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Abstract
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
methods have been widely used to sample from certain prob-
ability distributions, incorporating (kernel) density deriva-
tives and/or given datasets. Instead of exploring new sam-
ples from kernel spaces, this piece of work proposed a novel
SGHMC sampler, namely Spectral Hamiltonian Monte Carlo
(SpHMC), that produces the high dimensional sparse rep-
resentations of given datasets through sparse sensing and
SGHMC. Inspired by compressed sensing, we assume all
given samples are low-dimensional measurements of certain
high-dimensional sparse vectors, while a continuous prob-
ability distribution exists in such high-dimensional space.
Specifically, given a dictionary for sparse coding, SpHMC first
derives a novel likelihood evaluator of the probability distri-
bution from the loss function of LASSO, then samples from
the high-dimensional distribution using stochastic Langevin
dynamics with derivatives of the logarithm likelihood and
Metropolis–Hastings sampling. In addition, new samples in
low-dimensional measuring spaces can be regenerated using
the sampled high-dimensional vectors and the dictionary. Ex-
tensive experiments have been conducted to evaluate the pro-
posed algorithm using real-world datasets. The performance
comparisons on three real-world applications demonstrate the
superior performance of SpHMC beyond baseline methods.

Introduction
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) al-
gorithms (Chen, Fox, and Guestrin 2014; Ma, Chen, and Fox
2015) have been widely used to support a wide spectrum
of applications, such as Bayesian learning (Andrieu et al.
2003), generative sampling, and data augmentation (Anto-
niou, Storkey, and Edwards 2017). All these tasks require ef-
ficient samplers, such as SGHMC, that are capable of draw-
ing samples/parameters from certain prior/posterior distribu-
tions. Generally, given the derivative evaluation of the prob-
ability density function, SGHMC methods can sample from
the distribution through a number of iterations, incorporat-
ing a discrete-time second-order Langevin dynamics.

While the evaluation of density derivative is indispensable
for SGHMC, the density or its derivative is frequently not
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known. For example, for some data augmentation applica-
tions, a training dataset is given without knowing the prob-
ability distributions. One has to generate new samples from
the unknown distributions using the dataset and further boost
the performance of learning. In such a scenario, existing so-
lutions often use Kernel Density Estimators, such as Gaus-
sian Kernels, to first learn the distribution from the given
datasets, then leverage SGHMC to draw new samples from
the distributions modeled by kernels. Such solutions, namely
Kernel Hamiltonian Monte Carlo (Strathmann et al. 2015;
Strathmann 2018), have been used to handle the cases that
likelihood or density of data is intractable.

Although the Kernel density estimator provides the sam-
pler an evaluator of probability density, the performance
of kernel-based solutions is usually limited mainly due to
the following three factors: 1) Dimensionality Curse. it is
difficult to scale-up the density estimation on dimensional-
ity, while kernel density estimation over high-dimensional
data is frequently inaccurate (Bengio, Delalleau, and Roux
2006); 2) Bandwidth Selection. When using Gaussian ker-
nels, it consumes time significantly to select an optimal
bandwidth for Kernel due to the dimensionality and size of
dataset (Raykar and Duraiswami 2006); and 3) Computa-
tional Complexity. It is quite time consuming to compute
the derivatives of Kernel density model (Sasaki, Noh, and
Sugiyama 2015; Sasaki et al. 2016), i.e., gradients of Log-
SumExp functions.

Thus, there needs a method to replace kernel density es-
timation, while providing accurate derivative evaluation of
probability density. To lower the computational complexity
to compute the derivative of kernel density functions, Sasaki
et al. (Sasaki, Noh, and Sugiyama 2015; Sasaki et al. 2016)
proposed the direct density derivative estimator that learns a
regression model through sampling from fitted kernels, then
predicts the derivatives using the regression model. With
such methods, one can draw samples from the distribution
with low computational complexity. However, such meth-
ods still cannot handle the dimensionality curse of kernel
methods, which may cause significant performance degrada-
tion (Strathmann 2018) due to the divergence between fitted
and groundtruth distributions.

