views using
a hierarchical Bayesian network and variational inference.
MIMLmix can handle samples which are absent in some
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Table 1: Relations exploited by representative M3L and MIML methods.

Relations
bag-bag instance-instance label-label bag-instance bag-label instance-label

M3LDA(Nguyen, Zhan, and Zhou 2013) X X X X

MIMLmix(Nguyen et al. 2014) X X X X

M3DN(Yang et al. 2018) X X X X

M2IL(Li et al. 2017) X X X

MIMLSVM(Zhou et al. 2008) X X X

MIMLfast(Huang, Gao, and Zhou 2018) X X X

MIMLRBF(Zhang and Wang 2009) X X X

Proposed M3Lcmf X X X X X X

views. Li et al. (2017) developed a multi-view multi-instance
learning algorithm (M2IL), which generates different graphs
with different parameters to represent various contextual re-
lations between instances of a bag. It then integrates these
graphs into a unified framework for bag classification based
on sparse representation and multi-view dictionary learning.
Yang et al. (2018) introduced a deep neural network based
approach called M3DN. M3DN separately applies a deep net-
work for each view, and requires the bag-based predictions
from different views to be consistent within the same bag. In
addition, M3DN adopts the Optimal Transport theory (Villani
2008) to capture the geometric information of the underlying
label space and to quantify the quality of predictions.

However, these M3L approaches, like MIML solutions,
only consider limited types of relations between bags or be-
tween instances, as summarized in Table 1. M3L approaches
generally capture the relations between bags and instances,
and the associations between bags and labels. Some ap-
proaches additionally exploit the relations between bags
(Zhou et al. 2008), between instances (Li et al. 2017), and
the correlations between labels (Huang, Gao, and Zhou 2018;
Yang et al. 2018). Furthermore, other approaches use the asso-
ciations between instances and labels (Zhang and Wang 2009;
Nguyen et al. 2014) to learn labels of bags at the instance
level. All these types of relations simultaneously exist in
M3L, however, none of the existing solutions explicitly ac-
counts for all these relations.

To take advantage of multiple feature views of instances
(or bags), an intuitive solution is to concatenate features from
different views into a long vector, and then to apply MIML
algorithms on the concatenated vector. However, this con-
catenation causes over-fitting on a small number of training
samples, and ignores the specific statistical property of each
view (Xu, Tao, and Xu 2013). Ensemble learning can also
work on multi-view data and MIML classifiers are readily
available for each view. But the base classifiers are sepa-
rately trained on individual views; as such, they may have a
low performance given the insufficient information of each
view and the neglect of complementary information across
views. Subspace learning-based approaches (He et al. 2016;
Tan et al. 2018) aim at obtaining a latent subspace shared
by multiple views under the assumption that the input views
are generated from a latent subspace. Latent subspace-based
solutions may alleviate the issue of the “curse of dimension-
ality”, but may neglect the intrinsic structure of individual
views. For multi-view data, the intrinsic structures of bags

and instances may be different across views. Therefore, a
competent M3L approach should account for multiple types
of relations between bags, instances and labels, and the in-
trinsic structures of different feature views.

In this paper, we introduce an approach called M3Lcmf.
M3Lcmf first constructs a heterogeneous network composed
of nodes of bags, instances, and labels, to capture the intra-
relations between nodes of the same type, inter-relations
between bags and instances, between bags and labels, and
between instances and labels. To respect and employ the
intrinsic structure of the subnetworks of the intra and inter-
relations, it collaboratively factorizes the association matrices
of the subnetworks into low-rank matrices to pursue the low-
rank representation of the nodes and the latent relationships
among them, and also to selectively integrate multiple feature
views of bags and instances. M3Lcmf additionally introduces
an aggregation term into the factorization objective, which
not only can aggregate the instance-label associations into
bag-level, but also can reversely guide the prediction of these
associations. The main contributions of this work are summa-
rized as follows:

(i) Unlike existing solutions that can only account for
several types of relations between bags and instances,
M3Lcmf can simultaneously take into account multiple
types of relations between bags, instances, and labels.

(ii) Our proposed M3Lcmf can selectively combine multi-
ple feature views of bags and instances, preserve multi-
ple intrinsic intra- and inter-relations without mapping
inter-relations into the homologous network of bags
or instances. It can make predictions at the instance-
level and automatically aggregate the predictions to the
bag-level.

