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Abstract

Partial label learning aims to learn from training examples
each associated with a set of candidate labels, among which
only one label is valid for the training example. The com-
mon strategy to induce predictive model is trying to disam-
biguate the candidate label set, such as disambiguation by
identifying the ground-truth label iteratively or disambigua-
tion by treating each candidate label equally. Nonetheless,
these strategies ignore considering the generalized label dis-
tribution corresponding to each instance since the general-
ized label distribution is not explicitly available in the training
set. In this paper, a new partial label learning strategy named
PL-LE is proposed to learn from partial label examples via
label enhancement. Specifically, the generalized label distri-
butions are recovered by leveraging the topological informa-
tion of the feature space. After that, a multi-class predictive
model is learned by fitting a regularized multi-output regres-
sor with the generalized label distributions. Extensive exper-
iments show that PL-LE performs favorably against state-of-
the-art partial label learning approaches.

Introduction
Partial label (PL) learning deals with the problem where
each training example is associated with a set of candi-
date labels, among which only one label is valid (Cour,
Sapp, and Taskar 2011; Chen et al. 2014; Yu and Zhang
2017). In recent years, partial label learning techniques have
been found useful in solving many real-world scenarios
such as web mining (Jie and Orabona 2010), multimedia
content analysis (Zeng et al. 2013; Chen, Patel, and Chel-
lappa in press), ecoinformatics (Liu and Dietterich 2012;
Tang and Zhang 2017), etc.

Formally speaking, let X = Rq be the q-dimensional
instance space and Y = {y1, y2, y3, ..., yc} be the label
space with c class labels. Given the partial label training
set D = {(xi, Si)|1 ≤ i ≤ n}, the task of partial label
learning is to induce a multi-class classifier f : X 7→ Y
from D. Here, xi ∈ X is a q-dimensional feature vector and
Si ⊆ Y is the associated candidate label set. Partial label
learning takes the key assumption that the ground-truth la-
bel yi corresponding to xi resides in its candidate label set
∗Corresponding author
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Si and therefore cannot be directly accessed by the learning
algorithm.

Intuitively, the basic strategy for handling partial label
learning problem is disambiguation, i.e., trying to identify
the ground-truth label from the candidate label set associ-
ated with each training example, where existing strategies
include disambiguation by identification or disambiguation
by averaging. For identification-based disambiguation, the
ground-truth label is regarded as latent variable and iden-
tified through iterative refining procedure such as EM (Jin
and Ghahramani 2003; Nguyen and Caruana 2008; Liu and
Dietterich 2012; Chen et al. 2014; Yu and Zhang 2017).
For averaging-based disambiguation, all the candidate labels
are treated equally and the prediction is made by averag-
ing their modeling outputs (Hüllermeier and Beringer 2006;
Cour, Sapp, and Taskar 2011; Zhang and Yu 2015).

In order to handle partial label learning problem, we can
explicitly assign a description degree to each label instead of
disambiguation. This is similar to label distribution learning
(LDL) (Geng 2016). In LDL, the description degrees dyj

x of
all the labels constitute a real-valued vector called label dis-
tribution. Here dyj

x ∈ [0, 1] and
∑

y d
y
x = 1. Note that the

normalized labeling confidence vector in the feature-ware
PL approach (Zhang, Zhou, and Liu 2016) can be viewed
as label distribution. In order to accommodate more flexibil-
ity on PL data sets, the description degree is generalized in
this paper: 1) dyj

x ∈ (0, 1),∀ yj ∈ Si denotes the label rele-
vance over each candidate label. 2) dyj

x ∈ (−1, 0),∀ yj /∈ Si

denotes the label irrelevance over each non-candidate label.
Then, the generalized description degrees (GDD) of all the
labels constitute the generalized label distribution (GLD).

GDDs in partial label learning are essentially relative in
mainly two aspects:

• The relevance among candidate labels is different rather
than exactly equal. For example, in Figure 1(a), candidate
painting style can be freely provided by web users, while
the relevance of each style is different.

• The irrelevance of each non-candidate label may be very
different. For example, in Figure 1(b), for a car, the label
airplane is more irrelevant than the label tank.

