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Abstract

Knowledge distillation is an effective technique that has been
widely used for transferring knowledge from a network to
another network. Despite its effective improvement of net-
work performance, the dependence of accompanying assis-
tive models complicates the training process of single net-
work in the need of large memory and time cost. In this paper,
we design a more elegant self-distillation mechanism to trans-
fer knowledge between different distorted versions of same
training data without the reliance on accompanying models.
Specifically, the potential capacity of single network is exca-
vated by learning consistent global feature distributions and
posterior distributions (class probabilities) across these dis-
torted versions of data. Extensive experiments on multiple
datasets (i.e., CIFAR-10/100 and ImageNet) demonstrate that
the proposed method can effectively improve the generaliza-
tion performance of various network architectures (such as
AlexNet, ResNet, Wide ResNet, and DenseNet), outperform
existing distillation methods with little extra training efforts.

Introduction
Recent years have been witnessed significant progress in
the performance of various pattern recognition tasks (He et
al. 2016a; Huang, Liu, and Weinberger 2017), relying on
deep convolutional neural networks. However, state-of-the-
art models usually involve very deep networks with tremen-
dous parameters and a large number of floating point op-
erations, which hinders them from real-world applications
on low-resource devices, such as smartphones and wear-
able gadgets. To alleviate this bottleneck, a variety of net-
work compression methods such as low-rank decomposi-
tion (Denton et al. 2014), weight pruning (Han, Mao, and
Dally 2016) and structured sparsity (Liu et al. 2017), have
been exploited to obtain a small model that can work as well
as a trained large model while reducing the time and mem-
ory space in the inference process effectively.

From a network compression perspective, a large network
can be compressed to the corresponding small network of
similar accuracy (Denton et al. 2014; Han, Mao, and Dally
2016) by layer-wise decomposition or iteratively pruning.
Though small network is capable of preserving complex
fitting function with reasonable performance, compared to
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Figure 1: The diagrams of three distillation mechanisms.

large network, it is harder to train from scratch and exca-
vate own potential capacity to a more desired solution (ro-
bust minima). To better train a small network, model distil-
lation, i.e., teacher-to-student mechanism that directly trains
a student network to inherit the knowledge (e.g., class prob-
abilities (Hinton, Vinyals, and Dean 2015), logits (Ba and
Caruana 2014), intermediate feature maps (Romero et al.
2015), attention map (Zagoruyko and Komodakis 2017))
of a deeper or more complex teacher network, has been
introduced. In this way, the student model can approxi-
mate the capacity of the powerful pre-trained teacher model
by absorbing the extra supervised information. Instead of
knowledge transfer from a static teacher to a student, a new
student-to-student mechanism is designed in (Zhang et al.
2018b) to allow an ensemble of students to teach each other
with deep mutual learning throughout the whole training
process. This enables each student in such a peer-teaching
based scenario to learn a better solution than directly super-
vised training of student or distilling from a fixed pre-trained
teacher model.

Although the above two methods of model distillation can
boost the accuracy and generalization ability of student net-
work, they have some obvious drawbacks: 1) The whole
training process is expensive due to the involvement of ei-
ther a cumbersome teacher model or multiple student net-
works; 2) A teacher network that overfits the training set
can be less effective due to the limitation of valuable infor-
mation beyond the common hard label (Anil et al. 2018);
3) It remains unclear how a teacher model boost another
model in principle, considering the facts that slight mistakes
made by the teacher model may be helpful for training the
student model (Hinton, Vinyals, and Dean 2015), and two
entirely same student networks are also able to teach each
other (Zhang et al. 2018b). These shortages motivate us to
develop a new mechanism that directly optimizes student
network to reach a more desired solution from the raw train-
ing data without going through another teacher or interme-
diate network.
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In this paper, we propose an elegant training mechanism,
namely self-distillation (also called self-teaching) in Fig-
ure 1, to efficiently optimize single network from the con-
sistent distributions of data representations without the assis-
tance of other models. Usually, the common data-distortion
techniques (e.g., random mirror/cropping, rotation, multi-
ple scales) only enlarge additional virtual samples from the
neighborhood of existing training samples, which makes
network see more distorted training samples to improve
model generalization (Simard et al. 1996). In another view-
point, good generalization requires the model to be capable
of keeping the similar or invariant class probability predic-
tions (posterior distributions) and global feature represen-
tations (feature distributions) across different distorted ver-
sions of same training data. Thus, to further excavate the po-
tential capacity of single network, we design a novel data-
distortion guided self-distillation mechanism to minimize
the discrepancy of posterior probability and feature distri-
butions for data-to-data knowledge transfer. More specifi-
cally, we utilize the Kullback Leibler (KL) divergence con-
straint to measure the match between the posterior probabil-
ity distributions of different distorted versions, in a similar
way as the knowledge distillation between different mod-
els (Hinton, Vinyals, and Dean 2015), and adopt the em-
pirical Maximum Mean Discrepancy (MMD) (Long et al.
2015) as the nonparametric metric for measuring the con-
sistency of feature distributions between these distorted ver-
sions. While for training the baseline classification task, we
still keep the conventional cross entropy loss term (i.e., soft-
max loss) with hard labels. The above three loss terms can
be integrated together as the optimization objective for im-
plementing self-distillation of single network from scratch
in end-to-end manner. This new mechanism can drive sin-
gle network to automatically learn more inherent represen-
tations for generalization, effectively inhibit learned features
toward single direction reliance (Morcos et al. 2018).