(iii) Experimental results on benchmark datasets show
that M3Lcmf performs favorably against the recently
proposed M3L approaches MIMLmix (Nguyen et al.
2014) and M2IL (Li et al. 2017), and other represen-
tative MIML methods (including MIMLSVM (Zhou
et al. 2008), MIMLNN (Zhou et al. 2012), MIMLRBF
(Zhang and Wang 2009) and MIMLfast (Huang, Gao,
and Zhou 2018)). M3Lcmf is also robust to a wide
range of input parameters.
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The Proposed Method
Problem Formulation
Without loss of generality, we assume instances (or bags)
have V feature views, Bvi = {xvi1 ,x

v
i2
, · · · ,xvik}, where

xv ∈ Rdv (v = 1, 2, · · · , V ) is the feature space of instances
in the v-th view. Yi ∈ R1×q is the q-dimensional label space
for the i-th bag across all the views. The task of M3L is
to learn a predictive function f({Bv}Vv=1,Y) ∈ Rq, which
maps multiple input feature views onto the label space.

To address this task, we first construct a heterogeneous
network to encode multiple types of relations between bags,
instances, and labels. Next, we collaboratively factorize the
relational data matrices of the heterogeneous network into
low-rank matrices, and predict the instance-label association
based on the respective low-rank matrices; we then aggregate
the instance-level predictions onto bag-level. The following
two subsections elaborate on the network construction and
collaborative matrix factorization.

Heterogeneous Network Construction
As shown in Figure 1, there are three types of nodes in the het-
erogeneous network: bags, instances, and labels. Each type of
nodes has a different intrinsic structure. Bags and instances
can have multiple heterogeneous feature views, which often
provide complementary information. We first construct a het-
erogeneous network to represent intrinsic structures between
nodes of multiple information sources.

It is recognized that relations among instances in a bag
convey important contextual information in multi-instance
learning, and they influence the overall performance (Li et
al. 2017). To explore the intrinsic structure of instances, we
construct a subnetwork of instances for each feature view.
For simplicity, we measure the relation between xvi and xvj
in the v-th view using the Gaussian heat kernel Rv

11(i, j) =

exp(− ||x
v
i−x

v
j ||

2
F

σ2 ), where σ is the average Euclidean distance
between all the m instances of the v-th view.

In M3L, a bag contains one or more instances and has
its own characteristics, which are different from those of
instances. Here, we construct a bag subnetwork to capture
the contextual information of bags based on a composite
Hausdorff distance for each view as follows:

H(i, j)

=
1

3

∑
p∈η



∑
a∈Bv

i
minb∈Bv

j
d(a,b)+

∑
b∈Bv

j
mina∈Bv
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|Bv
i |+|B

v
j |

(p = avg),

max{maxa∈Bv
i
minb∈Bv

j
d(a, b),

maxb∈Bv
j
mina∈Bv

i
d(a, b)}(p = max),

mina∈Bv
i
minb∈Bv

j
d(a, b)(p = min)

where p ∈ η = {‘avg′, ‘max′, ‘min′}, d(a, b) is the Eu-
clidean distance between two instances (a and b). Then, we
define Rv

22(i, j) = exp(−H(i,j)
σ2
H

) as the similarity between
the i-th bag and j-th bag in the v-th view, and σH is set to the
average composite Hausdorff distance between all the bags
of this view. These three types of Hausdorff distances are

widely used in MIML(Zhou et al. 2012). Different Hausdorff
distances have different focuses. The minimal Hausdorff dis-
tance indicates the minimal distance between all instances
of one bag and those of another bag; the maximal Hausdorff
distance computes the maximum distance between instances
of a bag and the nearest instances of another bag; while the
average Hausdorff distance takes into account more geomet-
ric relations between instances of two bags (Zhang and Zhou
2009). This composite similarity can integrate the merits of
the Hausdorff distance metrics.

In M3L, each bag is simultaneously annotated with sev-
eral semantic labels, and the labels are not mutually exclu-
sive. Different pairs of labels may have different degrees of
correlation. Label correlation can be leveraged to boost the
performance multi-label learning (Zhang and Zhou 2014). To
quantify label correlations, we adopt the widely used cosine
similarity to construct a subnetwork of labels. Since instances
and bags share the same label space, only one label subnet-
work is constructed. Let Y(·, c) ∈ Rn store the distribution
of label c across all the bags. The correlation between two
labels c1 and c2 can be empirically estimated as follows:

R33(c1, c2) =
Y(·, c1)TY(·, c2)

‖ Y(·, c1) ‖‖ Y(·, c2) ‖
(1)

The specific distance metrics used to construct the three types
of intra-relations in the subnetworks have been chosen for
their simplicity and wide applicability. Other distance metrics
can be used as well.