However, GLD is not explicitly available in the training
sets. It needs to be somehow recovered from the training
set, a process which is named as label enhancement (LE)
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Annotation from user A: Monet style

Annotation from user B: Picasso style

Annotation from user C: Van Gogh style

(a) Online object annotation (b) Target

Figure 1: Two examples about the generalized description
degrees in partial label learning.

(Xu, Tao, and Geng 2018). Accordingly, a novel partial label
learning algorithm named PL-LE, i.e., Partial Label learning
via Label Enhancement, is proposed in this paper. PL-LE can
recover flexible GLDs via leveraging the topological infor-
mation of the feature space. After that, a multi-class predic-
tive model is learned by fitting a regularized multi-output
regressor with the recovered GLDs.

The rest of this paper is organized as follows. Firstly, re-
lated works on partial label learning are briefly reviewed.
Secondly, technical details of the proposed approach are in-
troduced. Thirdly, the results of the comparative experiments
are reported. Finally, we conclude this paper.

Related Work
As shown in Section 1, supervision information conveyed
by PL training examples is implicit as the ground-truth
label is hidden within the candidate label set. Therefore,
partial label learning can be regarded as a weak supervi-
sion learning framework with implicit labeling information.
Generally, partial label learning is related to several well-
established weakly-supervised learning frameworks such
as semi-supervised learning, multi-instance learning and
multi-label learning. Nevertheless, the type of weak supervi-
sion information handled by partial label learning is different
to those counterpart frameworks.

In semi-supervised learning (Zhu and Goldberg 2009),
the task is to learn a classifier f : X 7→ Y from both labeled
and unlabeled examples. For unlabeled data the ground-truth
label assumes the entire label space, while for PL data the
ground-truth label is confined within its candidate label set.
In multi-instance learning (Amores 2013), the task is to
learn a classifier f : 2X 7→ Y from examples each repre-
sented as a labeled bag of instances, where a single label
is assigned to a set of instances for multi-instance example
while a set of labels are assigned to a single instance for
PL example. In multi-label learning (Zhang and Zhou 2014;
Hou, Geng, and Zhang 2016), the task is to learn a classifier
f : X 7→ 2Y from training examples each associated with
multiple labels, where the associated labels are all valid ones
for multi-label example while the associated labels are only
candidate ones for PL example.

Most existing algorithms aim to fulfill the learning task
by fitting widely-used learning techniques to partial label
data. For maximum likelihood techniques, the likelihood
of observing each PL training example is defined over its

candidate label set instead of the unknown ground-truth la-
bel (Jin and Ghahramani 2003; Liu and Dietterich 2012).
K-nearest neighbor techniques determine class label of un-
seen instance via voting among the candidate labels of
its neighboring examples (Hüllermeier and Beringer 2006;
Zhang and Yu 2015). For maximum margin techniques, the
classification margins over the PL training examples are de-
fined by discriminating modeling outputs from candidate la-
bels and non-candidate labels (Nguyen and Caruana 2008;
Yu and Zhang 2017). For boosting techniques, the weight
over each PL training example and the confidence over the
candidate labels are updated in each boosting round (Tang
and Zhang 2017).

Other than the above-mentioned works, there are a few
works which work by fitting PL data to existing learning
techniques. The CLPL approach (Cour, Sapp, and Taskar
2011) maps a d-dimensional instance in X into a d × q-
dimensional feature vector for each class label inY . For each
PL training example (xi, Si), one positive example is gen-
erated by averaging mapped feature vectors w.r.t. candidate
labels in Si and q− |Si| negative examples are generated by
taking the mapped feature vector w.r.t. each non-candidate
label in Y \ Si. The PL-ECOC approach (Zhang, Yu, and
Tang 2017) transforms each instance into a binary example
via leveraging ECOC coding matrix (Dietterich and Bakiri
1995; Zhou 2012). For each PL training example (xi, Si), it
is regarded as a positive or negative example if its candidate
label set Si entirely falls into the column dichotomy of the
coding matrix.

In the next section, a novel partial label learning ap-
proach will be introduced. Different from existing partial la-
bel learning approaches, the generalized label distributions
are recovered and utilized to facilitate the learning proce-
dure. To our best knowledge, it is the first attempt to propose
GLD to solve PL problem via label enhancement.