To verify the effectiveness of self-distillation, we perform
extensive experiments on current state-of-the-art networks
ranging from AlexNet (Krizhevsky, Sutskever, and Hinton
2012) to ResNet (He et al. 2016a), WideResNet (Zagoruyko
and Komodakis 2016), DenseNet (Huang, Liu, and Wein-
berger 2017). Experimental results demonstrate that our
self-distillation mechanism substantially improves the gen-
eralization performance on any of the network architecture.
Compared to other mechanisms in Figure 1, we achieve
higher accuracy with several times fewer parameters.

Related Works
Model Compression. Deep network compression is aimed
to remove redundant parameters and computations of a com-
plex model while preserving original accuracy. Denil et al.
(Denil et al. 2013) show that huge redundancies exist in
weight parameters of deep networks and are possible to be
removed. A set of tangible methods have been designed,
such as the low-rank decomposition of kernel tensor (Denton
et al. 2014), low-threshold pruning of non-structured spar-
sity (Han, Mao, and Dally 2016) and parameter sharing of
hash trick (Chen et al. 2015). To achieve a larger speedup of
network, some structured pruning methods (Liu et al. 2017;

He, Zhang, and Sun 2017; Li et al. 2017) have been de-
veloped to remove a group of weights or a whole feature
map at a time without the requirement of specially designed
software/hardware accelerators. However, these methods in-
volve complicated training processes such as layer-wise
decomposition, iteratively pruning, and repetitiously fine-
tuned procedures after each decomposition or pruning step.
Knowledge Distillation. Knowledge distillation is to train
student network to reach a better solution via extra super-
vised information from pre-trained teacher model. The ba-
sic idea was proposed over a decade ago in (Bucila, Caru-
ana, and Niculescu-Mizil 2006) but was refocused recently
in (Hinton, Vinyals, and Dean 2015). Its main goal is to
transfer dark knowledge from a powerful teacher network
such as deep (Urban et al. 2017; Chen et al. 2017), wide
(Romero et al. 2015), or an ensemble of models (Hinton,
Vinyals, and Dean 2015) to a student network (shallow or
thin). Trained in this way, the student network inherits the
teacher’s similar properties such as class probability distri-
bution, the logits (the input to softmax), and intermediate
representations to achieve better performance than the net-
work independently trained with hard labels. In a similar
manner, multiple student networks (Furlanello et al. 2018;
Zhang et al. 2018b) can also teach each other via mu-
tual learning. By knowledge distillation, either teacher-to-
student or student-to-student, the training process is expen-
sive due to the reliance on auxiliary models.
Data Distortion. Data distortion can be taken as a tactic to
boost the generalization ability of model (Simard et al. 1996)
by alleviating data over-fitting, which is a critical influenc-
ing factor of deep networks. The common techniques such
as random mirror/cropping (Krizhevsky, Sutskever, and Hin-
ton 2012), scale jittering or color altering (He et al. 2016a),
and random erasing (Zhong et al. 2017), are mainly aimed
to achieve invariant class for different distorted instances of
same training data. Unfortunately, the deep networks may be
prone to memorize more training data (Morcos et al. 2018)
and result in worse generalization on new test data. To learn
more discriminative features from data, some new loss terms
have been designed to enforce the learned features toward
intra-class compactness and inter-class separability, such as
contrastive loss (Hadsell, Chopra, and LeCun 2006), triplet
loss (Schroff, Kalenichenko, and Philbin 2015) and center
loss (Wen et al. 2016). However, their training processes are
very cumbersome and unstable because they need a careful
selection of training pairs/triplets from tremendous training
samples, while the center loss may become ineffective for
many tasks because deep features of each class are not nec-
essarily clustered in single center. Recently, mixup (Zhang
et al. 2018a) is proposed to construct the inter-class relation
via different combinations of training samples. This is com-
plementary to our data-distortion guided self-distillation and
can be combined for further improvement.

