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Abstract
Recent years have witnessed the great success of deep learn-
ing models in semantic segmentation. Nevertheless, these
models may not generalize well to unseen image domains
due to the phenomenon of domain shift. Since pixel-level
annotations are laborious to collect, developing algorithms
which can adapt labeled data from source domain to tar-
get domain is of great significance. To this end, we propose
self-ensembling attention networks to reduce the domain gap
between different datasets. To the best of our knowledge,
the proposed method is the first attempt to introduce self-
ensembling model to domain adaptation for semantic seg-
mentation, which provides a different view on how to learn
domain-invariant features. Besides, since different regions in
the image usually correspond to different levels of domain
gap, we introduce the attention mechanism into the proposed
framework to generate attention-aware features, which are
further utilized to guide the calculation of consistency loss in
the target domain. Experiments on two benchmark datasets
demonstrate that the proposed framework can yield competi-
tive performance compared with the state of the art methods.

Introduction
Semantic segmentation is a fundamental task in computer
vision, which assigns the class label for each pixel in a given
image (Tao et al. 2017). It has been widely utilized in many
important applications nowadays such as autonomous driv-
ing (Xu et al. 2017).

Deep learning is a powerful tool for semantic segmenta-
tion task. Nevertheless, the training of deep learning models
generally relies on a large amount of labeled data. A com-
mon solution in real world application is manual labeling.
Obviously, this process is laborious and time-consuming. It
is reported that high-quality semantic labeling requires about
90 minutes per image for the CITYSCAPES dataset (Cordts
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Figure 1: An illustration of domain shift in semantic seg-
mentation task. (a) Segmentation map of a real image gener-
ated with models trained on synthetic data without domain
adaptation technique. (b) Segmentation map of a real image
with models trained on both synthetic data and real ones us-
ing domain adaptation technique.

et al. 2016). An alternative way is to train deep neural net-
works with synthetic data. Recent advances on the graph-
ics engine make it feasible to collect photo-realistic images
from computer games with accurate pixel-level annotations
automatically (Richter et al. 2016). Research has been made
to apply models trained on synthetic data to real ones. How-
ever, the performance of these models on real images is usu-
ally not satisfactory due to the phenomenon of domain shift
(Adel, Zhao, and Wong 2017), which is caused by factors
like imaging devices (graphics engines vs. RGB sensors),
illumination, distortion, and shadows in different domains,
though it may be mild to a human observer. As a result, mod-
els which achieve high accuracies in synthetic datasets may
fail to yield good performances for real images as shown in
Figure 1 (a).
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An intuitive way to address this problem is to learn in-
variant features for images in both source domain and target
domain and reduce the domain gap. This technique is also
known as domain adaptation, which can be further divided
into supervised one (Tzeng et al. 2014), unsupervised one
(Adel, Zhao, and Wong 2017), and semi-supervised one (Ao,
Li, and Ling 2017). Since the labels from the target domain
are not available in most practical situations, this study fo-
cuses on unsupervised domain adaptation, where the source
domain supplies both images and annotations and the target
domain only supplies unlabeled images.

The initial inspiration of our work comes from an obser-
vation that a human can generally make a consistent inter-
pretation without effort when an image changes slightly. We
believe that a good model would possess this characteristic
just like humans do. In the light of this statement, an en-
semble of multiple networks is a better model than a single
network, since the ensemble model generally yields better
predictions and shows more robustness towards noise (Laine
and Aila 2016; Singh, Hoiem, and Forsyth 2016). Given a
series of networks trained on source-domain data, the en-
semble prediction of these networks on target-domain im-
ages is also likely to be closer to the ground truth. Thus,
a natural idea is to adopt the ensemble predictions as the
pseudo labels to assist the training of the base networks in
the ensemble (Bachman, Alsharif, and Precup 2014). As the
iteration goes on, the base networks become more accurate,
and the ensemble predictions also get closer to the correct
labels in the target domain. In this way, the domain gap can
be reduced correspondingly.