The Proposed Approach
As shown in Section 1, the task of partial label learning is
to induce a multi-class classifier f : X 7→ Y from the par-
tial label training set D = {(xi, Si)|1 ≤ i ≤ n}. Specifi-
cally, for each PL training example (xi, Si), the logical label
vector li = (ly1

xi
, ly2

xi
, ..., lyc

xi
)> ∈ {−1, 1}c is used to rep-

resent whether each label yj is among the candidate label
set. In the proposed approach, GLD is denoted by the vector
di = (dy1

xi
, dy2

xi
, ..., dyc

xi
)>.

In the next subsections, the two stages of PL-LE, i.e., gen-
eralized label distribution recovery and predictive model in-
duction, will be scrutinized respectively.

Generalized Label Distribution Recovery
Given a PL training set D, we construct the feature ma-
trix X = [x1,x2, ...,xn] and the logical label matrix
L = [l1, l2, ..., ln]. To recover the reasonable GLD matrix
D = [d1,d2, ...,dn], we consider the model

di = W>ϕ(xi) + s = Ŵφi, (1)

where W = [w1, ...,wc] is a weight matrix and s =
(s1, ..., sc)> is a bias vector. ϕ(x) is a nonlinear transforma-

5558



tion of x to a higher dimensional feature space. For conve-
nient describing, we set Ŵ = [W>, s] andφi = [ϕ(xi); 1].
Accordingly, the goal of our method is to determine the best
parameter Ŵ ∗ that can generate a reasonable GLD di given
the instance xi. Then, the optimization problem becomes

min
Ŵ

L(Ŵ ) + λR(Ŵ ), (2)

where L is a loss function, R is the function to mine hidden
GDDs, and λ is the parameter trading off the two terms. Note
that GLD recovery is essentially a pre-processing applied to
the training set, which is different from standard supervised
learning. Therefore, we does not need to consider the over-
fitting problem. Since the labeling information in GLD is
inherited from the initial logical labels, we choose the least
squares (LS) loss function as

L(Ŵ ) =

n∑
i=1

‖Ŵφi − li‖2

= tr[(ŴΦ−L)>(ŴΦ−L)],

(3)

where Φ = [φ1, ...,φn].
By leveraging the topological information of the feature

space, hidden GDDs can be mined from the training exam-
ples. Therefore, we specify the n×n local similarity matrix
A whose elements are calculated as follows.

• Step 1. We put an edge between xi and xj if xi is among
K-nearest neighbors of xj or xj is among K-nearest
neighbors of xi.

• Step 2. If xi and xj are connected, aij is specified as

aij = exp

(
−‖xi − xj‖2

2

)
. (4)

Otherwise, aij is set to 0.

According to the smoothness assumption (Zhu, Lafferty,
and Rosenfeld 2005), if xi and xj have a high degree of
similarity, as measured by aij , then di and dj should be near
to one another. This intuition leads to the following function
which we wish to minimize:

R(Ŵ ) =
∑
i,j

aij‖di − dj‖2

= tr(DGD>)

= tr(ŴΦGΦ>Ŵ>),

(5)

where G = Â − A is the graph Laplacian and Â is the

diagonal matrix whose elements are âii =
n∑

j=1

aij .

Formulating the GLD recovery problem into an optimiza-
tion framework over Eq. (3) and Eq. (5) yields the target
function of Ŵ

T (Ŵ ) = tr[(ŴΦ−L)>(ŴΦ−L)]

+λtr(ŴΦGΦ>Ŵ>).
(6)

Besides, we add a constraint to ensure that the GDD in re-
covered GLD possesses the same sign with the logical label
and takes value with reasonable magnitude:

∀1 ≤ i ≤ n, 1 ≤ j ≤ c, 0 < d
yj
xi l

yj
xi < 1. (7)

Note that Eq. (6) can be rewritten as:

T (ŵ) =

c∑
j=1

ŵj(ΦΦ> + 2λΦGΦ>)ŵj>

− 2ŵjΦlj + ljlj
>
,

(8)

where ŵj is the j-th row of the parameter matrix Ŵ and lj
is the j-th row of the logical label matrix L. Accordingly,
for the parameter matrix Ŵ , its j-th row ŵj can be deter-
mined by solving the following constrained quadratic pro-
gramming process:

min
ŵj

ŵj(ΦΦ> + 2λΦGΦ>)ŵj> − 2ŵjΦlj

s.t. 0 < d
yj
xi l

yj
xi < 1,∀ 1 ≤ i ≤ n.