Self-distillation
Self-distillation is different from self-training (Rosenberg,
Hebert, and Schneiderman 2005; Radosavovic et al. 2018),
which has been widely used in semi-supervised problem to
exploit large-scale unlabeled data in supervised learning. In
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Figure 2: The proposed self-distillation mechanism for the training of single network, consisting of data-distortion operation,
feature extraction layers, classifier of fully-connected (fc) layer, and predictor of softmax. Three loss terms (MMD loss with
global features, KL divergence loss with predictive probabilities, and cross entropy loss with hard labels) are integrated for
training a single network. The fc layer is shared by two-branch streams, and does not incur extra parameters.

contrast, self-distillation is a fully-supervised manner to ex-
ploit the potential capacity of single network only from la-
beled data without the need of assistive models.

The overall training process is shown in Figure 2, which is
composed of four parts: 1) A data-distortion operation gen-
erates two-branch distorted instances from the same training
data, 2) a global feature extraction through convolutional
layers obtains their representation vectors as feature distri-
butions, then the MMD metric reduces the discrepancy of
them, 3) a fc layer classifier returns the logits (z), and 4) a
softmax predictor yields their class probabilities as posterior
distributions, then the KL divergence measures the consis-
tency of them. Finally, we can combine the above two con-
straints (MMD and KL) with the conventional cross entropy
loss computed by hard labels, to implement the whole train-
ing optimization of single network in end-to-end manner.

Compared to the training of a standard baseline network,
the self-distillation training does not add the new data-
distortion manner and the extra network parameters. Every-
time it uses the standard single network to tackle two dis-
torted instances (xai and xbi) produced by the common ran-
dom mirror and cropping for each training sample (xi). Due
to the finite statuses of mirror and slightly cropping, all the
distorted instances of each training sample repetitiously ap-
pear in random order for the training processes of baseline
and self-distillation. Note that the data-distortion and two-
branch operations are not be used during the test stage.

Problem Formulation
We define the Ds={(x1, y1), . . . , (xN , yN )} as a labeled
source dataset from K classes, where the N is the to-
tal number of training samples, and yi is the correspond-
ing hard label of input sample xi. For a mini-batch in-
put B={(x1, y1), . . . , (xn, yn)} in Figure 2 during train-
ing stage, we utilize the same data-distortion φ(B) manner
(i.e., random mirror and cropping) two twice to obtain two-
branch distorted samples Ba={(xa1, y1), . . . , (xan, yn)}
and Bb={(xb1, y1), . . . , (xbn, yn)}, where the hard labels
{y1, . . . , yn} are shared for the two-branch data. For a net-
work with l layers, the first l−1 layers are all feature extrac-
tion layers, and the h(l−1) = f(Wx) will be global feature
vector of input data x, where W is weight projection matrix

of all l − 1 layers. In the following of this paper, p(h(x))
denotes the feature distribution of one sample, while p(y|x)
represents the posterior distribution. Except for predictions
of hard labels, we hope to minimize the discrepancy of fea-
ture/posterior distributions across two distorted versions.