There are three types of inter-relations between bags, in-
stances, and labels. The bag-instance inter-relational data ma-
trix R12 ∈ Rn×m can be specified based on the known bag-
instance associations, which are readily available in multi-
instance data. The bag-label relational matrix R13 ∈ Rn×q

can be directly specified based on the known labels of bags.
For the instance-label relational data matrix R23 ∈ Rm×q,
since the initial labels of instances are generally unknown
in multi-instance learning, we initially set R23 = 0. If the
labels of instances are partially known, we can also specify
R23 based on the known labels of instances.

By referring to Table 1, we can say that the heterogeneous
network can account for all types of relations between bags,
instances, and labels.

Collaborative Matrix Factorization
To combine multiple intra-relational data matrices Rv

11 and
Rv

22, we can project all the data matrices onto a compos-
ite instance-instance intra-relational data matrix, or onto
a composite bag-bag intra-relational data matrix, and then
make prediction on the composite relational data matrix. This
projection idea has been used to integrate multiple inter-
connected subnetworks (Gligorijević and Pržulj 2015). How-
ever, this projection may enshroud the intrinsic structures of
different relational data matrices and compromise the per-
formance. Zitnik and Zupan (2015) recently introduced a
data fusion framework (DFMF) based on matrix factoriza-
tion. This framework does not need to map a heterogeneous
network into a small homologous network, and it can lever-
age and preserve the intrinsic structures of multiple relational
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data matrices. The objective function of this framework is as
follows:

minZ(G,S
G≥0

) =
∑

Rij∈R

||Rij −GiSijG
T
j ||2F

+

maxiti∑
t=1

tr(GTΘ(t)G)

(2)

where || · ||2F is the Frobenius norm. Rij ∈ Rni×nj , i, j ∈
{1, 2, · · · , N} stores the inter-relation between the i-th ob-
ject and the j-th object. Gi ∈ Rni×di , Gj ∈ Rnj×dj ,
Sij ∈ Rdi×dj (di � ni, dj � nj), G = diag(G1, ...,GN )
where Gi is the low rank representation of the i-th object
type, and N is the number of object types. Suppose the i-th
type of objects has ti data sources, represented by ti con-
straint matrices {Θt

i ∈ Rni×ni}tit=1(t ∈ {1, ...maxiti}).
Θ(t) = diag(Θ

(t)
1 , ...,Θ

(t)
N ), which collectively stores all

the block diagonal matrices.

Based on the constructed heterogeneous network, and for
the non-negativity of the inter and intra-relational data matri-
ces, we extend Eq. (2) and define the objective function of
M3Lcmf as follows:

minZ(G1,G2,G3)
G1,G2,G3≥0

= ||R12 −G1G
T
2 ||2F

+ ||R13 −G1G
T
3 ||2F

+ ||R13 −ΛR12G2G
T
3 ||2F

+MR(G)

(3)

where G1 ∈ Rn×d, G2 ∈ Rm×d, and G3 ∈ Rq×d are the
low rank representations of multiple bags, instances, and
labels, respectively. M3Lcmf has two prediction objectives.
The first one is to predict instance-label associations R23 by
approximating it to G2G

T
3 . The other objective is to predict

labels of bags by approximating R13 to G1G
T
3 . Instead of

approximating R13 by G1G
T
3 , we add an aggregation term

||R13 − ΛR12G2G
T
3 ||2F into Eq. (3) to aggregate label in-

formation of instances to their originating bags. Λ ∈ Rn×n
is a diagonal matrix, and Λ(i, i) = 1/ni. This aggregation
term is also driven by the multi-instance learning principle
that the labels of a bag depend on the labels of its instances.
Note, this aggregation term can reversely guide the pursue of
G2 and G3. As such, the labels of instance can also be learnt
from those of bags. The last term MR(G) is the manifold
regularization (Belkin, Niyogi, and Sindhwani 2006) on G.

The intra-relations between bags, instances, and labels
carry important contextual information, whose usage can
improve the overall performance. Since G1, G2, and G3 can
be viewed as the latent low-dimensional representation of
bags, instances, and labels, we follow the idea of manifold
regularization to enforce two data points with a high intra-
association value being nearby in the low-dimensional space,
and formulate the last term in Eq. (3) as below to use three

types of intra-associations:

MR(G) =

V∑
v=1

αvtr(G
T
1 (D

v
11 −Rv

11)G1)

+

V∑
v=1

βvtr(G
T
2 (D

v
22 −Rv

22)G2)

+ tr(GT
3 (D33 −R33)G3) + λ1||α||2F + λ2||β||2F

s.t.