Obviously, the quality of the ensemble model determines
the performance of the whole framework. Therefore, how to
construct a good ensemble model is a critical issue. On the
one hand, using more base networks in the ensemble model
generally yields more robust results. On the other hand, it
also brings about higher time costs in the training phase.
To tackle this problem, we propose a novel self-ensembling
attention network which not only inherits the advantage of
ensemble model but also avoids high time costs for train-
ing. As shown in Figure 2, there are two main components:
a student network which plays a role of base networks and
a teacher network which plays a role of the ensemble net-
works. Both networks share the same architecture with an
attention module inside. The student network is jointly op-
timized with supervised segmentation loss from the source
domain and the unsupervised consistency loss from the tar-
get domain. The teacher network does not participate in the
back-propagation, and is updated with an exponential mov-
ing average method using the parameters in the student net-
work at different training time steps. In the test phase, the
target-domain images are sent to the teacher network to ob-
tain domain-invariant segmentation maps as shown in Fig-
ure 1 (b).

The main contributions of this study are summarized as
follows:

(1) We propose a self-ensembling model to address domain
shift in semantic segmentation task for the first time.
Our solution provides a different view on how to learn

domain-invariant features for semantic segmentation.

(2) Different regions in the image usually correspond to dif-
ferent levels of domain gap. Thus, those noteworthy re-
gions deserve more attention. To this end, we introduce
the attention mechanism into the proposed framework
to generate attention-aware features. The learnt atten-
tion maps are further utilized to guide the calculation of
consistency loss in the target domain which improves
the performance of the model.

(3) Experiments on two challenging benchmark datasets
demonstrate that our method significantly outperforms
the state of the art domain adaptation methods.

Related Work
Semantic Segmentation
Different from traditional image classification task where
each image is labeled with only one label, semantic segmen-
tation requires pixel-level predictions, which is more chal-
lenging. Inspired by the work in (Long, Shelhamer, and Dar-
rell 2015), numerous deep models have been proposed to
tackle semantic segmentation task with fully convolutional
networks (Noh, Hong, and Han 2015; Chen et al. 2018).
To train these deep models, abundant pixel-level annotations
are usually required, which are hard to be collected in real
world applications (Tao et al. 2017).

An alternative approach is to train these deep models
with synthetic data. Recent researches have made it feasi-
ble to generate dense pixel-accurate semantic label maps for
photo-realistic images extracted from computer games auto-
matically. It is reported that the labeling process for 25 thou-
sand images obtained from the game Grand Theft Auto V
costs only 49 hours, which dramatically reduces the amount
of human effort required (Richter et al. 2016). However, due
to the phenomenon of domain shift, models trained on these
synthetic data can hardly yield satisfactory performance in
real scenarios (Chang et al. 2017).

Domain Adaptation
The precondition of most conventional machine learning al-
gorithms lies on the consistent underlying distribution of
training and test sets (Liu, Wang, and Qiao 2017). Never-
theless, in the real-world applications, there usually exists
discrepancy between training and test phases, resulting in
poor performances (Killian et al. 2017). Domain adaptation
is a class of techniques that aims to reduce the discrepancy
between different domains (Tan et al. 2017).

According to whether labeled data in the target domain
are available, domain adaptation can be divided into su-
pervised one, unsupervised one, and semi-supervised one.
Tzeng et al. propose a new CNN architecture to address the
supervised domain adaptation which introduces an adapta-
tion layer and an additional domain confusion loss to learn
a representation that is both semantically meaningful and
domain-invariant (Tzeng et al. 2014). When there is no la-
beled data in the target domain, the task is known as un-
supervised domain adaptation. The framework proposed in
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Figure 2: An illustration of the proposed self-ensembling attention networks. It consists of two main components: a student
network and a teacher network. Both networks share the same architecture with an attention module inside. The source-domain
images (denoted by solid arrows) are only input to the student network to calculate the segmentation loss. The target-domain
images (denoted by hollow arrows) are input to both student and teacher networks to calculate the consistency loss. Then,
the student network is jointly optimized with supervised segmentation loss from the source domain and the unsupervised
consistency loss from the target domain. Notice that the teacher network does not participate in the back-propagation, and is
updated with an exponential moving average method. In the test phase, the target-domain images are sent to the teacher network
to accomplish the semantic segmentation.