The MMD metric for global feature distributions
To match the feature distribution, a metric between repre-
sentation vectors of two-branch distorted versions need to be
defined. Here, we adopt the empirical MMD as a nonpara-
metric metric that has been widely used in domain adapta-
tion (Long et al. 2015) to measure the discrepancy of dis-
tributions. Previous researches demonstrate that MMD pos-
sesses better robustness and efficiency in computation and
optimization (Quadrianto, Petterson, and Smola 2009). Our
goal is to make p(h(xai)) and p(h(xbi)) to be close, and the
empirical MMD in Figure 2 can be constructed as follows:

MMDemp =‖ 1

n

n∑
i=1

h(xai)−
1

n

n∑
i=1

h(xbi) ‖22, (1)

where n is the number of samples in a mini-batch. It is equiv-
alent to a l2 loss on mean vector of global features, which
effectively reduces the churn caused by certain outlier sam-
ple. In backpropagation algorithm, its gradient need to be
transmitted layer by layer and can be calculated as:

∇hMMDemp =


2
n2 (Σn

i=1h(xai)− Σn
i=1h(xbi)),x ∈ Ba

− 2
n2 (Σn

i=1h(xai)− Σn
i=1h(xbi)),x ∈ Bb

Thus, this term can be easily incorporated into any existing
objective function to jointly optimize network parameters.

The KL divergence for posterior distributions
Usually, we need to add the softmax layer after the last fc-
layer classifier to produce the posterior probability p(y|x)
for an arbitrary input x, and its formulation is defined as:

p(y = k|x) = softmax(zk) =
exp(zk)

ΣK
i=1exp(zi)

, (2)

where the zk is the predicted value of class k from fc layer
classifier, and as logit to be fed into subsequent softmax
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layer. Then, the posterior distribution vector p(x) = {p(y =
1|x), . . . , p(y = K|x)} can be written for all K categories
of this sample, which is a K-dimensional vector and each
dimension represents a posterior probability of certain cate-
gory. To reach the consistent posterior distribution between
the two-branch distorted versions, we adopt the KL diver-
gence in Figure 2 as the metric to measure the match as fol-
lows:

DKL(pb||pa) = −
1

n

n∑
i=1

p(xbi) log
p(xai)

p(xbi)

= H(pb,pa)−H(pb),

(3)

where it denotes the KL distance from pa to pb, and pb is
the target probabilities as soft labels to supervise the learning
of the predicted probabilities pa. Thus, the gradient of KL
distance can be calculated as follows:

∂DKL(pb||pa)/∂zk = ∂H(pb,pa)/∂zk − ∂H(pb)/∂zk,

where H(pb,pa) denotes the cross entropy and H(pb) is
the empirical entropy (it is constant value, and so the gradi-
ent is zero). Meanwhile, we construct another KL distance
DKL(pa||pb) to supervise the learning of predicted proba-
bilities pb. The above two KL terms can be integrated to-
gether to update network parameters with gradient descent
optimization, and the gradient is written as follows:

∂DKL/∂zk =



∂DKL(pb||pa)/∂zk =

p(y = k|xai)− p(y = k|xbi),x ∈ Ba

∂DKL(pa||pb)/∂zk =

p(y = k|xbi)− p(y = k|xai),x ∈ Bb

This process can be taken as the mutual learning (Zhang et
al. 2018b) across two-branch distorted versions.

To better learn the inter-class relation, the temperature
parameter T in (Hinton, Vinyals, and Dean 2015) is in-
troduced to soften the output probability p(y = k|x) =
softmax(zk/T ). The higher temperature will returns softer
labels so that some categories with near-zero probabilities
will not be ignored by the above KL term. Trained in this
way, it will tell the network extra inter-class information,
for instance, ’car’ should share more approximated category
probability with ’truck’ than with ’cat’. Thus, the single net-
work not only learns the consistent posterior distribution, but
also constructs the vicinity relation of different categories as
the same efficacy in knowledge distillation of different mod-
els (Hinton, Vinyals, and Dean 2015).

Optimisation
Our data-distortion guided self-distillation mainly consists
of three types of loss terms to update parameters of single
network throughout the whole training process. Firstly, we
maintain the cross entropy softmax loss for predictions of
hard labels, and this term can be defined as follows:

LCa
= − 1

n

n∑
i=1

log p(y = yi|xai), (4)

where xai and yi represent a input sample and the hard la-
bel of current sample, respectively. The p(y = yi|xai) is
the posterior probability of predicting the hard label. In Fig-
ure 2, LCa

and LCb
denote the respective softmax loss from

distorted versions (Ba andBb). Secondly, we inject the tem-
perature parameter T into the KL loss term in Eq. 3 to learn
the consistent posterior distribution and inherent inter-class
relation. By integrating Eq. 1, Eq. 3 and Eq. 4, we can con-
struct the final optimization objective of single network:

Lnet =(LCa
+ LCb

) + λ(DKL(pb||pa) +DKL(pa||pb))

+ µMMDemp,
(5)

where λ and µ are posterior and feature distributions regula-
tion parameters. We usually set λ=1 as referenced in (Zhang
et al. 2018b), which means the equivalent importance be-
tween the prediction of hard labels and the learning of con-
sistent class probabilities across the two-branch distorted
versions of same input. However, the temperature parame-
ter T in KL term need to be further tuned for various tasks,
and the higher T denotes the more prone to emphasize the
related attributes of different categories. For hard tasks (i.e.,
large-scale classification (Hinton, Vinyals, and Dean 2015)
and object detection (Chen et al. 2017)), the large T may
bring more noises which injure the right updated directions
of parameters due to the highly prediction errors on these
tasks. When Wij is denoted as one element in the network
weight matrix W, we can combine the above gradient of
each loss term to calculate the final partial derivative as:

∂Lnet

∂Wij
=

(LCa
+ LCb

)

∂Wij
+ λ

DKL

∂zk
· zk
∂Wij

+ µ(∇hMMDemp)T
∂h
∂Wij

,

(6)

where ∂h/∂Wij is a vector consisting of partial derivatives
of each element in h with respect to Wij . For any given net-
work architecture, we can easily compute each weight gra-
dient via Eq. 6 and optimize the whole network with the
regular stochastic gradient descent (SGD).

Experiments
To evaluate the performance of the proposed data-distortion
guided self-distillation training mechnism, we conducted
extensive experiments on the current state-of-the-art net-
works (i.e., AlexNet, ResNet, Wide ResNet and DenseNet)
and several benchmark datasets (i.e., CIFAR-10/100 and
ImageNet). And for manifesting the effectiveness of self-
distillation mechanism itself, we only adopt the simple and
most common data-distortion techniques: random mirror
and cropping in all the experiments for various network ar-
chitectures. Trained in this way, we hope to produce consid-
erable performance gains only from simple data-distortion
guidance to display effectiveness and availability of the
mechanism itself. All the experiments are performed with
the high-efficiency caffe (Jia et al. 2014) platform.
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Mechanism Student net Test error Parameters Comments
Independently training (IT)

ResNet-32

31.01 0.5M single student (stu.)
Teacher-to-student (TS) 30.52 (0.5+36.5)M teacher: WRN-28-10
Student-to-student (SS) 29.27 (0.5+36.5)M another stu.: WRN-28-10
Student-to-student (SS) 28.81 (0.5+0.5)M another stu.: ResNet-32
Self-distillation (SD) 28.22 0.5M single stu.

Table 1: Comparison with model distillation on CIFAR-100 (error rate (%)). WRN denotes the WideResNet.

Datasets and Settings
Datasets. We follow state-of-the-art networks on CIFAR
datasets (Krizhevsky and Hinton 2009). The CIFAR-10
consists of 32 × 32 colour images in 10 classes including
50000 training samples and 10000 test samples, where each
class has 5000 training data. The CIFAR-100 is a more chal-
lenging recognition task, which has more classes with fewer
samples on each class. The training and test sets are also
50000 and 10000 colored natural scene images (32×32 pix-
els each) drawn from 100 classes. For data preprocessing,
we find that the previous ZCA whitening has a negative ef-
fect on final accuracies of current popular networks, which is
also confirmed in (Zagoruyko and Komodakis 2017). Thus,
we only use the simpler channel means and standard de-
viations to normalize data. For data-distortion operation,
we follow a standard strategy that is widely used for the
two datasets (He et al. 2016a; Zagoruyko and Komodakis
2016): training images are padded 4 pixels with zero-value
on each side, and randomly crop a 32 × 32 region from
the padded image or its mirror flip; test images maintain
the original shape and size. Additionally, we also follow the
classical AlexNet (Krizhevsky, Sutskever, and Hinton 2012)
and ResNet-18 (He et al. 2016a) networks on the large-
scale ImageNet-2012 dataset (Russakovsky et al. 2015) that
contains about 1.3 million training images and 50000 vali-
dation images from 1000 classes.
Implementation Details. We implement training proce-
dures of all the networks according to the specific experi-
mental settings of previous literature, and evaluate the per-
formance improvements between the training processes of
self-distillation and original baseline. Specifically, we per-
form training processes of ResNet-32/110 (He et al. 2016a)
or pre-activation ResNet-18/34 (He et al. 2016b) as imple-
mented in (Zhang et al. 2018b), where it sets mini-batch
size to 64, weight decay to 10−4 and initial learning rate
to 0.1 (dropped by 0.1 every 60 epochs and trained for
200 epochs). For WideResNet (Zagoruyko and Komodakis
2016), we follow original configurations that set 128 sam-
ples per mini-batch, weight decay to 5 × 10−4 and initial
learning rate to 0.1 (dropped by 0.2 after 60, 120 and 180
epochs and trained for 200 epochs). For DenseNet (Huang,
Liu, and Weinberger 2017), we adopt the memory-efficient
code 1 and follow the original settings that they use weight
decay of 10−4, mini-batch size of 64 for 300 epochs and
initial learning rate of 0.1 (divided by 10 at 50% and 75%
of the total number of training epochs). All the networks are