Our Contributions. From the previous discussions, it is
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clear that a new probabilistic model is required to define
(i) the prior probability of samples and characterize (ii) the
likelihood from the given dataset. In this work, we pro-
pose a novel SGHMC sampler, namely Spectral Hamilto-
nian Monte Carlo (SpHMC). Instead of exploring in the ker-
nel spaces, SpHMC samples the high dimensional sparse rep-
resentations from the given dataset (Donoho 2006). Inspired
by compressed sensing (Donoho 2006), SpHMC assumes all
samples in the datasets are the low-dimensional measure-
ments of certain high-dimensional sparse vectors, based on
certain dictionary (Rubinstein, Bruckstein, and Elad 2010).
With the distribution of the given dataset, a continuous prob-
ability distribution exists in such a high-dimensional space.
Thus, each sample drawn from the high-dimensional distri-
bution corresponds to a potential low-dimensional measure-
ment via the same dictionary (and reverse).

Specifically, with a dictionary for compressed sensing,
e.g., a random Gaussian matrix (Candès, Romberg, and Tao
2006), SpHMC first proposes a novel log-density evaluator
of the probability distribution that characterizes the given
datasets. Such log-density evaluator is derived from the loss
function of LASSO (Tibshirani 1996), with low complexity
solutions for exact derivative computation. Then, given the
log-density (derivative) evaluator, SpHMC can draw high-
dimensional samples from the distribution using a second-
order stochastic Langvien dynamics with a Metropolis–
Hastings sampler.

Finally, with the high-dimensional samples drawn, two
types of applications can be supported as follows. (1) Using
the dictionary, one can project the high-dimensional sam-
ples to their low-dimensional samples. In this way, SpHMC
performs as a generator that reproduces new datums from
the datasets with intractable likelihoods. (2) In addition, one
can directly use generated the high-dimensional samples to
augment the machine learning algorithms with sparse cod-
ing. For example, some image classification tasks can be
improved using compressed sensing, while they can further
improved by incorporating the high-dimensional data gener-
ation based on the same dictionary. Extensive experiments
are conducted to evaluate the proposed algorithms with the
two applications using three real-world datasets including
MNIST, Fashion MNIST and EMNIST. The performance
comparisons on the two applications demonstrate the excel-
lence of SpHMC beyond baseline methods.

Preliminaries and Problems
In this section, we first introduce the backgrounds of this
work, then review the most relevant work.

Backgrounds
For a great number of machine learning tasks, sampling
from a given distribution is frequently required. Among
a wide range of samplers, Markov-Chain Monte Carlo
(MCMC) (Andrieu et al. 2003) comprises a class of general-
purpose sampling algorithms with fast mixing properties.
Through incorporating a Markov chain derived from the
distribution, MCMC can sample from the distribution by
traversing the Markov chain via a number of steps. To con-
struct the Markov chain from a distribution, the stochastic

gradient Hamiltonian Monte Carlo (SGHMC) (Ma, Chen,
and Fox 2015; Chen, Fox, and Guestrin 2014) has been pro-
posed to use the discrete-time Langevin dynamics (Welling
and Teh 2011) coupled by the gradient flow of loga-
rithm density of the probability distribution (Bagnoli and
Bergstrom 2005). The random jumps with the Langvein dy-
namics help SGHMC traverse the Markov chain and obtain
samples.

Specifically, given the density P(X) ∝ exp(−U(X))
of the desired distribution, where U(X) is assumed to
be convex, SGHMC draws a sequence of samples, e.g.,
X1,X2, . . . , from the distribution P(X) through discretiz-
ing the Langevin dynamics as follow:{

dX = r dt

dr = −∇U(X)dt−Brdt+N (0, 2Bdt),
(1)

where r is a vector referring the momentum of the dynam-
ics, B refers to a constant matrix that controls the influence
of noise. The noise term N (0, 2Bdt) generates a Gaussian
noise i.i.d from N (0, 2B) over the time t, so as to incorpo-
rate randomness during the sampling procedure. To obtain a
sample, one can theoretically set the initial state of dynamics
as the white noise, i.e., X(0) ∼ N (0, I) and r(0) = 0.

Thus, the derivative evaluator of the log-density is neces-
sary for SGHMC. However, from many applications, such
as data generation from datasets, the density function or the
derivative evaluator is not accessible. One needs to first learn
the distribution from the given dataset. A possible way is
to use Kernel methods, among which the Gaussian kernel,
aka., Radial basis function (RBF) kernel, is commonly used.
Given a dataset {x1, x2, . . . , xn} drawn from a distribution,
one can fit a Gaussian kernel to approximate P(X) as follow.