(Tzeng et al. 2017) is a representative work where adver-
sarial learning is utilized to improve the generalization abil-
ity of the model. By contrast, if both labeled and unlabeled
data in the target domain are available, we refer it to semi-
supervised domain adaptation. Long et al. propose a deep
adaptation network to deal with this situation. The hidden
representations of all task-specific layers are embedded in
a reproducing kernel Hilbert space where the mean em-
bedding of different domain distributions can be explicitly
matched (Long et al. 2015).

Domain Adaptation for Semantic Segmentation
So far, most of the existing domain adaptation methods are
designed for image classification task and seldom of them
aim to address semantic segmentation task (Tzeng et al.
2014; 2017; Long et al. 2015). Hoffman et al. pioneer this
research area with global and category specific adaptation
techniques using pixel-level adversarial training (Hoffman et
al. 2016). Another related work is curriculum-style learning
where the curriculum domain adaptation solves easy tasks
first to infer necessary properties about the target domain,
such as label distributions over images and local distribu-
tions over landmark super-pixels. Then a segmentation net-
work is trained with regularization that its predictions in
the target domain follow those inferred properties (Zhang,
David, and Gong 2017).

While the aforementioned domain adaptation methods
mainly utilize adversarial training to reduce the domain gap,
we propose a self-ensembling model to address this prob-
lem, which provides a different viewpoint on how to learn
domain-invariant features for semantic segmentation. Self-
ensembling model has achieved excellent results in semi-

supervised learning (Laine and Aila 2016; Tarvainen and
Valpola 2017). French et al. extend this model to deal with
the unsupervised domain adaptation (French, Mackiewicz,
and Fisher 2018), but this work does not propose any seg-
mentation specific adaptation approach. To the best of the
authors’ knowledge, our method is the first attempt to in-
troduce self-ensembling model to domain adaptation for se-
mantic segmentation.

Self-Ensembling Attention Networks
In this section, we present the proposed self-ensembling at-
tention networks for domain adaptation in detail.

Overview of the Proposed Model
As shown in Figure 2, there are two main components in
the proposed model: a student network which plays a role
of base networks and a teacher network which plays a role
of the ensemble networks. Both networks share a consistent
architecture with an attention module inside. In our imple-
mentations, we employ the DeepLab-v2 (Chen et al. 2018)
with VGG-16 (Simonyan and Zisserman 2014) model pre-
trained on ImageNet (Deng et al. 2009) as the backbone
networks. Stochastic augmentation is implemented for im-
ages in both source and target domains to increase the gen-
eralization ability of the model (French, Mackiewicz, and
Fisher 2018). More specifically, we add Gaussian noise with
a mean of zero and a standard deviation of 0.1 to each pixel
in the image. The source-domain images are only fed into
the student network to calculate the segmentation loss. The
target-domain images are input to both student and teacher
networks to calculate the consistency loss. The student net-
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work is then optimized with the combination of the segmen-
tation loss and the consistency loss. By contrast, the teacher
network does not participate in the back-propagation, and is
updated with an exponential moving average method using
the parameters in the student network at different time steps.

Owing to the regularization of the consistency loss, the
student network can thereby learn from the output of the
teacher network, which is likely to be closer to the ground
truth in the target domain. As the iteration goes on, the stu-
dent network becomes more accurate, and the ensemble pre-
dictions in the teacher network also get closer to the correct
labels in the target domain. In this way, domain-invariant
features can be learnt correspondingly. In the test phase, the
target-domain images are sent to the teacher network to ac-
complish the semantic segmentation.