1Code: https://github.com/Tongcheng/caffe/.

trained using Nesterov momentum (Sutskever et al. 2013) of
0.9 and weight initialization of “msra” in (He et al. 2015).

Comparison with model distillation mechanisms
As one of our aims of self-distillation mechanism is to
overcome the expensive computation in training of model
distillation accompanied with assistive models while pre-
serving the generalization performance, we give a detailed
comparison to model distillation mechanisms including
teacher-to-student and student-to-student. The first mecha-
nism need fixed soft labels produced by a powerful pre-
trained teacher model for supervised learning. The second
mechanism involves multiple student networks to learn from
data and teach each other simultaneously. In contrast, our
self-distillation does not require any auxiliary model or net-
work to jointly optimize the single student network.

Table 1 compares our self-distillation (SD) with other
training mechanisms. As expected the previous model distil-
lation actually improves the student performance compared
to independently training the student with hard labels. Fur-
thermore, the deep mutual learning between both of stu-
dents achieves better accuracy improvement than the teach-
ing from a static teacher, and even two entirely same stu-
dent architectures have better results. It indicates that the
results of model distillation are related to network architec-
tures. However, it is still unclear what the ideal architecture
properties of a teacher or another student is. Unlike theirs,
our SD learns some more inherent representations only from
single student itself by the training of consistent feature and
posterior distributions. Finally, the SD achieves a larger per-
formance gain without additional parameters or models. It
verifies that the SD indeed excavates the potential capacity
of existing parameters to effectively improve the generaliza-
tion ability of single network, which drives single model to
reach a lower generalization error.

Self-distillation for network compression
Model distillation can result in compressed network archi-
tecture, by training small compact network with the assis-
tance of powerful pre-trained teacher network. However, if
we independently train this compact network with an off-
the-shelf optimization scheme, it will yield a considerable
gap between accuracies of small and large networks. To mit-
igate this issue, our self-distillation mechanism directly op-
timizes the single compact network with the aid of data-
to-data knowledge transfer. Table 2 shows evident perfor-
mance improvements of compact networks from ResNet,
WideResNet and DenseNet by self-distillation. These popu-
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Dataset Compact networks Complex networks
network depth params test error (‘n/y’) network depth params test error (‘n’)

CIFAR-10
ResNet 32 0.5M 7.22 / 6.32 ResNet 110 1.7M 6.00
DenseNet 40 1.0M 5.47 / 5.20 DenseNet 100 7.0M 4.45
WRN 16-8 11M 4.27 / 3.92 WRN 28-10 36.5M 4.00

CIFAR-100
ResNet 32 0.5M 31.01 / 28.22 ResNet 110 1.7M 26.79
DenseNet 40 1.0M 25.20 / 23.68 DenseNet 100 7.0M 21.58
WRN 16-8 11M 20.43 / 19.33 WRN 28-10 36.5M 19.25

Table 2: The self-distillation for compact networks on CIFAR datasets (error rate (%)). ‘n/y’ denotes without/with SD.

lar network architectures have both of compact and complex
networks. Compared to the self-distilled compact networks,
these complex networks yield small accuracy gains with the
cost of tremendous computing resource and memory over-
head caused by the increasing of network depth or width.
Fortunately, it is shown that our SD mechanism can obvi-
ously boost the accuracy of compact networks to a similar
level of corresponding complex networks.