P(X) ∝
n∑

i=1

exp

(
−‖X− xi‖

2
2

2h2

)
, (2)

where h refers to the bandwidth of the kernel (Raykar
and Duraiswami 2006). With Gaussian kernels, the Ker-
nel Hamiltonian Monte Carlo algorithms have been pro-
posed (Strathmann 2018; Strathmann et al. 2015), while
these methods suffer significant performance limitation
when the given dataset size is large. It is quite time con-
suming to compute−∇ log P(X) using the density function
modeled in Eq (2). Further selecting an appropriate setting
of h is challenging (Raykar and Duraiswami 2006).

Related Work
With above two algorithms, one can successfully generate
samples from datasets using stochastic gradient Hamiltonian
Monte Carlo with kernels as approximation to the distri-
bution. Given the procedure of Kernel Hamiltonian Monte
Carlo, a number of pioneering studies have been done to im-
prove the method. We sort them into four categories:

Dynamics and Averaging. Instead of using the second-
order Langevin dynamics, the first-order dynamics, such as
the one that stochastic gradient descent (SGD) algorithm be-
haves as, has been studied for approximately variational in-
ference (Mandt, Hoffman, and Blei 2016) with an sampling-
based procedure. The purpose of these dynamics is to mini-
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mize the Kullback-Leibler (KL) divergence between the sta-
tionary distribution of its continuous-time process and the
posterior, while the sampled trajectories can be viewed as a
approximation to the inferences. Compared to SGD, SGLD
leverages a momentum term to expand the regions that the
process explores. In addition to using alternative dynamics,
averaging schemes are frequently used to further accelerate
the search. Polyak and Juditysky (Polyak and Juditsky 1992)
first proved the optimality of averaging for SGD-based in-
ference. While Polyak average requires the storage of the
whole trajectory traversed by SGD, the average based on
sliding windows helps to lower the space complexity while
also ensuring good performance (Mandt, Hoffman, and Blei
2017). Furthermore (Ahn et al. 2015) proposed to use a cou-
pled dynamics for Bayesian inference of matrix factoriza-
tion. Note that averaging has been frequently used to accel-
erate Bayesian inference (optimization) but rarely for data
generation.

Preconditioning. The (vanilla) Stochastic Gradient
Langvein Dynamic (SGLD) listed in Eq. (1) might be
significantly influenced by the noise terms incorporated. To
control the influence of Noise, Stochastic Gradient Fisher
Scoring (SGFS) (Ahn, Korattikara, and Welling 2012) has
been firstly proposed to use a positive-definite matrix H to
precondition the dynamics as follow:{

dX = Hrdt

dr = −∇U(X)dt−BHrdt+N (0, 2Bdt).
(3)

The traditional SGLD can be viewed as a special case of
SGFS with H = I. Please refer to Section 5.1 of (Mandt,
Hoffman, and Blei 2017) for the analysis. Further (Li et
al. 2016; Marceau-Caron and Ollivier 2017) preconditioned
SGLD for Bayesian inference of deep networks.

Gradient Estimation. As was mentioned, the derivative
evaluator of the log-density is indispensable for gradient-
based sampling, while the gradient computation for large
high-dimensional datasets is quite time consuming. First
of all, to lower the complexity with increasing size of
datasets, noisy gradient estimation with mini-batch of sam-
ples has been widely used in (Chen, Fox, and Guestrin 2014;
Ma, Chen, and Fox 2015; Strathmann 2018; Li, Zhang,
and Li 2018). In addition to the direct estimation, some
regression-based methods have been studied that can learn
to predict the gradient (Sasaki, Noh, and Sugiyama 2015;
Sasaki et al. 2016). Furthermore (Filippone and Engler
2015) studied to use conjugate gradient for sampling from
Gaussian process with an unbiased solver. Most recent work
replaces the common gradients with Fractional-order deriva-
tives (Ye and Zhu 2018), so as to accelerate the Bayesian
inference with a log-concave density.

Metropolis–Hastings Correction. The sequence sampled
by MCMC can be corrected using Metropolis–Hastings al-
gorithm (Hastings 1970), which rejects the new generated
sample, if the new sample is not “with respect to the cur-
rent sample, according to the distribution”. Tons of work
have been done to use Metropolis–Hastings or rejection-
based method to correct the sampling sequence (Maclau-
rin and Adams 2014; Andrieu et al. 2003). The most re-
cent work (Dwivedi et al. 2018) proved that bias caused

by the step size can be appropriately corrected by using
Metropolis–Hastings rejection with strong theoretical con-
sequences under the log-concave assumption.