(9)

When the best parameter Ŵ ∗ is determined, the generalized
label distribution di can be generated through Eq. (1).

Predictive Model Induction
Given the recovered di of xi, the original PL training set can
be transformed into E = {(xi,di)|1 ≤ i ≤ n}. As di for
each training example (xi,di) is numerical, it is natural to
induce the predictive model by employing multi-output re-
gression techniques. Similar to the MSVR, we generalize a
regressor to solve the multi-dimensional case. In addition,
our regressor not only concerns the distance between the
predicted and the real values, but also the sign consistency
of them. It leads to the minimization of

Ω(Θ, b) =
1

2

c∑
j=1

‖θj‖2 + C1

n∑
i=1

Ω1i + C2

n∑
i=1

Ω2i, (10)

where Θ = [θ1, ...,θc], b = [b1, ..., bc], Ω1 and Ω2 are the
regression loss and the sign loss, respectively.

As shown in Eq. 10, the first term of Ω(Θ, b) controls the
complexity of the induced model. In addition, the second
term of Ω(Θ, b) is defined to consider all dimensions into
a unique restriction and yield a single support vector for all
dimensions:

Ω1i =

{
0 ri < ε

r2i − 2riε+ ε2 ri ≥ ε,
(11)

where ri = ‖ei‖ =
√
e>i ei, ei = di − ϕ(xi)

>Θ− b. This
will create an insensitive zone determined by ε around the
estimate, i.e., the loss of r less than ε will be ignored. The
third term is used to make the signs of the predictive output
and the logical label same as much as possible:

Ω2i = −
c∑

j=1

lji (ϕ(xi)
>θj + bj). (12)
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Figure 2: Classification accuracy of each comparing algorithm changes as p (proportion of partially labeled examples) increases
from 0.1 to 0.7 (with one false positive candidate label [r = 1]).

The meaning of Eq. (12) is that if the signs of the predictive
output and the logical label are different, there will be some
positive loss, otherwise the loss will be negative.

To minimize Ω(Θ, b), we use an iterative quasi-Newton
method called Iterative Re-Weighted Least Square (IRWLS)
(Pérez-Cruz et al. 2000). Firstly, Ω1(Θ, b) is approximated
by its first order Taylor expansion at the solution of the cur-
rent k-th iteration, denoted by Θ(k) and b(k):

Ω′1i =Ω
(k)
1i +

dΩ1

dr

∣∣∣∣∣
r
(k)
i

(e
(k)
i )>

r
(k)
i

(
ei − e(k)i

)
, (13)

where e(k)i and r(k)i are calculated from Θ(k) and b(k). Then
a quadratic approximation is further constructed as

Ω′′1i =Ω
(k)
1i +

dΩ1

dr

∣∣∣∣∣
r
(k)
i

r2i − (r
(k)
i )2

2r
(k)
i

=
1

2
air

2
i + τ,

(14)

where

ai =
1

r
(k)
i

dΩ1

dr

∣∣∣∣∣
r
(k)
i

=

0 r
(k)
i < ε

2
(
r
(k)
i −ε

)
r
(k)
i

r
(k)
i ≥ ε,

(15)

Table 1: Characteristics of the controlled UCI data sets.

Data Set #Examples #Features # Labels
glass 214 9 6
ecoli 336 7 8
deter 358 23 6

vehicle 846 18 4
abalone 4,177 7 29

usps 9,298 256 10
Configurations
(I) r = 1, p ∈ {0.1, 0.2, . . . , 0.7}
(II) r = 2, p ∈ {0.1, 0.2, . . . , 0.7}
(III) r = 3, p ∈ {0.1, 0.2, . . . , 0.7}
(IV) p = 1, r = 1, ε ∈ {0.1, 0.2, . . . , 0.7}

and τ is a constant term that does not depend on either Θ(k)

or b(k). Combining Eq. (10), (12) and (14), we can get

Ω′′(Θ, b) =
1

2

c∑
j=1

‖θj‖2 +
1

2
C1

n∑
i=1

air
2
i

−C2

n∑
i=1

c∑
j=1

lji (ϕ(xi)
>θj + bj) + τ.

