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Abstract

Hierarchical classification is a challenging problem where the
class labels are organized in a predefined hierarchy. One pri-
mary challenge in hierarchical classification is the small train-
ing set issue of the local module. The local classifiers in the
previous hierarchical classification approaches are prone to
over-fitting, which becomes a major bottleneck of hierarchi-
cal classification. Fortunately, the labels in the local module
are correlated, and the siblings of the true label can provide
additional supervision information for the instance. This pa-
per proposes a novel method to deal with the small training
set issue. The key idea of the method is to represent the corre-
lation among the labels by the label distribution. It generates
a label distribution that contains the supervision information
of each label for the given instance, and then learns a map-
ping from the instance to the label distribution. Experimen-
tal results on several hierarchical classification datasets show
that our method significantly outperforms other state-of-the-
art hierarchical classification approaches.

Introduction
In many classification problems, the class labels are orga-
nized in a predefined hierarchical structure. For example, the
documents are organized with the topic hierarchies in some
large-scale text datasets, such as Wikipedia, DMOZ, and Ya-
hoo! Directory; the music is often organized in an audio tax-
onomy; a gene is arranged by its functions with the tree or
the graph structure (Vens et al. 2008). These problems are
defined as the hierarchical classification problems (Jr. and
Freitas 2011). In this paper, we deal with the hierarchical
classification problems where each instance is assigned only
one label.

According to a survey on hierarchical classification (Jr.
and Freitas 2011), the hierarchical classification approaches
can be roughly grouped into three families, i.e., the flat clas-
sification approach, the local classifier approach, and the
global classifier approach. The flat classification approach
is the simplest one to deal with the hierarchical classifica-
tion problems, which completely discards the hierarchical
information. This approach is equivalent to those traditional
classification methods. The local classifier approach trains
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a classifier for each local module. Early research uses the
taxonomy to train independent classifiers at each node, and
makes a prediction by the top-down manner (Koller and Sa-
hami 1997). Since the local classifier approach often en-
counters the error propagation issue, some methods have
been proposed to solve it. A method changes the training
distribution, and utilizes the output of the lower-level clas-
sifier to improve the performance of the top-level classifier
(Bennett and Nguyen 2009). Then a novel framework is pro-
posed to make the Bayes-optimal prediction by minimizing
the designed risks (Bi and Kwok 2015). Correspondingly, an
approach uses a surrogate loss to replace the tree-distance
loss, and constructs a convex optimization problem which
can be solved using binary SVM (Ramaswamy, Tewari, and
Agarwal 2015). Another method exploits the correlation be-
tween the label and its ancestors in the hierarchy by con-
sidering the label of the parent node as an additional at-
tribute. Moreover, the method calculates a score for each
path, and makes the final prediction according to the scores
(Ramı́rez-Corona, Sucar, and Morales 2016). Besides, a lo-
cal hierarchical ensemble framework is proposed to model
the relationship between the global prediction and the local
prediction as a regression problem (Zhang, Shah, and Kaka-
diaris 2017). Different from the local classifier approach,
the global classifier approach considers the hierarchy as a
whole, and learns a single classification model on the train-
ing set. Several large-margin methods are adapted to deal
with the hierarchical classification problems by defining the
different mis-classification penalization in the hierarchy (Cai
and Hofmann 2004; Dekel, Keshet, and Singer 2004). Corre-
spondingly, a novel large-margin method is designed to uti-
lize the hierarchical information by enforcing the orthogo-
nality between the parent node and its children (Xiao, Zhou,
and Wu 2011). Nevertheless, these methods are quite time-
consuming, which can not solve the problems with massive
labels. In order to deal with the large-scale hierarchical clas-
sification problems, one possible solution is to encourage the
model parameters among the nearby labels in the hierarchy
to be similar by the recursive regularization (Gopal and Yang
2013). The other possible solution is to transform the hier-
archical problem to the cost-sensitive classification problem
by defining the mis-classification cost based on the hierar-
chy (Charuvaka and Rangwala 2015). Recently, a deep neu-
ral network is designed to deal with the hierarchical clas-
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sification problems by simultaneously optimizing the local
and global loss function for the local and global hierarchical
information. (Wehrmann, Cerri, and Barros 2018).