A comprehensive survey has been made in (Mandt, Hoff-
man, and Blei 2017). While most of above work intent to
enable Bayesian inference with samplers, this paper aims
at using gradient-based MCMC to generate datums through
sampling from distributions.

Problem Formulation
Given an (unknown) p-dimensional probability distribution
P , one first draws n random i.i.d samples y1, y2, . . . , yn
from P . Suppose there exists a d × p measurement ma-
trix A and d � p. With the measurement matrix A
andy1, y2, . . . , yn, one can obtain n d-dimensional (noisy)
observations, such that ∀yi

xi = Ayi + εi and εi ∼ N (0, δ2I), (4)

where δ controls the variance of white noise.
Problem. Given the matrix A and the d-dimensional ob-

servation set D = {x1, x2, . . . , xn}, our problem is to gen-
erate a sequence of p-dimensional X1,X2, . . . ,XK that fit
the unknown probability distribution P .

SpHMC: Spectral Sampler using Stochastic
Gradient Hamiltonian Monte Carlo

In this work, we propose SpHMC—the Spectral Sampler us-
ing Stochastic Gradient Hamiltonian Monte Carlo with `1-
penalized Log-Likelihood. In this section, we first present
the overall algorithm design of SpHMC. Then, we introduce
the detailed implementation of the algorithms.

The Algorithmic Framework
Given a dataset and a dictionary for sparse reconstruction,
SpHMC first models the posterior distribution of data spec-
trum using the dictionary-based Gaussian likelihoods with a
Laplacian prior, then adopt Stochastic Gradient Hamiltonian
Monte Carlo (SGHMC) to draw samples from the distribu-
tion of spectrum.

Data Input. Algorithm 1 shows the overall design of
SpHMC, where the input of algorithms include (i) D–the set
of original data samples, (ii) A the dictionary for sparse re-
construction in spectral spaces, (iii) T total number of it-
erations for SGLD exploration, (iv) K the number of gen-
erated samples required, (v) m the size of mini-batch, (vi)
η the step-size for SGLD dynamics discretization, (vii) λ
the parameter for `1 regularization for posterior modeling.
The algorithm outputs X1, X2, . . . ,XK–the sequence of
K generated samples in the spectral space of D. The overall
complexity of this algorithm is O(Km), while some sam-
ples may repeat in the generated sequence (i.e., # of unique
samples ≤ K). The algorithm is designed as follow.

Initialization. In line 1 of Algorithm 1, SpHMC initializes
the whole sampling procedure by defining X0. A simple
way to initialize is using the white noise i.i.d drawn from
N (0, I). Yet another method would first draw an i.i.d sam-
ple from the dataset i.e., z i.i.d∼ D, then performs LASSO
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to recover its high-dimensional sparse representation using
z and the dictionary A, such that

X0 ← argmin
x

1

2
‖z −Ax‖22 + λ‖x‖1 . (5)

In this way, we can start the sequence of sampling from the
sparse representation of a (known) random sample.

Algorithm 1 Spectral Sampler using Stochastic Gradient
Hamiltonian Monte Carlo

1: procedure SPHMC(D, A, T , K, m, η, λ)
2: Initialization: X0

3: /*Sequence Sampling*/
4: for all k = 1, 2, 3, . . . , K do
5: r0 ∼ N (0, I)
6: X0 ← Xk−1

7: /* Gradient-based sampling with T Steps*/
8: for all t = 1, 2, 3, . . . , T do
9: gt ← GradEst(Xt−1,D,A,m, λ)

10: rt ← rt−1 − ηgt − ηrt−1

11: Xt ← Xt−1 + ηrt
12: end for
13: /* Metropolis-Hastings Correction*/
14: Xk ← MH(Xk−1,XT , T,D, λ, η)
15: end for
16: return X1, X2, X3, . . . ,XK

17: end procedure

Sampling Sparse Representation from Spectral Distribu-
tions. In Lines 4–15 of Algorithm 1, SpHMC leverages a
loop of K iterations to generate a sequence of K samples,
where each iteration performs a iterative process of T steps
to obtain the next sample generated in the sequence. Specif-
ically, in each iteration (e.g., the kth iteration), SpHMC first
setups r0 using the white noise and X0 with the previous
sampling result Xk−1 in the sequence, so as to initialize
r and X of the SGLD dynamics. Then, SpHMC walks T
steps of discrete-time SGLD with noisy gradient estimator
(in line 9) to reach the potentially next sample XT . Further,
a rejection-based Metropolis-Hastings correction is given to
decide whether (1) to accept XT as Xk or (2) to reject XT

while reusing Xk−1 as Xk. The design and implementation
of the noisy gradient estimator and Metropolis-Hastings cor-
rection would be introduced in the next sections.