V∑
v=1

αv = 1,

V∑
v=1

βv = 1.

(4)
where αv and βv are two parameters to balance the im-
portance of the v-th bag view and v-th instance view, re-
spectively. Dv

11 and Dv
22 are two series of diagonal ma-

trices, with each diagonal entry equal to the row sum of
Rv

11 and Rv
22, respectively; D33 follows a similar definition.

tr(GT
1 (Dv

11 −Rv
11)G1) can be viewed as the smoothness

loss on the v-th bag view. λ1 ≥ 0 and λ2 ≥ 0 are introduced
to avoid selecting single view alone. If these two parameters
are excluded, only Rv

11 and Rv
22 with the smallest loss will

be selected. Our empirical study shows that αv and βv can
indeed selectively integrate different views and reduce the
impact of noisy views by assigning smaller or zero weights to
them. We can see that DFMF equally treats all the relational
matrices {Rv

ij}3i,j=1, it does not differentiate the different
degrees of relevance of {Rv

11}Vv=1 and {Rv
22}Vv=1 toward the

prediction task. Unlike DFMF, which simply reverses the sign
of {Rv

i,i}Vv=1(i ∈ {1, 2, 3}) to fulfil Θ(t) in Eq. (2), M3Lcmf
uses the graph Laplacian matrix to guide the approximation,
and has a good geometric explanation.

From the above analysis, we can conclude that M3Lcmf
can predict labels for complicated objects both at instance-
level and bag-level, and can simultaneously preserve multi-
type relations between bags and instances. Besides the aggre-
gation term, another distinction between M3Lcmf and DFMF
is that the former can selectively combine multiple intra-
relational data matrices, whereas the latter equally treats all
the relational data matrices. As such, M3Lcmf can reduce the
impact of noisy (or irrelevant) intra-relational data matrices
for the target prediction task.

Following the idea of standard nonnegative matrix fac-
torization (Lee and Seung 2001) and Alternating Direction
Method of Multipliers (ADMM), we alternatively optimizes
one variable of G1, G2, G3, αv and βv one time with other
variables fixed. Due to page limit, the optimization proce-
dures of these variables are provided in the Supplementary
file.

We then use the optimized G2 and G3 to approximate
R∗23 (instance-label association matrix) as follows:

R∗23 = G2G
T
3 (5)

To further map the labels of instances onto the corresponding
bag, we approximate the bag-label association matrix R∗13 ∈
Rl×q as follows:

R∗13 = ΛR12R
∗
23 (6)

As such, M3Lcmf can make label prediction both at the
instance and bag levels.

5511



Experiments
Experimental Setup
We perform three experiments to investigate the performance
of the proposed M3Lcmf. In the first experiment, six rep-
resentative and related approaches, including four MIML
methods (MIMLSVM (Zhou et al. 2008), MIMLRBF (Zhang
and Wang 2009), MIMLNN (Zhou et al. 2012), and MIML-
fast (Huang, Gao, and Zhou 2018)) and two M3L methods
(MIMLmix (Nguyen et al. 2014) and M2IL(Li et al. 2017))
are compared against M3Lcmf on both the bag-level and
instance-level prediction. In the second experiment, four vari-
ants of M3Lcmf are designed to quantify the contribution of
different types of relations. The third experiment studies the
parameter sensitivity of M3Lcmf.

Nine publicly available multi-instance multi-label datasets
from different domains are used for the experiments. The
details of the datasets are given in Table 2. The first five
datasets are collected from http://lamda.nju.edu.cn/CH.Data.
ashx and http://github.com/hsoleimani/MLTM/tree/master/
Data. They only have the bag-level labels and are used
for evaluating the bag-level predictions. The original De-
licious dataset includes 12234 bags with 223285 instances;
to avoid an excessively heavy computational load, we ran-
domly selected 1000 bags with 17613 instances from De-
licious for the experiments. The last four datasets have
instance-level labels (Winn, Criminisi, and Minka 2005;
Briggs, Fern, and Raich 2012), they are used for instance-
level prediction and evaluation (Huang, Gao, and Chen 2017;
Chen et al. 2018).

Table 2: Statistics of night datasets used for the experiments.
bag, instance, and label are the number of bags, instances,
and labels, respectively. avgBI is the average number of in-
stances per bag, and avgBL is the average number of labels
per bag.