One primary challenge in hierarchical classification is the
small training set issue. Take the LSHTC-small dataset as
an example, there are more than one thousand labels, but the
average number of the training samples per label is less than
6. Thus, for the local classifier approaches, there are only a
few training samples for the bottom module. Previous local
classifier approaches focus attention on the strategy of the
prediction, but ignore the significance of the local classifier
in the training phase. They consider the labels in the local
module as independent, and train local multi-class classi-
fiers. Nevertheless, since the training set for the local module
is small, the multi-class classifiers are prone to over-fitting,
which becomes a bottleneck of hierarchical classification.

Different from the previous local classifier approaches,
we believe that the labels in the local module are corre-
lated, and the degree of the correlation is variant in differ-
ent local modules. For example, the labels with common an-
cestors are correlated, and the correlation among the labels
will be enhanced with the increase of common ancestors. If
we can make use of the label correlation in the local mod-
ule, the influence of the small training set issue will be re-
lieved greatly because the instances with correlated labels
can also contribute to the training of the current class. In
order to achieve this, we adopt a recently proposed machine
learning paradigm called Label Distribution Learning (LDL)
(Geng 2016). The label distribution covers a certain number
of labels, representing the degree to which the correspond-
ing label describes the instance. The description degrees of
all the labels sum up to 1. LDL has been successfully ap-
plied to many real-world problems, such as facial age esti-
mation (Geng, Yin, and Zhou 2013), head-pose estimation
(Geng and Xia 2014), pre-release prediction of crowd opin-
ion on movies (Geng and Hou 2015), crowd counting in pub-
lic video surveillance (Zhang, Wang, and Geng 2015), ordi-
nal zero-shot learning (Huo and Geng 2017), facial beauty
prediction (Ren and Geng 2017), deep learning (Gao et al.
2017), etc. In this paper, we use the label distribution to ex-
plicitly represent the correlation between the true label and
its siblings. It means that not only the true label but also its
siblings can describe the instance. Higher description degree
indicates that the corresponding label is more correlated to
the instance. Different from the multi-class classifier in the
local module, where the siblings of the true label offer no
supervision information, in the proposed method, the super-
vision information of the siblings can be extended to the true
label. By LDL, the proposed approach allows an instance to
be correlated with multiple labels with different importance,
which can take better advantage of the label correlation.

The main contribution of this paper is to find a new solu-
tion to solve the small training set issue of the local module
in hierarchical classification. Compared with the previous
local classifier approaches which are committed to the strat-
egy of the prediction, we focus on the label correlation in the
training phase. To the best of our knowledge, this is the first
attempt to explicitly represent the label correlation with the
label distribution in the local module. We conduct the exper-

Figure 1: An example of the label distribution representation
in the local module M5. The label space is {y1 = 8, y2 =
9, y3 = 10, y4 = v1, y5 = v2}. For an instance x, the true
label is y2. The graph (a) shows the single label annotation
for x, and the graph (b) shows the label distribution annota-
tion for x.

iments on several hierarchical classification datasets, which
demonstrate the effectiveness of our proposed method.

The rest of this paper is organized as follows. Firstly, we
introduce the definition of label distribution learning, the
transformation method from the single label to the label dis-
tribution for a given instance, the algorithm of label distri-
bution learning, and the strategy of the prediction. Secondly,
we report the results of hierarchical classification experi-
ments. Finally, we draw a conclusion of our paper.

Proposed Method
We propose a local classifier approach to deal with the small
training set issue of the local module. For each local mod-
ule, we use a label distribution instead of a single label to
represent a certain instance. The label distribution covers the
whole possible labels, and assigns a real number to each la-
bel. It means that the true label as well as its siblings can
provide the supervision information to the instance.

In this paper, we assume that the labels are organized with
the tree structure. Let the hierarchy be a tree defined as T .
The nodes in T are indexed from 0 (for the root), 1, 2, ..., |T |.
We also use T to express the set of all nodes. Let L ⊂ T be
the set of the leaf nodes, and LC = T \ L be the set of
the internal nodes in T . For a node t, we denote its parent
by pa(t), its set of ancestors by anc(t), its set of siblings
by sib(t), its set of children by child(t), and its set of path
nodes by path(t) = {a|a ∈ anc(t)}\{0}∪{t}, respectively.

Training
Formally, for an internal node t ∈ LC , t and child(t) form
a local module which is called Mt for short. We define the
label space for Mt as Yt = child(t) = {y1, y2, ..., yK},
where yj represents the j-th label, and K is the number of
the labels. Given the training samples St = {(xi, yi)|1 ≤
i ≤ nt} for Mt, where xi is the i-th instance, yi is the true
label for xi, and nt is the number of the training samples,
we need to train the probability estimator p(k|t,x), where
k ∈ child(t).