Finally, as shown in line 16 of the Algorithm 1, SpHMC
outputs the sequence as the sampling results. Note that such
sampling procedure depends on the initial status such as X0.
Then it is better to repeat the whole algorithm multiple times
while setting a relevant small K for each run, to balance the
bias and the time complexity.

Data Reconstruction via Compression. Note that the
output of Algorithm 1 X1,X2, . . . ,XK are a sequence of
sparse representations based on the dictionary A. To obtain
the generated datums, which can be observed in low dimen-
sion, one can use A to compress the sampling results, such
that for ∀ Xk for 1 ≤ k ≤ K one can compute AXk as
the kth generated sample of low-dimensional observations.

Note that some simple soft-thresholding strategies can ap-
plied here to de-noise the data (e.g., images) and improve
the reconstruction.

Gradient Estimation for Negative Log-Density
Algorithm 2 demonstrates the design of (noisy) gradient es-
timator used in the SGLD dynamics and sampling. Specifi-
cally, we define the posterior probability distribution of the
high-dimensional sparse representation of the dataset D us-
ing Bayes’ theorem as follow:

P(X|D) ∝ P(X)P(D|X) = P(X)
∏
∀x∈D

P(x|X) , (6)

where P(X) refers to the prior distribution and P(xi|X) is
the likelihood of x ∈ D given the high-dimensional sparse
representation. Then, we define the prior distribution of X
as the Laplacian distribution such that

P(X) ∝ exp(−λ‖X‖1) . (7)

Further, the likelihood of low-dimensional observation ∀x ∈
D given the high-dimensional sparse representation X can
be modeled using Gaussian distribution, such that

P(x|X) ∝ exp

(
− 1

|D|
‖x−AX‖22

)
. (8)

In this way the negative log-density can be modeled as

− log P(X|D) =
1

|D|
∑
∀x∈D

‖x−AX‖22 +λ‖X‖1 +c , (9)

where c is a constant. We find above function above actually
averages the LASSO losses using all samples in the dataset
D. The gradient of the negative log-density can be written as

∇ (− log P(X|D))

=
1

|D|
∑
∀x∈D

A> (AX− x) + λ · sign(X) , (10)

where sign(·) → {±1} is the signal function. According to
Lines 3–4 of Algorithm 2, the vector gm indeed is a noisy
estimation of the gradient with a mini-batch of m random
samples drawn from D, where the noise in the gradient esti-
mation can be well controlled by m.

Algorithm 2 Stochastic Gradient Estimation for `1-
Penalized Log-Likelihood with Random Mini-Batch

1: procedure GRADEST(X, D, A, m, λ)
2: /*Noisy gradient estimation*/
3: M ← draw m i.i.d samples from D
4: gm ← A>AX− 1

m

∑
∀x∈MA>x+ λ · sign(X)

5: return gm

6: end procedure

Linearized Metropolis-Hastings Correction
Algorithm 3 presents the design of the Metropolis-Hastings
correction mechanism used in Line 14 of Algorithm 1. The
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major input of this algorithm includes (i) the previous gen-
erated sample X (i.e., Xk in Algorithm 1), (ii) the current
approaching sample Z (i.e., XT in Algorithm 1), (iii) the
number of iterations required T , and (iv) the step size of
SGLD η. SpHMC aims at correcting the bias caused by the
discretization of dynamics with step size η. The output of
SpHMC would assign to the newly generated sample Xk.

This algorithm first estimates the transition probability
from X to Z and reverse. Then, the algorithm output X
or Z depending on whether X would be accepted or re-
jected respectively. In Lines 2–7 of Algorithm 3, SpHMC
evaluates the negative log-density and the derivatives on
X and Z based on the whole dataset D respectively. Then
it estimates the ratio α between the transition probability
from X to Z and the transition probability from Z to X (in
line 9). Such ratio is upper-bounded by 1. Then, like other
Metropolis-Hastings algorithms, SpHMC randomly draws
γ ∼ Uniform[0, 1] and compares γ to α to make the deci-
sion for acceptance/rejection. Note that the newly approach-
ing sample Z would be rejected when the ratio α, between
the transition probabilities from X to Z and reverse, is not
greater than the random number γ.