Dataset bag instance label avgBI avgBL
Haloarcula marismortui 304 951 234 3.1 3.2
Geobacter sulfurreducens 379 1214 320 3.2 3.1
Azotobacter vinelandii 407 1251 340 3.1 4.0
Pyrococcus furiosus 425 1321 321 3.1 4.5
Delicious 1000 17613 20 17.6 2.8
Letter Frost 144 565 26 3.9 3.6
Letter Carroll 166 717 26 4.3 3.9
MSRC v2 591 1758 23 1.0 2.5
Birds 548 10232 13 18.7 2.1

To evaluate the effectiveness of M3Lcmf, four widely-
used multi-label evaluation metrics are adopted, including
Ranking Loss (RankLoss), macro AUC (Area Under re-
ceiver operating Curve) (macroAUC), Average Recall (Av-
gRecall), and Average F1-score (AvgF1). Due to space
limitation, the formal definition of these metrics is omit-
ted here but can be found in (Zhang and Zhou 2014;
Gibaja and Ventura 2015). The smaller the values of Ran-
kLoss, the better the performance is. As such, to be consistent
with the other evaluation metrics, we report 1-RankLoss in-
stead. For the latter metrics, larger values are an indication
of a better performance.

Prediction Results at the Bag-Level
We randomly partition the samples of each dataset into a train-
ing set (70%) and a testing set (30%), and independently run
each algorithm in each partition. We report the average results
(10 random partitions) and standard deviations in Table 3.
Since there are no off-the-shelf multi-view datasets for multi-
instance multi-label learning, for MIMLmix (Nguyen et al.
2014), M2IL(Li et al. 2017) and the proposed M3Lcmf, we
divide the original features of each bag into two views by ran-
domly selecting half features for one view, and the remaining
features for the other view. We initialize R12(i, k) = 1 when
the i-th bag encompasses the k-th instance; R12(i, k) = 0
otherwise. We set R13(i, c) = 1 when the i-th bag is an-
notated with the c-th label; R13(i, c) = 0 otherwise. Both
λ1 and λ2 are fixed to 1000, and the low-rank size of Gi

(i ∈ {1, 2, 3}) is fixed to 140. The input parameters of these
comparing methods are specified (or optimized) as suggested
by the authors in their code or papers, and the setting of the
parameters for M3Lcmf will be investigated later.

M3Lcmf generally outperforms these comparing methods
across different datasets and the used metrics. We further
used the signed-rank test (Demšar 2006) to check the signifi-
cance between M3Lcmf and these methods (except MIML-
RBF). All the p-values are small than 0.02, and the p-value
between M3Lcmf and MIMLRBF is 0.13. MIMLmix did not
complete the computation on the Delicious dataset over the
period of two weeks. As a result, we could not report the
results of MIMLmix on this dataset. M3Lcmf, MIMLmix,
and M2IL are M3L methods, and M3Lcmf frequently out-
performs the latter two, which only use limited types of
relations between objects. This fact shows the importance of
accounting for multi-type relations in M3L. M3Lcmf has a
lower 1-RankLoss but a higher AvgRecall and AvgF1 than
MIMLmix, the possible reason is that MIMLmix captures
label correlations by assuming the labels being sampled from
Multinomial distribution and it samples a label indicator for
each instance, whereas M3Lcmf simply uses the cosine simi-
larity to measure the correlation. M3Lcmf outperforms three
MIML solutions (MIMLNN, MIMLfast and MIMLSVM),
which utilize much fewer relations between bags, instances
and labels than M3Lcmf does. This comparison again corrob-
orates the advantage of leveraging multiple types of relations
in M3L, and also suggests the importance of integrating
multiple data views. Although MIMLRBF considers limited
types of relations between bags and instances, it still obtains
a comparable performance with M3Lcmf. The possible cause
is that MIMLRBF additionally uses the RBF neural network
to learn an enhanced feature representation and a nonlinear
classifier.

Prediction Results at the Instance-Level
To investigate the performance of M3Lcmf at the instance-
level, we conduct experiments on the last four datasets with
instance-level labels in Table 4. MIMLfast, MIMLmix and
the proposed M3Lcmf are tested on these datasets under the
same experimental protocol at the bag-level. The result values
of 1-RankLoss and AvgF1 are reported in Table 4.

M3Lcmf outperforms these comparing methods on dif-
ferent datasets in most cases, and it loses to MIMLmix on

5512



Table 3: Results of bag-level prediction on different datasets. •/◦ indicates whether M3Lcmf is statistically (according to pairwise
t-test at 95% significance level) superior/inferior to the other method.