Overall performances of various networks
Our SD can be viewed as a generic supervised learning
mechanism for improving the generalization performance of
any single network without the need of teacher models or as-
sistive networks. Thus, we also compare a variety of network

network depth params CIFAR-10 CIFAR-100
bas. SD bas. SD

ResNet 32 0.5M 7.22 6.32 31.01 28.22
110 1.7M 6.00 5.57 26.79 25.04

ResNet 18 11.2M 5.15 4.83 23.45 21.47
(pre-act.) 34 21.3M 4.90 4.42 22.68 20.75

WRN
40-4 8.9M 4.53 4.30 21.18 19.93
16-8 11.0M 4.27 3.92 20.43 19.33
28-10 36.5M 4.00 3.78 19.25 18.54

DenseNet 40 1.0M 5.47 5.20 25.20 23.68
100 7.0M 4.45 4.34 21.58 20.50

Table 3: The performance improvement of self-distillation
compared to baseline (bas.) networks. Note all the experi-
ments are implemented with caffe platform, which may be
slightly different from published results of original papers.

architectures with and without SD. Table 3 shows its effec-
tiveness for these networks from shallow/thin to deep/wide.
From these results, we are able to confirm that our SD mech-
anism can reliably and steadily reduce the generalization
error of single model compared to independently training
only with hard labels. Compared to a small network, a large
network requires several times of parameters and computa-
tions to obtain a slight accuracy gain on CIFAR-10. In con-
trast, our SD can easily attain a single model of high accu-
racy without the dependence of extra parameters and mod-
els. Furthermore, our SD also produces remarkable accuracy
gains (> 1%) on CIFAR-100 for various network architec-
tures. It implies that the SD is more effective for the chal-
lenging case (each class only has limited samples).

Extension to large-scale classification task
Since SD has displayed its effectiveness for training vari-
ous networks on these small datasets, we further evaluate
its performance on the large-scale ImageNet-2012 classifi-
cation task (Russakovsky et al. 2015). In the implementa-
tion, we resize all the raw images to single-scale 256× 256,
and then randomly crop a 227×227 or 224×224 region from
a full image (256× 256) or its mirror flip during the training
stage. Except for random mirror and cropping, we do not use
any other data-distortion techniques. Meanwhile, test image
still keeps the single view of central region from a full im-
age. Here, the standard AlexNet (Krizhevsky, Sutskever, and
Hinton 2012) and ResNet-18 (He et al. 2016a) with short-
cut type B are addressed, where are from caffe platform.
And the other detailed configurations are the same as the
original papers. The experimental results are given in Ta-
ble 4. For the AlexNet architecture, the final validation error

network depth params baseline SD
AlexNet 8 61M 42.80 / 19.98 42.04 / 19.05
ResNet 18 11.7M 32.27 / 12.13 31.34 / 11.30

Table 4: The validation errors (single crop) on ImageNet.

rates can be reduced from 42.8%/19.98% (top-1/top-5) to
42.04%/19.05%. Furthermore, we can also reduce valida-
tion error rates of ResNet-18 by 0.9% top-1 and 0.8% top-5.
It implies that SD is also effective on large-scale classifi-
cation task. Although AlexNet architecture uses the strong
regularization of dropout, our SD still can effectively im-
prove the final performance. It further demonstrates that the
proposed mechanism dose indeed drive single network to
learn some inherent properties for generalization beyond the
common regularization terms. In addition, we also do not
find the related literatures to report such large improvements
of other model distillation mechanisms (Hinton, Vinyals,
and Dean 2015; Ba and Caruana 2014; Romero et al. 2015;
Urban et al. 2017) on large-scale dataset. Thus, compared to
the model distillation methods, our SD has better extensibil-
ity and generality for any network architecture and dataset.

Hyper-parameters
For selections of hyper-parameters in Eq. 5, we firstly fix
the λ = 1 as referenced in (Zhang et al. 2018b). For a ro-
bust model, it should predict the correct class label while
producing approximated inter-class probability distributions
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for these different distorted instances of same training in-
put, which is the same as the human vision. Secondly, the
temperature parameter T is aimed to soften final predicted
probabilities of softmax, and then softer probabilities are in-
corporated into KL term in Eq. 3 as supervised information
to learn feature representations toward the inter-class rela-
tions. According to our experiences and suggestions in (Hin-
ton, Vinyals, and Dean 2015; Romero et al. 2015), we find
that the setting of fixed values can keep stable and reli-
able results for all the networks (T = 2 for CIFAR-10,
T = 3 for CIFAR-100 and ImageNet), and the larger T
may incur more noises and the worse final results. Finally,
the hyper-parameter µ is to emphasize consistent global fea-
tures. However, we can not control the exactly the same on
all the dimensions of global features due to the real pres-
ence of different distortions, and thus it is only a regular-
ization term as same as the regular weight decay. We also