(16)

It is a piecewise quadratic problem whose optimum can
be integrated as solving a system of linear equations for j =
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Figure 3: Classification accuracy of each comparing algorithm changes as ε (co-occurring probability of the coupling label)
increases from 0.1 to 0.7 (with 100% partially labeled examples [p = 1] and one false positive candidate label [r = 1]).

1, . . . , c:

[
C1Φ>FΦ + I C1Φ>a

C1a>Φ C11>a

] [
θj

bj

]
=

[
C1Φ>Fdj + C2Φ>lj

C1a>dj + C21>lj

]
,

(17)
where Φ = [ϕ(x1), ..., ϕ(xn)]>, a = [a1, ..., an]>, F k

i =
aiδ

k
i (δki is the Kronecker’s delta function), and lj =

[lj1, . . . , l
j
n]>. Then, the direction of the optimal solution of

Eq. (17) is used as the descending direction for the opti-
mization of Ω(Θ, b), and the solution for the next iteration
(Θ(k+1) and b(k+1)) is obtained via a line search algorithm
along this direction.

According to the representor’s theorem (Smola 1999), un-
der fairly general conditions, a learning problem can be ex-
pressed as a linear combination of the training examples in
the feature space, i.e. θj =

∑
i η

jϕ(xi). If we replace this
expression into Eq. (9) and Eq. (17), it will generate the in-
ner product< ϕ(xi), ϕ(xj) >, and then the kernel trick can
be applied.

Let Θ∗ and b∗ be the resulting model after the whole it-
erative optimization process, PL-LE makes prediction on the
class label of unseen instance x as follows:

f(x) = arg max
yj∈Y

ϕ(x)>θ∗j + b∗j (18)

Experiments
Methodology
The performance of PL-LE is compared against six state-
of-the-art partial label learning approaches, each configured
with parameters suggested in respective literature:

• CLPL (Cour, Sapp, and Taskar 2011) which transforms
partial label learning problem into binary learning prob-
lem via feature mapping with convex loss optimization
[suggested configuration: SVM with squared hinge loss].

• PL-KNN (Hüllermeier and Beringer 2006) which adopts
K-nearest neighbor technique to learn from PL data via
weighted voting [suggested configuration: k = 10].

• PL-SVM (Nguyen and Caruana 2008) which adopts max-
imum margin technique to learn from PL data via l2 regu-
larization [suggested configuration: regularization param-
eter pool with {10−3, . . . , 103}].

• LSB-CMM (Liu and Dietterich 2012) which adopts maxi-
mum likelihood to learn from PL data via mixture models
[suggested configuration: 5q mixture components].

• PL-LEAF (Zhang, Zhou, and Liu 2016) which adopts a
two-stage approach to learn from partial label examples
based on feature-aware disambiguation. [suggested con-
figuration: K = 10, C1 = 10, C2 = 1].

• PL-ECOC (Zhang, Yu, and Tang 2017) which transforms
partial label learning problem into binary learning prob-
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Table 2: Win/tie/loss counts (pairwise t-test at 0.05 significance level) on the classification performance of PL-LE against each
comparing approach.

PL-LE against
CLPL PL-KNN PL-SVM LSB-CMM PL-LEAF PL-ECOC

varying p [r=1] 26/16/0 20/20/0 23/19/0 12/30/0 0/42/0 0/42/0
varying p [r=2] 27/15/0 26/16/0 24/18/0 12/30/0 0/42/0 1/41/0
varying p [r=3] 27/15/0 25/17/0 27/15/0 15/27/0 2/40/0 1/41/0

varying ε [p, r=1] 25/17/0 28/14/0 28/14/0 24/18/0 8/34/0 6/36/0
In Total 105/63/0 101/67/0 102/66/0 63/105/0 10/158/0 8/160/0

Table 3: Characteristic of the real-world partial label data sets.

Data Set #Examples #Features #Class Labels avg. #CLs Task Domain
FG-NET 1,002 262 78 7.48 facial age estimation (Panis and Lanitis 2015)

Lost 1,122 108 16 2.23 automatic face naming (Cour, Sapp, and Taskar 2011)
MSRCv2 1,758 48 23 3.16 object classification (Liu and Dietterich 2012)
BirdSong 4,998 38 13 2.18 bird song classification (Briggs, Fern, and Raich 2012)

Soccer Player 17,472 279 171 2.09 automatic face naming (Zeng et al. 2013)
Yahoo! News 22,991 163 219 1.91 automatic face naming (Guillaumin, Verbeek, and Schmid 2010)

lem via ECOC coding matrix [suggested configuration:
codeword length L = d10 log2(q)e].