Metric MIMLNN MIMLRBF MIMLSVM MIMLfast MIMLmix M2IL M3Lcmf
Haloarcula marismortui

1-RankLoss 0.713± 0.029• 0.761± 0.021◦ 0.689± 0.027• 0.553± 0.022• 0.782± 0.000◦ 0.828± 0.000◦ 0.728± 0.026

macroAUC 0.624± 0.029◦ 0.658± 0.034◦ 0.603± 0.022◦ 0.717± 0.029◦ 0.547± 0.000• 0.442± 0.000• 0.582± 0.022

AvgRecall 0.079± 0.015• 0.184± 0.028• 0.175± 0.022• 0.007± 0.023• 0.002± 0.000• 0.016± 0.000• 0.299± 0.041

AvgF1 0.128± 0.019• 0.257± 0.027• 0.218± 0.022• 0.092± 0.022• 0.033± 0.000• 0.019± 0.000• 0.301± 0.022

Azotobacter vinelandii
1-RankLoss 0.656± 0.021• 0.693± 0.032◦ 0.681± 0.016◦ 0.537± 0.021• 0.813± 0.000◦ 0.805± 0.000◦ 0.663± 0.019

macroAUC 0.564± 0.048• 0.638± 0.040◦ 0.565± 0.028• 0.666± 0.021◦ 0.621± 0.000◦ 0.509± 0.000• 0.617± 0.045

AvgRecall 0.069± 0.024• 0.105± 0.024• 0.116± 0.021• 0.054± 0.018• 0.019± 0.000• 0.004± 0.000• 0.178± 0.022

AvgF1 0.109± 0.033• 0.157± 0.029• 0.148± 0.023• 0.069± 0.017• 0.072± 0.000• 0.007± 0.000• 0.199± 0.013

Geobacter sulfurreducens
1-RankLoss 0.656± 0.018• 0.688± 0.024◦ 0.694± 0.020◦ 0.552± 0.019• 0.798± 0.000◦ 0.821± 0.000◦ 0.684± 0.000

macroAUC 0.564± 0.027• 0.608± 0.033◦ 0.567± 0.015◦ 0.691± 0.022◦ 0.375± 0.000• 0.499± 0.000• 0.567± 0.000

AvgRecall 0.077± 0.016• 0.129± 0.021• 0.137± 0.018• 0.042± 0.009• 0.032± 0.000• 0.012± 0.000• 0.296± 0.000

AvgF1 0.120± 0.021• 0.186± 0.026• 0.173± 0.022• 0.058± 0.009• 0.040± 0.000• 0.014± 0.000• 0.277± 0.000

Pyrococcus furiosus
1-RankLoss 0.722± 0.014• 0.732± 0.000• 0.727± 0.027• 0.469± 0.035• 0.760± 0.000◦ 0.809± 0.000◦ 0.733± 0.015

macroAUC 0.593± 0.029◦ 0.520± 0.000• 0.613± 0.043◦ 0.469± 0.030• 0.488± 0.000• 0.485± 0.000• 0.543± 0.011

AvgRecall 0.069± 0.017• 0.105± 0.000• 0.134± 0.029• 0.119± 0.038• 0.004± 0.000• 0.006± 0.000• 0.341± 0.038

AvgF1 0.086± 0.015• 0.116± 0.000• 0.174± 0.034• 0.115± 0.021• 0.056± 0.000• 0.008± 0.000• 0.307± 0.025

Delicious
1-RankLoss 0.685± 0.012◦ 0.735± 0.008◦ 0.580± 0.053• 0.466± 0.023• −− 0.439± 0.000• 0.636± 0.000

macroAUC 0.627± 0.010◦ 0.670± 0.012◦ 0.583± 0.009◦ 0.466± 0.024• −− 0.549± 0.000◦ 0.480± 0.000

AvgRecall 0.112± 0.014• 0.029± 0.019• 0.142± 0.030• 0.619± 0.045◦ −− 0.097± 0.000• 0.178± 0.000

AvgF1 0.180± 0.018• 0.054± 0.033• 0.201± 0.032• 0.264± 0.013◦ −− 0.136± 0.000• 0.252± 0.000

Table 4: Results on different multi-instance datasets. •/◦ indi-
cates whether M3Lcmf is statistically (according to pairwise
t-test at 95% significance level) superior/inferior to the other
methods.