For Mt, where t 6= 0, when an instance x does not
belong to Mt, we hope Mt can still output some prob-
ability for x. Therefore, we introduce a virtual node set
Vt = {v1, v2, ..., vm} into Mt, where m is the path length
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of node t. The instance x is marked as v ∈ Vt when x
falls outside Mt. Then we extend the children set of t as
child(t) = child(t) ∪ Vt. The reason that we use a virtual
node set instead of one virtual node is that, as shown below,
the training set of the virtual node set is sampled from differ-
ent levels in the hierarchy. We think the samples in different
levels are variant, which means that the samples in differ-
ent levels belong to different classes. Thus, one virtual node
can not represent all the samples, and we decide to add more
than one virtual node.

We need to collect the training samples for Vt. In or-
der to make the training samples of Vt cover all the sam-
ples as much as possible, we propose a stratified sampling
method. Specifically, we build a node set Gt = {g|g ∈
sib(a), a ∈ path(t)}, and then take the training set of Vt
from the samples belonging to Gt. In Figure 1, for instance,
the local module of node 5 is M5. The label space of M5 is
{y1 = 8, y2 = 9, y3 = 10, y4 = v1, y5 = v2}, where v1
and v2 are the virtual nodes. The training set of v1 will be
collected from the samples of the node set {2, 3}, since node
2 and node 3 are the siblings of node 1. The training set of
v2 will be collected from the samples of node 4 which is the
sibling of node 5.

Due to the small training set issue of the local module, the
traditional local classifier used in the previous studies suffers
over-fitting easily. One remarkable observation is that the la-
bels in the local module are correlated, which means that the
siblings of the true label can provide additional supervision
information to the instance. The above observation coincides
with the mechanism of label distribution learning, and we
can use the label distribution to represent the description de-
gree of each label for the given instance.

Given the training set St = {(xi, yi)|1 ≤ i ≤ nt} for
Mt, where t 6= 0, we define the label distribution for xi as
di = (d1i , d

2
i , ..., d

K
i ), where dji is the j-th element of di

corresponding to yj , and K is the number of the labels. The
label distribution di satisfies dji ∈ [0, 1] and

∑K
j=1 d

j
i = 1.

The value of dji expresses the degree to which the label yj

describes xi, and thus is called the description degree of yj
to xi. The description degree corresponding to the true label
has the highest value.

Since the ground truth label distribution is not available in
the training set of the local module, we need to transform the
true label to the label distribution. There are many methods
to make the transformation, and in this paper, we achieve
it by exploiting the knowledge of the common nodes with
the true path. More concretely, let b = (b1, b2, ..., bK) be
the Number of the Common Nodes with the True Path (NC-
NTP), where bj is the NCNTP for yj . It is obvious that the
correlation among the labels is stronger with larger NCNTP.
For instance, in Figure 1, given an instance x, if the true la-
bel of x is leaf node 9, then the true path is {1, 5, 9}. The
correlation among {8, 9, 10} is stronger than {4, 5}, and the
NCNTP of {8, 9, 10} is larger than {4, 5}. So, we can use
the NCNTP to represent the correlation among the labels as

bj =

{
|path(y) ∩ path(yj)| yj /∈ Vt
0 yj ∈ Vt

, (1)

Algorithm 1 Training
Input:

S: the training set {(xi, yi)|1 ≤ i ≤ n};
T : the tree hierarchy;
α: the degree parameter;
λ: the penalty parameter.

Output:
φ: the set of the local model for each local module.

1: Set φ to be empty;
2: Set the queue Q to be empty;
3: Put node 0 to Q;
4: while Q is not empty do
5: Get the first element t in Q, and delete it from Q;
6: if t ∈ LC then
7: Put the children of node t to Q;
8: if t 6= 0 then
9: Extend the children set of node t as child(t) =

child(t) ∪ Vt, where Vt is the virtual node set;
10: end if
11: Collect the training set St = {(xi, yi)|1 ≤ i ≤ nt}

for Mt, where yi ∈ Yt = child(t);
12: if t 6= 0 then
13: Transform St to S

′

t = {(xi,di)|1 ≤ i ≤ nt} by
Eq. (3);