For PL-LE, the parameter λ is set to 0.01 and the number
of neighbors K is set to 20. The parameters C1 and C2 are
set to 1 and 1, respectively. The kernel function in PL-LE is
Gaussian kernel.

Controlled UCI Data Sets
Table 1 summarizes the characteristics of six controlled UCI
data sets (Bache and Lichman 2013). Concretely, follow-
ing the widely-used controlling protocol, an artificial par-
tial label data set is derived from one multi-class UCI data
set by configuring three controlling parameters p, r and ε
(Cour, Sapp, and Taskar 2011; Liu and Dietterich 2012;
Chen et al. 2014; Zhang, Yu, and Tang 2017). Here, p con-
trols the proportion of examples which are partially labeled
(i.e. |Si| > 1), r controls the number of false positive labels
in the candidate label set (i.e. |Si| = r+1), and ε controls the
co-occurring probability between one extra candidate label
and the ground-truth label. As shown in Table 1, a total of
28 (4×7) parameter configurations are considered for each
controlled UCI data set.

Figure 2 illustrates the classification accuracy of each
comparing algorithm as p increases from 0.1 to 0.7 with
step-size 0.1 (r = 1). Along with the ground-truth label, one
class label in Y will be randomly picked up to constitute the
candidate label set. Due to page limit, figures for the cases
of r = 2 and r = 3 are not illustrated here while similar re-
sults to Figure 2 can be observed as well. Figure 3 illustrates
the classification accuracy of each comparing algorithm as ε
increases from 0.1 to 0.7 with step-size 0.1 (p = 1, r = 1).
Given any label y ∈ Y , one extra label y′ ∈ Y is designated
as the coupling label which co-occurs with y in the candi-
date label set with probability ε. Otherwise, any other class
label would be randomly chosen to co-occur with y.

As illustrated in Figures 2 and 3, the performance of PL-
LE is highly competitive to other comparing algorithms in
most cases. Furthermore, pairwise t-test at 0.05 significance
level is conducted based on the results of ten-fold cross-
validation. Table 2 reports the win/tie/loss counts between
PL-LE and each comparing approach. Specifically, out of the
168 statistical tests (28 configurations x 6 UCI data sets), it
is shown that:
• Across all the controlling parameter configurations and

controlled UCI data sets, none of the comparing algo-
rithms have outperformed PL-LE significantly.

• Comparing to averaging-based disambiguation ap-
proaches (in total), PL-LE achieves superior performance
against CLPL and PL-KNN in 62.5% cases (105 out of
168) and 60.1% cases (101 out of 168) respectively.

• Comparing to identification-based disambiguation ap-
proaches (in total), PL-LE achieves superior performance
against PL-SVM and LSB-CMM in 60.7% cases (102 out
of 168) and 37.5% cases (63 out of 168) respectively.

• PL-LE achieves comparable performance against PL-
LEAF and PL-ECOC in 94.0% cases (158 out of 168) and
95.2% cases (160 out of 168) respectively. In addition,
PL-LE achieves superior performance against PL-LEAF
and PL-ECOC in 6.0% cases (10 out of 168) and 4.8%
cases (9 out of 168) respectively.

Real-World Data Sets
Table 3 summarizes the characteristics of real-world partial
label data sets, which are collected from several application
domains including FG-NET (Panis and Lanitis 2015) for fa-
cial age estimation, Lost (Cour, Sapp, and Taskar 2011),
Soccer Player (Zeng et al. 2013) and Yahoo!News
(Guillaumin, Verbeek, and Schmid 2010) for automatic face
naming from images or videos, MSRCv2 (Liu and Dietterich
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Figure 4: Parameter sensitivity analysis for PL-LE on the Lost and MSRCv2 data sets. (a) Classification accuracy of PL-LE
changes as λ increases from 0.006 to 0.014 with step-size 0.002 (K = 20, C1 = 1, C2 = 1); (b) Classification accuracy of
PL-LE changes asK increases from 16 to 24 with step-size 2 (λ = 0.01, C1 = 1, C2 = 1); (c) Classification accuracy of PL-LE
changes as C1 increases from 0.6 to 1.4 with step-size 0.2 (λ = 0.01,K = 20, C2 = 1); (d) Classification accuracy of PL-LE
changes as C2 increases from 0.6 to 1.4 with step-size 0.2 (λ = 0.01,K = 20, C1 = 1).