Metric MIMLfast MIMLmix M3Lcmf
Letter Frost

1-RankLoss 0.426± 0.049• 0.667± 0.000• 0.734± 0.050

AvgF1 0.094± 0.015• 0.150± 0.000• 0.352± 0.107

Letter Carroll
1-RankLoss 0.458± 0.065• 0.410± 0.000• 0.692± 0.012

AvgF1 0.096± 0.023• 0.086± 0.000• 0.104± 0.012

MSRC v2
1-RankLoss 0.419± 0.030• 0.579± 0.000• 0.652± 0.005

AvgF1 0.111± 0.005• 0.333± 0.000◦ 0.208± 0.074

Birds
1-RankLoss 0.524± 0.184• 0.937± 0.000◦ 0.666± 0.000

AvgF1 0.061± 0.070• 0.503± 0.000◦ 0.286± 0.000

the Birds dataset. Among these three comparing methods,
MIMLmix often ranks the 2nd place and MIMLfast the 3rd
place. MIMLmix does not make use of bag-bag relation and
instance-instance relation as summarized in Table 1. MIML-
fast additionally does not make use of instance-label relation,
so it loses to MIMLmix, and say nothing of M3Lcmf, which
utilizes all six types of relations. These comparisons again
prove the effectiveness of leveraging multi-type relations in
M3L. In summary, M3Lcmf can not only accurately predict
labels of bags, but also labels of instances.

Contribution of Different Types of Relations

To further analyze the contribution of different relations used
by M3Lcmf, we introduce four variants. (i) M3Lcmf (nR11)
does not consider the relation between bags, i.e., Rv

11 = 0;
(ii) M3Lcmf (nR22) does not consider the relation between
instances, i.e., Rv

22 = 0; (iii) M3Lcmf (nR33) does not con-
sider the relation between labels, i.e., R33 = 0; (iv) M3Lcmf
(nR23) does not consider the relation between instances and
labels, i.e., R∗13 = G1G

T
3 , instead of R∗13 = ΛR12G2G

T
3 .

We follow the experimental protocol at the bag-level pre-
diction, and report the results of 1-RankLoss obtained by
M3Lcmf and its variants in Fig. 2.
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Figure 2: 1-RankLoss of M3Lcmf and its variants on dif-
ferent datasets. Av: Azotobacter vinelandii, Gs: Geobac-
ter sulfurreducens, Hm: Haloarcula marismortui, Pf: pyro-
coccus furiosus.
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M3Lcmf significantly outperforms its variants, which sep-
arately disregard one type of relations. M3Lcmf often outper-
forms M3Lcmf (nR11) and M3Lcmf (nR22). This observa-
tion suggests the relation between bags and that between
instances have an important effect on M3Lcmf. Besides,
M3Lcmf(nR33) is outperformed by all the other variants,
which shows the importance of considering the label corre-
lation. In addition, we can observe that M3Lcmf (nR23) is
outperformed by M3Lcmf. This observation not only proves
the effectiveness of the introduced aggregation term, but also
shows the importance of instance-label relations in boosting
the prediction performance.

From these results, we can conclude that multiple types
of relations between bags, instances, and labels should be
simultaneously considered in M3L.

Parameter Sensitivity Three parameters (λ1, λ2, and the
low-rank size d of G) may affect the performance of M3Lcmf.
We conduct additional experiments to investigate the sensitiv-
ity of these parameters. For brevity, we only report the results
on Azotobacter vinelandii and MSRC v2, and the results on
the other datasets lead to similar conclusions.
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Figure 3: 1-RankLoss of M3Lcmf under different combina-
tions of λ1 and λ2 on Azotobacter vinelandii and MSRC
v2.

From the explicit solution for αv and βv in the supple-
mentary file, it is clear that once the values λ1 and λ2 are
specified, the weights assigned to Rv

11 and Rv
22 can be com-

puted based on the reconstruction loss of those matrices. To
investigate the sensitivity of these two parameters, we vary
λ1 and λ2 in the range {10−2, 10−1, · · · , 106}, and report
the average 1-RankLoss of M3Lcmf under different combina-
tions of them in Fig. 3. We can see that M3Lcmf achieves a
stable performance under a wide range of combinations of
values for λ1 and λ2. For Azotobacter vinelandii, M3Lcmf
achieves a good performance with λ1 and λ2 in [102, 106],
and it shows a significantly reduced 1-RankLoss when either
λ1 or λ2 are set to a too small value. This is because the
predictions are made and evaluated at the bag-level and the
bag-level intra-relation plays a more important role, but only
one bag-level intra relational data matrix is selected under
this setting. Unlike the pattern on Azotobacter vinelandii,
M3Lcmf holds a relatively stable performance on MSRC v2
under different combinations of values for λ1 and λ2. This is
because Azotobacter vinelandii provides more structural in-
formation and feature information for the intra-relational data
matrices of bags (or instances) than MSRC v2. Particularly,