Algorithm 3 Linearized Metropolis-Hastings Correction

1: procedure MH(X, Z, T, D, λ, η)
2: /*Function and Derivative Evaluation*/
3: fx ← 1

2|D|
∑
∀x∈D ‖AX− x‖22 + λ‖AX‖1

4: fz ← 1
2|D|

∑
∀x∈D ‖AZ− x‖22 + λ‖AZ‖1

5: ∇fx ← 1
|D|
∑
∀x∈DA>(AX− x) + λ · sign(X)

6: ∇fz ← 1
|D|
∑
∀x∈DA>(AZ− x) + λ · sign(Z)

7: ∆← ηT
8: /*Transition Probability Estimation*/
9: α = min.

{
1,

exp(−fz−‖X−Z+∆·∇fz‖22/4∆)

exp(−fx−‖Z−X+∆·∇fx‖22/4∆)

}
10: γ

i.i.d∼ Uniform[0, 1]
11: if α > γ then
12: return Z /* Accept Z*/
13: else
14: return X /* Reject Z*/
15: end if
16: end procedure

To lower the complexity of estimation, the transition prob-
ability estimation is linearized, e.g., ∆ · ∇fx or ∆ · ∇fz ,
using the aggregated step size ∆ = ηT without considering
the second-order dynamics. In this way, we don’t need to
calculate the aggregation of the T steps. On the other hand,
When T = 1, the proposed algorithm would perform ex-
actly same as (Dwivedi et al. 2018) with strong theoretical
guarantee to eliminate bias caused by the finite step-size η.

Experiments and Empirical Validation
We propose to evaluate SpHMC using three real-world
benchmark datasets including MNIST, Fashion MNIST, and
EMNIST for two applications such as data synthesis & re-

generation, spectral data augmentation for supervised ma-
chine learning and image classification.

Image Data Set Synthesis & Regeneration
To better understand the performance of SpHMC for image
data generation, we evaluate the proposed algorithms with
baselines using the visionary datasets. All these datasets
consist of images with 28 × 28 pixels at gray-scale. In our
research, we consider each image as a vector of 784 dimen-
sions, where each dimension is scaled from 0 to 255.

Baselines and Setup We include following methods as the
baseline algorithms for comparison. The work that are most
relevant to our work is Kernel Hamiltonian Monte Carlo
(Kernel HMC) (Strathmann et al. 2015; Strathmann 2018),
which enables Bayesian sampling without the derivative
evaluator of the (log) posterior density. In addition to Kernel
HMC, we also want to measure the affect the Metropolis-
Hasting (MH) correction to the performance of sampling.
Thus, we also include the option to disable/enable the MH
correction during the sampling procedure. With MH cor-
rection disabled, all samples that are traversed by the dy-
namics will be accepted as the data generation. In this way,
we provide three key baseline algorithms: i) SpHMC with-
out MH correction, ii) Kernel HMC, and iii) Kernel HMC
without MH correction. The comparison between SpHMC
to its variant without MH correction demonstrates the im-
provement made through rejecting low probability samples
for data generation, while the comparison to Kernel HMC
illustrates the effectiveness of our fantastic intuition that
leverages sparse coding/reconstruction in Monte Carlo set-
tings (rather than compressed sensing). We also compare
SpHMC to a conditional Generative Adversarial Network
(GAN) (Goodfellow et al. 2014; Mirza and Osindero 2014).

Further, we setup the proposed algorithm SpHMC (and
SpHMC without MH correction) with a 784 × 3136 Gaus-
sian random noise matrix as the measurement A. With such
measurement matrix, SpHMC can reconstruct a higher di-
mensional (i.e., 4 times of original dimensions) probabil-
ity distribution that characterizes the given datasets as its
low dimensional observations. Note that the performance
of SpHMC can be further improved with a fine-tuned the
measurement matrix A given through dictionary learning,
though a Gaussian matrix is capable of providing certain
theoretical consequence. All other parameters such as reg-
ularization term λ, step size η and batch size m for both
SpHMC and baselines are all tuned best with repeat trials.
All generated images (except GAN) are filtered by the same
Gaussian smoother to rescale each pixel at 0–255 range.