Table 4: Classification accuracy (mean±std) of each comparing algorithm on the real-world partial label data sets. In addition,
•/◦ indicates whether is statistically superior/inferior to the comparing algorithm on each data set (pairwise t-test at 0.05
significance level).

FG-NET Lost MSRCv2 BirdSong Soccer Player Yahoo! News
PL-LE 0.082±0.023 0.773±0.043 0.499±0.037 0.730±0.013 0.536±0.020 0.653±0.006
CLPL 0.063±0.027 0.742±0.038 0.413±0.041• 0.632±0.019• 0.368±0.010• 0.462±0.009•
PL-KNN 0.038±0.025• 0.424±0.036• 0.448±0.037• 0.614±0.021• 0.497±0.015• 0.457±0.004•
PL-SVM 0.063±0.029 0.729±0.042• 0.461±0.046 0.660±0.037• 0.464±0.011• 0.629±0.010•
LSB-CMM 0.059±0.025 0.693±0.035• 0.473±0.037 0.672±0.056• 0.498±0.017• 0.645±0.005•
PL-LEAF 0.076±0.037 0.717±0.059• 0.498±0.035 0.723±0.013 0.532±0.017 0.641±0.006•
PL-ECOC 0.040±0.018• 0.653±0.053• 0.440±0.039• 0.731±0.013 0.494±0.015• 0.610±0.009•

2012) for object classification, and BirdSong (Briggs,
Fern, and Raich 2012) for bird song classification. The av-
erage number of candidate labels (avg. #CLs) for each real-
world partial label data set is also recorded in Table 3.

Table 4 reports the mean classification accuracy as well as
standard deviation of each comparing algorithm. Pairwise
t-test at 0.05 significance level is conducted based on the
ten-fold cross-validation, where the test outcomes between
PL-LE and the comparing approaches are also recorded.

As shown in Table 4, it is impressive to observe that:
• On all data sets, PL-LE achieves superior or at least

comparable performance against all the comparing ap-
proaches.

• On all data sets, PL-LE significantly outperforms PL-
KNN.

• PL-LE significantly outperforms PL-ECOC on FG-NET,
Lost, MSRCv2, Soccer Player and Yahoo!News.

• PL-LE achieves superior performance against all the com-
paring approaches except PL-LEAF on the two large-scale
data sets (Soccer Player and Yahoo!News) .

Note that the proposed method performs better on larger
datasets. It is because that label enhancement can better re-
cover the hidden GLD in lager datasets.

Sensitivity Analysis
In this subsection, performance sensitivity of the proposed
PL-LE approach w.r.t. its parameters λ, K, C1 and C2 will

be further analyzed.
Figure 4 illustrates how PL-LE performs under different

parameter configurations. For clarity of illustration, two data
sets (MSRCv2 and Lost) are chosen here for sensitivity
analysis while similar observations also hold on other data
sets.

As shown in Figure 4, it is obvious that the performance of
PL-LE is stable across a broad range of each parameter. This
property is quite desirable as one can make use of PL-LE to
achieve robust classification performance without the need
of parameter fine-tuning. Therefore, the parameter configu-
ration for PL-LE in Subsection 4.1 naturally follows from
these observations.

Conclusion
In this paper, the problem of partial label learning is stud-
ied where a novel approach PL-LE is proposed. Different
from existing strategies, PL-LE considers the generalized la-
bel distribution in the training data sets. Since generalized la-
bel distribution is not explicitly available in the training sets,
PL-LE recovers the generalized label distribution via lever-
aging the topological information of the feature space, and
then induces the predictive model based on multi-output re-
gression analysis. Effectiveness of the proposed approach is
validated via comprehensive experiments on both controlled
UCI data sets and real-world PL data sets.

It is interesting to investigate effective ways to make full
use of the generalized label distribution in partial label learn-
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ing. Furthermore, label enhancement need to be investigated
when the partial label sets of PL training examples exhibit
certain structures. In the future, it is also important to explore
other techniques to recover the generalized label distribution
for partial label learning.
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