the former has more instances per bag than the latter, and
the bag in MSRC v2 generally has one instance. Besides, the
feature dimensionality of instances in Azotobacter vinelandii
is much larger than that of MSRC v2. This investigation sug-
gests the importance of structural information of bags (or
instances) in M3L. From these results, we can conclude that
an effective combination of λ1 and λ2 can be easily found.

60 80 90 100 120 130 140 170 180 190 200

1-
R

an
kL

os
s

0.5

0.55

0.6

0.65

0.7

0.75
Decomposed dimension of G

(a) Azotobacter vinelandii

5 7 9 11 13 15 17 19 21 23

1-
R

an
kL

os
s

0.6

0.65

0.7

0.75

0.8
Decomposed dimension of G

(b) MSRC v2

Figure 4: 1-RankLoss vs. d (low-rank size) on Azotobacter
vinelandii and MSRC v2.

The low-rank size d of G is an essential parameter for
M3Lcmf. Fig. 4 shows the results of M3Lcmf under different
input values of d on Azotobacter vinelandii and MSRC v2
with λ1 = 103 and λ2 = 103. We observe an increasing trend
of 1-RankLoss, and an overall good performance when d ≥
140 or d ≥ 11. M3Lcmf does not show a high 1-RankLoss
when a small d is adopted, that is because a too small d
can not sufficiently encode the latent feature information of
bags, instances, and labels. However, we can still find that an
effective input value d can be easily selected.

Contributions of Weighting Intra-Relational Data
To investigate the contribution of weighting intra-relational
data and the capability of M3Lcmf on discarding noisy intra-
relational data matrices, we added 10 synthetic noisy intra-
relational data matrices of bags on the Azotobacter vinelandii
dataset. Particularly, the 10 noisy data matrices are obtained
by randomly shuffling the nonzero entries of each row of two
valid matrices, which are constructed in the same way as in
the first type of experiments. For reference, we also applied
MIMLNN on the same dataset with the same 10 noisy data
matrices, and reported the results in Fig. 5(a).

Even with 10 noisy data matrices, M3Lcmf does not show
a decreased performance, but MIMLNN shows a clearly re-
duced performance (by 2%). That is because M3Lcmf explic-
itly considers the different relevances of intra-relational data
matrices, and it can selectively integrate these matrices. In
contrast, MIMLNN does not account for the different rele-
vances of these matrices. As a result, it is more impacted by
these noisy matrices.

To further investigate the underlying reason for the robust
performance of M3Lcmf, we plot weights assigned to these
12 (2 valid and 10 noisy) intra-relational data matrices of bags
in Fig. 5(b). We can see that these 10 noisy data matrices
are assigned with zero weights. Namely, M3Lcmf discards
these noisy data matrices during the collaborative matrix fac-
torization process. This investigation justifies our motivation
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Figure 5: (a) Prediction results with and without the noisy
data matrices, (b) Weights assigned by M3Lcmf to 12 intra-
relational data matrices of bags. The first 2 are valid data
matrices, and the last 10 are noisy ones.

to account for different relevances of multiple intra-relation
data matrices.

Conclusion
In this paper, we proposed a collaborative matrix factor-
ization based multi-view multi-instance multi-label learn-
ing approach called M3Lcmf. M3Lcmf utilizes a heteroge-
neous network to capture different types of relations in M3L,
and collaboratively factorizes the relational data matrices
of the network to explore the intrinsic relations between
bags, instances, and labels. Extensive experimental results
on different datasets corroborate our hypothesis that multiple
types of relations can boost the performance of M3L, and
their joint usage contributes to a significantly improved per-
formance of M3Lcmf against competitive approaches. The
Supplementary file and code of M3Lcmf are available at
http://mlda.swu.edu.cn/codes.php?name=M3Lcmf.
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Demšar, J. 2006. Statistical comparisons of classifiers over multiple
data sets. JMLR 7(1):1–30.
Feng, J., and Zhou, Z.-H. 2017. Deep miml network. In AAAI,
1884–1890.
Gibaja, E., and Ventura, S. 2015. A tutorial on multilabel learning.
ACM Computing Surveys 47(3):52.
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