Results Figures 1(a)–(f) demonstrate the comparison of
original images and generated images by algorithms. Specif-
ically, Figures 1(a) refers to the images randomly drawn
from the three datasets, where the top four rows are from
EMNIST datasets, the four rows in the middle are drawn
from the MNIST datasets, and the bottom four rows are
from Fashion MNIST dataset. In Figure 1 (b), we demon-
strate the results based on Compression, where for each im-
age, we first draw a random image from the original dataset,
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(a) Original (b) Compression (c) SpHMC

(d) SpHMC w/o MH (e) Kernel HMC (f) GAN

Figure 1: Examples of Data Synthesis and Generation

then we use LASSO and measurement matrix A to recon-
struct its high-dimensional representation, further we use A
to obtain its low-dimensional observation. We expect to ob-
serve the affect the reconstruction and compression to the
original image. The comparison between compression to the
original shows that the shape of letters and digits for EM-
NIST and MNIST datasets can be well preserved through the
reconstruction-and-compression procedure, while the image
quality for Fashion MNIST image reconstruction is poor.

Figures (c)–(h) presents the generated images of the three
datasets using SpHMC, SpHMCwithout MH correction, Ker-
nel HMC, and GAN, respectively. All these models have
successfully generated images that are visible and human
understandable. It is quite subjective to judge or compare the
quality of these images. We can see that the original images
indeed incorporate some local patterns, such as shadows and
textures of materials. Most of sampling methods can well re-
constructs the shapes while missing the supports to the local
patterns, SpHMC seems working well for both shape and pat-

tern recovery. Comparing SpHMC to SpHMC w/o MH (the
SpHMC wit MH Correction disabled), the images procedure
by SpHMC can be reviewed as a subset of images by SpHMC
w/o MH, which has been carefully selected by the transition
probabilities. The images sampled by SpHMC are rendered
with higher sharpness, while the edges of SpHMC w/o MH
are usually blurred. Kernel HMC is with the similar draw-
back, where the produced images are lack of detailed local
patterns and with blurred edges. The images produced by
CGAN are generally with good quality and local patterns
reconstructed. From a Bayesian sampling perspectives, we
doubt whether CGAN or the general Generative Adversarial
Net can sample from the original distribution of images con-
sistently. Recent study (Richardson and Weiss 2018) shows
that GAN failed to capture/cover the whole distribution fro
sample generation with significant biases.

In summary, we conclude that SpHMC is capable of gen-
erating images. Actually. it samples from the distribution of
sparse representation from the datasets, while one can eas-

5521



Table 1: Error Comparison using SpHMC on MNIST, Fashion MNIST and EMNIST Datasets

MNIST (LeCun, Cortes, and Burges 2010) (n = 60, 000, d = 784)
SVM `2-SVM `1-Log Reg `2-Log Reg `2-Perceptron

SpHMC 3.59 ± 0.00 5.74 ± 0.06 5.49 ± 0.01 5.23 ± 0.08 12.54 ± 0.49
SpHMC w/o MH 3.61 ± 0.03 5.87 ± 0.19 5.50 ± 0.09 5.38 ± 0.06 18.84 ± 2.60
Original 5.96 ± 0.00 11.11 ± 1.29 8.06 ± 0.01 7.99 ± 0.00 16.62 ± 0.00
Compression 3.61 ± 0.00 5.84 ± 0.18 5.50 ± 0.00 5.32 ± 0.00 13.22 ± 0.00
Kernel HMC 6.14 ± 0.11 15.44 ± 2.40 34.14 ± 7.11 13.46 ± 0.79 29.42 ± 4.98
GAN 5.99 ± 0.09 11.33 ± 0.45 8.11 ± 0.14 8.15 ± 0.89 15.05 ± 1.27

Fashion MNIST (Xiao, Rasul, and Vollgraf 2017) (n = 60, 000, d = 784)
SVM `2-SVM `1-Log Reg `2-Log Reg `2-Perceptron

SpHMC 13.09 ± 0.08 15.19 ± 0.27 14.33 ± 0.00 14.54 ± 0.08 19.82 ± 0.69
SpHMC w/o MH 13.54 ± 0.08 15.42 ± 0.35 14.46 ± 0.08 14.69 ± 0.09 22.18 ± 2.62
Original 15.36 ± 0.00 19.88 ± 2.91 15.81 ± 0.03 15.89 ± 0.00 30.84 ± 0.00
Compression 13.20 ± 0.00 15.32 ± 0.26 14.34 ± 0.01 14.55 ± 0.00 25.09 ± 0.00
Kernel HMC 15.73 ± 0.18 27.07 ± 2.36 25.70 ± 0.78 24.99 ± 0.44 37.30 ± 7.73
GAN 15.39 ± 0.10 19.29 ± 1.26 15.99 ± 0.09 16.09 ± 0.18 34.17 ± 2.69