14: Train a label distribution model on S
′

t by Eq. (7);
15: else
16: Train a multi-class classifier on St;
17: end if
18: Add the local model to φ;
19: end if
20: end while
21: return the set of local model φ;

where y is the true label, and Vt is the virtual node set. Al-
though the node in Vt is the sibling of y, it is not correlated
with y, thus we set the NCNTP of the node in Vt to 0. Then,
b is normalized as

r =
1

Z
b, (2)

where Z =
∑K

j=1 b
j is a normalization factor. We can cal-

culate the label distribution by

d = (1− α)h+ αr, (3)

where h = (h1, h2, ..., hK), and hj ∈ {0, 1} indicates
whether the instance x has the label yj . Since x has only one
label, h satisfies

∑K
j=1 h

j = 1. The parameter α ∈ [0, 1]
controls the degree of the correlation among the labels.
When α is set to 0, the model degenerates into the standard
multi-class classifier. When α is set to 1, we get a coarse la-
bel distribution which may not match the problem. Thus, we
use α as a trade-off to get a suitable label distribution.

In Figure 1, take node 5 as an example, the local module
M5 consists of node 5 and its children. The label space in
M5 is Y5 = {y1 = 8, y2 = 9, y3 = 10, y4 = v1, y5 = v2},
where v1 and v2 are the virtual nodes. If the true label is
y2 for x, then b = (2, 3, 2, 0, 0), r = ( 2

7 ,
3
7 ,

2
7 , 0, 0). Since

y4 and y5 are not correlated with y2, we set b4 and b5 to
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0. If we set α = 0.5, we can get the label distribution for
x as d = (0.143, 0.714, 0.143, 0, 0). Originally, only the
true label y2 provides the supervision information to x. Af-
ter the transformation, the true label y2 as well as its sib-
lings {y1, y3} can provide the supervision information to x.
Moreover, the true label y2 has the highest description de-
gree. Although y4 and y5 are the siblings of y2, they are vir-
tual nodes and not correlated with y2. Thus, their description
degrees are set to 0.

After the transformation, the training set becomes S
′

t =
{(xi,di)|1 ≤ i ≤ nt}, where di is the label distribution for
xi, and dji is the j-th element of di. The goal is to find the pa-
rameter θ in a conditional mass function p(y|pa(yi),xi;θ)
that can generate a label distribution similar to di. There are
many criteria to measure the similarity between two distri-
butions, e.g., the discrete Jeffrey’s divergence between two
distributions P andQ is defined by

DJ(P ||Q) =
∑
i

(Pi −Qi)ln
Pi

Qi
, (4)

where Pi and Qi are the i-th element of P and Q, respec-
tively. Similar to the work of (Geng, Yin, and Zhou 2013),
we assume the function to be a maximum entropy model,
i.e.,

p(yj |pa(yi),xi;θ) =
1

Γi
exp(

∑
r

θj,rx
r
i ), (5)

where Γi =
∑

k exp(
∑

r θk,rx
r
i ) is the normalization fac-

tor, xri is the r-th feature of xi, and θj,r is an element in θ
corresponding to the label yj and the r-th feature.

Then the best parameter θ∗ is determined by

θ∗ = arg min
θ

∑
i

DJ(di||p(y|pa(yi),xi;θ)) +
λ

2
||θ||2.

(6)
The first term is Jeffrey’s divergence, where di is the ground
truth label distribution for xi, and p(y|pa(yi),xi;θ) is the
predicted label distribution. The second term is a regulariza-
tion term, and λ is a parameter that controls the trade-off
between the training loss and the complexity of the model.

Substituting Eq. (5) to Eq. (6) yields the target function

T (θ) =
∑
i

lnΓi −
∑
i

∑
j

(dji
∑
r

θj,rx
r
i )+

∑
i

∑
j

1

Γi
exp(

∑
r

θj,rx
r
i )(
∑
r

θj,rx
r
i

− lnΓi − lndji ) +
λ

2
||θ||2.

(7)

The problem can be solved by the limited-memory quasi-
Newton method L-BFGS (Liu and Nocedal 1989). After ob-
taining θ∗, given an instance, we can get its predicted label
distribution. The whole training process is summarized in
Algorithm 1.