Attention Module
Different regions in the image usually correspond to differ-
ent levels of domain gap. Thus, those noteworthy regions de-
serve more attention. Researches on human perception pro-
cess demonstrate the significance of attention mechanism,
which uses the high-level information to guide bottom-up
feedforward process (Mnih et al. 2014). Inspired by the work
in (Chen et al. 2016; Wang et al. 2017; Zhang et al. 2018),
we introduce the attention module into the domain adapta-
tion framework to learn attention-aware features.

The architecture of the proposed attention module is sim-
ple and straightforward. Let F (x) be the output of the back-
bone networks with an input data x. The attention mapA (x)
is formulated as:

A (x) = T (U (D (F (x)))) (1)

whereD (·) represents the down-sample operation with 2×2
average pooling, U (·) represents the up-sample operation
with bilinear interpolation, and T (·) represents the nonlin-
ear transformation with an 1 × 1 convolutional layer and
sigmoid activation. Then, the output of the attention module
H (x) can be formulated as:

H (x) = (1 +A (x)) ∗ F (x) (2)

where ∗ denotes the element-wise product. Since the atten-
tion mapA (x) ranges from [0, 1] , it acts as control gates for
features in F (x). IfA (x) = 0 for all positions in the feature
map, then, the attention feature H (x) degenerates into the
original F (x). Otherwise, features in F (x) can get height-
ened in some positions and restrained in other positions. In
the next subsection, we will take advantage of this property
to assist the computation of the consistency loss.

Optimization
Given an image Xs and a corresponding label map Ys in the
source domain, we first define the segmentation loss with
cross-entropy as:

Lseg (Xs) = −
1

HW

H∑
u=1

W∑
v=1

C∑
c=1

[
Y (u,v,c)
s ·

log
(
PS (g (Xs))

(u,v,c)
)] (3)

where PS denotes the probability map generated by the stu-
dent network and g (·) denotes the stochastic augmentation.
H , W , and C represent the height, width, and number of
categories, respectively.

In order to learn domain-invariant features, we then define
the consistency loss with mean squared error as:

Lcon (Xt) = −
1

HW

H∑
u=1

W∑
v=1

C∑
c=1

[
M (u,v)·

∥∥∥PS (g (Xt))
(u,v,c) − PT (g (Xt))

(u,v,c)
∥∥∥2] (4)

where PT denotes the probability map generated by the
teacher network and Xt denotes the target-domain image.
M ∈ ZH×W is the attention mask matrix which can be de-
fined as:

M (u,v) =

{
1,if A(u,v)

T > τatt

0,otherwise
(5)

where τatt denotes the attention threshold and AT is the at-
tention map generated by the teacher network. In this way,
only those regions that have higher attention activation than
τatt can participate in the calculation of consistency loss.
Then, the overall loss function of the student network can be
formulated as:

LS = Lseg (Xs) + λconLcon (Xt) (6)

where λcon is a weighting factor for the unsupervised con-
sistency loss. Notice that the teacher network does not par-
ticipate in the back-propagation since it acts as an ensemble
model. Instead, we utilize the exponential moving average
method to update the parameters in the teacher network. Let
θt−1
T be the parameters in the teacher network at (t− 1)th

iteration. Then, at the tth iteration, θtT can be calculated as:

θtT = αθt−1
T + (1− α) θtS (7)

where θtS denotes the parameters in the student network
at tth iteration and α is a smoothing coefficient hyper-
parameter.

Experiments
In this section, we first introduce the datasets utilized in this
study. Then, the experimental results are presented and ana-
lyzed in detail.

Datasets
We use the CITYSCAPES (Cordts et al. 2016) as our target-
domain data in the experiments. For the source domain, two
challenging synthetic datasets including SYNTHIA (Ros et
al. 2016) and GTA-5 (Richter et al. 2016) are utilized.