EMNIST (Cohen et al. 2017) (n = 124, 800, d = 784)
SVM `2-SVM `1-Log Reg `2-Log Reg `2-Perceptron

SpHMC 13.14 ± 0.09 15.38 ± 0.11 17.64 ± 0.11 14.41 ± 0.07 19.83 ± 0.69
SpHMC w/o MH 13.32 ± 0.06 22.71 ± 0.10 18.37 ± 0.13 18.43 ± 0.07 49.36 ± 2.48
Original 21.21 ± 0.00 37.33 ± 0.80 28.82 ± 0.00 29.10 ± 0.00 50.62 ± 0.00
Compression 13.21 ± 0.00 22.60 ± 0.17 18.33 ± 0.01 18.36 ± 0.00 49.43 ± 0.00
Kernel HMC 25.18 ± 0.19 42.54 ± 2.26 31.59 ± 0.09 31.99 ± 0.07 56.55 ± 2.80
GAN 22.17 ± 0.14 44.26 ± 1.70 33.16 ± 0.29 33.21 ± 0.40 57.83 ± 2.35

ily convert these sparse representation back to the images
using the dictionary (i.e., measurement matrix). Compared
to the images produced Kernel Hamiltonian Monte Carlo
and GAN, we cannot observe the significant drawback of
SpHMC. We subjectively the images generated by SpHMC
look better, as they preserve more local patterns and textures.

Data Augmentation
To further evaluate the quality of samples drawn, we will
evaluate SpHMC, as a tool for data augmentation, using a
wide range of linear classifiers including SVM, `2-SVM,
`1-regularized Logistic Regression (entitled `1-Log. Reg.),
`2-regularized Logistic Regression (entitled `2-Log. Reg.),
and `1-regularized Perceptron (entitled `1-Perceptron). We
don’t intend to perform such comparison on top of neural
networks, as these methods already incorporate data aug-
mentation in their deep architectures.

In this experiment, we shuffle the original datasets with
the images generated in the ratio of 6:1. Note that for the
experiment based on SpHMC and compression, we use the
spectral data (generated spectral samples by SpHMC and/or
the one obtained by LASSO using the same dictionary) for
training and testing rather than the images. All algorithms
are tuned with the best hyper-parameters through 10 folder
cross-validation on the training set. We repeat the experi-
ments 5 times to estimate the accuracy with intervals.

Results and Comparison. Table 1 presents the testing er-
ror comparison of the six classifiers on the three datasets
with various augmentations. SpHMC outperforms all base-
line methods with higher accuracy, while it marginally im-
proves the results of compression (which consists of the

spectral representation of original data). It is obvious that,
in the most cases, the upper interval of the error of SpHMC
(indicating the worst case accuracy) is still lower than the
lower interval of baselines (indicating the best case accu-
racy). The comparison shows that SpHMC significantly out-
perform the one based on original dataset, Kernel HMC
and GAN with clearly higher accuracy. The comparison be-
tween SpHMC and Kernel HMC demonstrate the power of
sampling sparse representation from space, rather than the
spatial-temporal information of images. The comparison be-
tween SpHMC and SpHMCwithout MH correction shows the
power of rejecting low probability samples to well augment
the training set. The compression between SpHMC and Com-
pression shows the effectiveness of Bayesian sampling for
generating new spectral samples. We consider the advantage
of SpHMC is due to the effectiveness combining sparse cod-
ing and Bayesian sampling.

Discussion and Conclusion
In this paper, we propose SpHMC, which aims at sampling
the sparse representations from the given dataset without the
need of traceable likelihoods. Incorporating a dictionary (or
measurement matrix) for sparse coding, SpHMC leverages
a Stochastic Gradient Langevin Dynamics to traverse on a
log-posterior density model derived from compressed sens-
ing, where a sequence of samples can be generated via the
trajectory sampled by the dynamics. The empirical valida-
tion, based three benchmark image datasets, shows SpHMC
can draw the possible sparse representation from the spectral
space of the images, while the sparse representations drawn
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can be used to generate new images. We compare the im-
ages generated by SpHMC with those based on Kernel HMC
and GAN. While all generated images are visible and hu-
man understandable, the images produced by SpHMC seem
to preserve more local patterns and textures. Moreover, our
experiments indicate that the generated data could help to
augment the original datasets for supervised learning tasks.
The comparison shows SpHMC significantly outperforms the
one augmented by Kernel HMC and GAN with higher clas-
sification accuracy.
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