Prediction
For the local classifier approach, there are many ways to
make the prediction, such as the top-down strategy and the

Figure 2: An example of the prediction for a test instance x,
where Yt is the label space for the local moduleMt, Vt is the
virtual node set for Mt, d̂ is the predicted label distribution,
Ps and lnP are the path score and the logarithmic poste-
rior probability for the leaf node. The leaf node 11 with the
maximum path score is chosen to be the predicted label.

Algorithm 2 Prediction
Input:
x: the test instance;
φ: the set of the local model for each local module.

Output:
ŷ: the predicted label for x.

1: Set the queue Q to be empty;
2: Put node 0 to Q;
3: while Q is not empty do
4: Get the first element t in Q, and delete it from Q;
5: if t ∈ LC then
6: Put the children of node t to Q;
7: Get the local model for t from φ;
8: if t 6= 0 then
9: Calculate the label distribution as the probability

of its children;
10: else
11: Calculate the probability of its children;
12: end if
13: else
14: Calculate the path score of t by Eq. (9);
15: end if
16: end while
17: Predict the label by Eq. (10);
18: return the predicted label ŷ;

strategy based on Bayesian decision theory (Bi and Kwok
2015). Our method predicts the labels by maximizing the
path score which takes the influence of the path length into
account. The whole prediction process is summarized in Al-
gorithm 2.

For an internal node t ∈ LC , t and child(t) form a lo-
cal module Mt. If t 6= 0, we extend child(t) as child(t) =
child(t) ∪ Vt, where Vt is the virtual node set. The label
space of Mt is Yt = child(t) = {y1, y2, ..., yK}, where yj
represents the j-th label, and K is the number of the labels.
Given a test instance x, we need to calculate the probability
p(yj |t,x), where yj ∈ Yt. For node 0, we can get the prob-
ability of its children by the trained local classifier. For an
internal node t 6= 0, we can get the predicted label distribu-
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tion d̂ = (d̂1, d̂2, ..., d̂K). It is reasonable that we use d̂ to
represent the probability of the labels. By this way, we use
d̂j corresponding to yj to represent p(yj |t,x).

We calculate the logarithmic posterior probability of the
leaf node l ∈ L for the test instance x as

ln(p(l|x)) =
∑

t∈path(l)

ln(p(t|pa(t),x)). (8)

The path length has an important influence on the predic-
tion. For example, the posterior probability of the leaf node
with long path may be small, even though the probability
of each node in the path is large. In order to eliminate the
influence of the path length, we define the path score as

Ps(l|x) =
ln(p(l|x))

|path(l)|
. (9)

We finally choose the leaf node with the maximum path
score as the predicted label, i.e.,

ŷ = arg max
l∈L

Ps(l|x). (10)

In Figure 2, for a test instance x, the local module M0

outputs the probability for x, and other modules output the
label distribution for x. We use the label distribution to rep-
resent the probability in the absence of the doubt. The path
score for each leaf node is calculated by Eq. (9). Considering
the influence of the path length, we finally choose node 11
with the maximum path score as the predicted label, rather
than node 6 with the maximum posterior probability.

Experiments
Datasets
We conduct our experiments on several hierarchical classifi-
cation datasets, including one image dataset and four docu-
ment datatsets, all of which have one label per example. The
basic statistics of the datasets are listed in Table 1.

• CLEF (Dimitrovski et al. 2011) is an image dataset which
consists of medical X-ray images.

• IPC 1 is a document dataset which is a collection of
patents arranged with the International Patent Classifica-
tion Hierarchy.

• LSHTC-small, DMOZ-2010, and DMOZ-2012 2 (Par-
talas et al. 2015) are a number of document datasets re-
leased from the LSHTC (Large-Scale Hierarchical Text
Classification) challenges 2010 and 2012.

Algorithms for Comparison
We compare our proposed method with other state-of-the-
art hierarchical classification algorithms, including the flat
classification approach, the local classifier approach, and the
global classifier approach.

• Flat-SVM is the one-versus-rest SVM which discards the
hierarchical information. It is considered as the conven-
tional flat classifier.
1http://www.wipo.int/classifications/ipc/en/support/
2http://lshtc.iit.demokritos.gr/

• TD (Dumais and Chen 2000) is a local classifier ap-
proach. In the training phase, the approach trains a series
of local classifiers. In the test phase, the approach makes
the prediction by the top-down strategy.

• MAS (Bi and Kwok 2014) is a local classifier approach.
In the training phase, the approach trains a series of lo-
cal classifiers that can output the probabilities. In the test
phase, the approach makes the prediction by minimizing
the designed loss.