µ 0 0.0001 0.0005 0.001 0.005 0.01
Err. 29.06 28.79 28.22 28.81 28.88 28.54

Table 5: Error rate (%) of ResNet-32 for hyper-parameter µ
on CIFAR-100. µ = 0 denotes without the MMD.

conduct experiments for different µ in Table 5, and we can
see that the final results are insensitive to the values of µ in
a wide range. However, overly high µ (e.g., µ = 10) also
leads to the final accuracy degeneration. By default we set
µ = 0.0001 ∼ 0.0005.

Ablation studies
The SD mainly contains two components: MMD metric for
feature distribution and KL divergence for posterior distri-
bution. To analyze the respective effectiveness, we conduct
ablation studies with results shown in Table 6. The base-
line training denotes the regular manner with single mini-
batch samples augmented by data-distortion operation and
hard labels. In the two-branch case, two-branch samples are
generated by the same distorted operation (i.e., random mir-
ror and cropping) on current mini-batch input, and hard la-
bels are shared for them. To evaluate the effects of MMD
and KL constraints, we add them individually or jointly to
the training optimization objective of the standard baseline
network. From Table 6, we can see that two-branch data

network bas. two-branch MMD KL SD
ResNet-32 31.01 31.32 30.62 29.06 28.22
WRN-16-8 20.43 20.25 19.98 19.48 19.33

Table 6: The ablation studies of different components in self-
distillation on CIFAR-100 (error rate (%)).

streams trained only with hard labels are not able to obvi-
ously improve the accuracy of model. When we incorpo-
rate the MMD term or KL term, the accuracy will be effec-
tively promoted. It implies that each component of SD is in-
dependently effective. Furthermore, the better result can be

achieved by integrating the two terms into baseline training,
it further displays that the two components are also jointly
effective.

Discussions
Although the experimental results demonstrate that self-
distillation mechanism can effectively reduce the network
generalization error, the theoretical interpretation needs fur-
ther study in the future. The notation of single direction re-
liance (Morcos et al. 2018) can be a possible way to quan-
tify the generalization ability of the model trained by the
proposed mechanism or regular optimized mechanism. In
addition, there maybe several possibilities for further ex-
ploitation of the potential capability of single model. Firstly,
we can consider more types of data-distortion techniques
(i.e., affine, thin plate spline, and perspective transforma-
tions (Jaderberg et al. 2015)) to harvest the greater benefits
from the self-distillation mechanism. Secondly, deep neural
networks trained with hard labels (Szegedy et al. 2014) eas-
ily cause the unexpected changing of their predictions when
tested on samples beyond the training distribution (known
as adversarial samples). Therefore, we can try the adver-
sarial idea (Goodfellow et al. 2014) to produce adversarial
samples, then use the self-distillation optimization between
adversarial and raw examples. Finally, unlike the category
probability distribution, the global feature distribution can
not exactly the same on all the dimensions due to the real
presence of data-distortion operation. Thus, we can design
some more robust metrics instead of MMD, or extract im-
portant and key features to match the consistency across dif-
ferent distorted versions of the same training data.

Conclusion
We propose a simple yet effective self-distillation mecha-
nism to optimize single network to a more desired solution
by introducing the learning of consistent feature/posterior
distributions between different distorted versions of same
training input. The proposed mechanism can be used to train
a compact network of high accuracy without the dependence
of powerful pre-trained teacher model. Compared to the
previous knowledge distillation (i.e., teacher-to-student and
student-to-student), the proposed method efficiently utilize
the data-to-data knowledge distillation to thoroughly dis-
card the dependence of assistive models, which effectively
reduce the training cost of obtaining a small network of
high accuracy. Extensive experiments show that this method
obviously boosts the accuracy and generalization ability of
single model whether it is compact or complex network.
Future works include the theoretical interpretation of self-
distillation, combination with other learning strategies for
further improving generalization, and applications to more
scenarios such as object detection and image segmentation.
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