• HierCost (Charuvaka and Rangwala 2015) is a global
classifier approach. This work uses a cost-sensitive classi-
fication method to deal with the hierarchical classification
problem by defining the mis-classification cost based on
the hierarchy.

We use cross-validation to select the optimal parameters
on the datasets. Specifically, the penalty parameters of all
the algorithms are chosen with a range from 10−3 to 103.
The kernel of Flat-SVM is linear. The local classifier of TD
is SVM whose kernel is linear. We use the logistic regres-
sion which can output the probability of the class as the lo-
cal classifier of MAS. The prediction strategy of MAS is
to maximize the posterior probability. We set the cost type
of HierCost to exponentiated tree distance and imbalance in
the same way as (Charuvaka and Rangwala 2015). For our
method, α is decided in a range from 0 to 1.

Evaluation Metrics
We use four metrics to measure the performance of all the
approaches, including the standard classification metrics and
the hierarchical classification metrics.

• Micro-F1 and Macro-F1 (Gopal and Yang 2013) are
standard classification metrics in the conventional classi-
fication problems.

• HF(Jr. and Freitas 2011) is Hierarchical F-measure,
which is commonly used in the hierarchical classification
problems. It is an extension of the standard F-measure.

• TE (Dekel, Keshet, and Singer 2004) is Tree-induced Er-
ror to measure the average distance in the tree between
the true and the predicted labels.

For TE, the smaller values are better; while for the other
metrics, the larger values are better.

Results
We set up two groups of experiments. The first experiment
is designed to compare the effectiveness of the algorithms,
and the second experiment explores the trend of the perfor-
mance variation with the reduction of the training samples.
The true test labels of DMOZ-2010 and DMOZ-2012 are not
available, and the results can only be evaluated through an
online evaluation system where some metrics are not sup-
ported. For DMOZ-2010, the HF results are not available,
and for DMOZ-2012, the TE results are not available.

Table 2 shows the results of the first experiment. The re-
sults of HierCost on DMOZ-2010 and DMOZ-2012 are re-
ported from (Charuvaka and Rangwala 2015). The results
of Flat-SVM on DMOZ-2012 are not reported due to the
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Dataset Train Test Nodes Leaves Depth Features
CLEF 10,000 1,006 97 63 3 80
IPC 46,324 28,926 553 451 3 310,586

LSHTC-small 6,323 1,858 2,388 1,139 5 51,033
DMOZ-2010 128,710 34,880 17,222 12,294 5 381,580
DMOZ-2012 383,408 103,435 13,963 11,947 5 348,548

Table 1: Dataset Statistics

Micro-F1(↑) Macro-F1(↑) HF(↑) TE(↓)

CLEF

Flat-SVM 79.52 54.41 83.10 1.01
TD 73.75 35.78 77.63 1.34

MAS 75.34 39.05 78.69 1.28
HierCost 80.12 53.07 83.93 0.96

Ours 77.24 46.77 80.96 1.14

IPC

Flat-SVM 54.04 46.13 65.67 2.04
TD 50.59 43.63 63.55 2.17

MAS 52.53 45.20 65.03 2.08
HierCost 53.89 47.69 65.75 2.04

Ours 53.22 46.46 65.97 2.03

LSHTC-small

Flat-SVM 49.14 36.21 62.85 3.55
TD 46.23 33.43 63.36 3.52

MAS 46.34 32.47 63.85 3.46
HierCost 49.46 36.02 63.90 3.45

Ours 50.51 37.02 67.74 3.07

DMOZ-2010

Flat-SVM 44.64 31.34 N/A 3.55
TD 42.39 29.67 N/A 3.46

MAS 43.25 30.13 N/A 3.43
HierCost 45.87 32.41 N/A 3.32

Ours 45.24 33.05 N/A 3.15

DMOZ-2012

Flat-SVM N/A N/A N/A N/A
TD 54.31 33.47 75.11 N/A

MAS 54.58 28.67 75.17 N/A
HierCost 53.36 28.47 73.79 N/A

Ours 55.30 32.41 75.97 N/A

Table 2: Predictive performance of each comparing algorithm on datasets.

memory limitation. In general, our model is comparable, or
performs better in terms of the standard classification met-
rics (i.e., Micro-F1 and Macro-F1), and outperforms other
methods significantly in terms of the hierarchical classifica-
tion metrics (i.e., HF and TE). As showed in (Jr. and Freitas
2011), the standard classification metrics like Micro-F1 and
Macro-F1 are not ideal, because the errors at different levels
of the class hierarchy should not be penalized in the same
way. Thus, we prefer to believe that the hierarchical classifi-
cation metrics can evaluate the models better, and the above
results can prove the advantage of our method. In detail, on
the CLEF and IPC datasets, the performance of our method
is not as good as Flat-SVM and HierCost in terms of some
metrics. The main reason might be that the training sam-
ples are sufficient, and the problem is relatively simple. Our
method is designed to solve the small training set issue of the
local module, in the case of having sufficient training sam-
ples, the performance of our method may not be outstanding.

On the other datasets, which consist of massive labels but
small training set, our method is superior to other methods
in most cases. These results coincide with the motivation of
our method.

In the first experiment, our method has the trend to per-
form well on the dataset with relatively small training set.
To further demonstrate this, we design the second experi-
ment that gradually decrease the number of the training sam-
ples. Specifically, we select randomly a part of all the train-
ing samples as the training set, while keeping the test set
unchanged. The process is repeated for five times, and the
average performance of all the algorithms is recorded. For
CLEF, we choose {1/10, 1/20, 1/40} of all the samples as
the training set; for IPC, we choose {1/5, 1/10, 1/20} of all
the samples as the training set; for LSHTC-small, we choose
{3/4, 2/4, 1/4} of all the samples as the training set, respec-
tively. Since some metrics are not available, we do not con-
duct the second experiment on DMOZ-2010 and DMOZ-
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Figure 3: Results of the data-sparsity experiment on the CLEF dataset. The horizontal axis is gradually decrease number of the
training samples, vertical axis is the results of some metrics.

Figure 4: Results of the data-sparsity experiment on the IPC dataset. The horizontal axis is gradually decrease number of the
training samples, vertical axis is the results of some metrics.

Figure 5: Results of the data-sparsity experiment on the LSHTC-small dataset. The horizontal axis is gradually decrease number
of the training samples, vertical axis is the results of some metrics.

2012. The results of the second experiment are shown in
Figure 3, 4, and 5. In general, our method performs the best
in most cases compared with other hierarchical classification
methods, but the advantages of our method in terms of the
standard classification metrics (i.e., Micro-F1 and Macro-
F1) are not outstanding. With the decrease of the training
samples, the model is more likely to make a wrong predic-
tion. When the mis-classification occurs, our model is prone
to predict a label which is correlated with the true label.
However, the standard classification metrics ignore the hier-
archical information completely, and they consider the cost
of the mis-classification equally, no matter the predicted la-
bel is correlated with the true label or not. Thus, the results
of our method in terms of the standard classification met-
rics may no longer maintain their advantages. In detail, on
the CLEF dataset, our method performs not as good as Hier-
Cost and Flat-SVM at beginning, but with the decrease num-
ber of the training samples, our method outperforms other
methods gradually. Flat-SVM performs well with the full
training samples, but as the training set becomes smaller,
its performance in terms of the HF and TE metrics deterio-
rates quickly. The main reason might be that Flat-SVM dis-
cards the hierarchical information completely, and it is not
friendly to the hierarchical classification metrics when the
training set is small. The performances in terms of the HF

and TE metrics between HierCost and MAS become simi-
lar when the training samples are reduced. TD performs the
worst in most cases. The trend on the IPC dataset is simi-
lar to the CLEF dataset. On the LSHTC-small dataset, the
performances among Flat-SVM, HierCost and our method
are similar in terms of the Micro-F1 and Macro-F1 metrics,
but in terms of the HF and TE metrics, our method outper-
forms other methods significantly. These results prove that
our method can deal with the small training set issue well.

Conclusion
In this paper, we propose a novel hierarchical classification
method based on label distribution learning. The motiva-
tion of our method is to solve the small training set issue
of the local module by utilizing the correlation between the
true label and its siblings. Toward this, we propose to gen-
erate the label distribution that contains supervision infor-
mation of each label for the instance in the local module.
After transforming the true label to the label distribution, we
conduct a mapping from the instance to its label distribu-
tion which is optimized by L-BFGS algorithm. The results
on several hierarchical classification datasets prove that our
method performs significantly better than other hierarchical
classification approaches, and can deal with the small train-
ing set issue well.
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