CITYSCAPES is a real-world vehicle-egocentric image
dataset collected from 50 cities in Germany and the coun-
tries around. It provides three disjoint subsets: 2975 training
images, 500 validation images, and 1525 test images. It also
provides accurate pixel-level annotations for all images with
19 different categories. In order to ensure the fairness of ex-
perimental results, we follow the same evaluation protocol
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Table 1: Results of semantic segmentation by adapting from SYTNHIA to CITYSCAPES. MCD (Saito et al. 2018) and Cy-
CADA (Hoffman et al. 2018) do not report the experimental results on GTA-5 dataset with VGG-16 backbone networks. Thus
we omit them in this table. The IoUs of wall, fence, and pole in CCA are not reported (Chen et al. 2017). For the remaining 13
classes, the mean IoU of CCA is 35.7%, while our method achieves 43.6% in this case.
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mIoU (%)

NoAdapt 6.4 17.7 29.7 1.2 0.0 15.1 0.0 7.2 30.3 66.8 51.1 1.5 47.3 3.9 0.1 0.0 17.4
FCN Wld 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2

CDA 65.2 26.1 74.9 0.1 0.5 10.7 3.5 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0
CCA 62.7 25.6 78.3 - - - 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 35.7
Ours 86.8 39.2 79.2 2.7 0.3 29.3 3.6 14.7 81.5 78.7 52.9 11.4 79.7 18.5 5.9 15.2 37.5

as specified by the previous works (Hoffman et al. 2016;
Zhang, David, and Gong 2017). In the test phase, we evalu-
ate on the CITYSCAPES validation set with 500 images.

SYNTHIA is a large dataset of photo-realistic frames
rendered from a virtual city with precise pixel-level anno-
tations. Following previous works (Hoffman et al. 2016;
Zhang, David, and Gong 2017), we use the SYNTHIA-
RAND-CITYSCAPES subset that contains 9400 images
with annotations which are compatible with CITYSCAPES
dataset. The 16 common categories between SYNTHIA and
CITYSCAPES are selected to make quantitative assessment.
These classes are: road, sidewalk, building, wall, fence, pole,
light, sign, vegetation, terrain, sky, person, rider, car, truck,
bus, train, motorcycle, and bicycle.

GTA-5 contains 24966 high quality labeled frames from
realistic open-world computer games, Grand Theft Auto V
(GTA-5). Each frame is generated from fictional city of Los
Santos, based on Los Angeles in Southern California with
annotations that are compatible with CITYSCAPES dataset.
We use all the 19 official training classes in our experiment
including road, sidewalk, building, wall, fence, pole, light,
sign, vegetation, terrain, sky, person, rider, car, truck, bus,
train, motorcycle, and bicycle.

Implementation Details

In our implementations, we employ the DeepLab-v2 (Chen
et al. 2018) with VGG-16 (Simonyan and Zisserman 2014)
model pre-trained on ImageNet (Deng et al. 2009) and Pas-
cal VOC datasets (Everingham et al. 2010) as the backbone
networks. The Adam optimizer (Kinga and Adam 2015)
with a learning rate of 1e − 5 and weight decay of 5e − 5
is utilized to train the proposed networks. Each mini-batch
consists of 1 source-domain image and 1 target-domain im-
age. We resize all the images to the size of 1024 × 512.
While evaluating on CITYSCAPES dataset whose images
and ground truth annotations have a size of 2048 × 1024,
we first produce our predictions on the 1024 × 512 sized
image and then up-sample our predictions by a factor of 2
to get the final label map, which is used for evaluation. The
experiments in this paper are implemented in PyTorch with
a single NVIDIA GTX TITAN X GPU.

Performance Evaluation
In this subsection, we report the semantic segmentation re-
sults of the proposed method along with the state of the art
methods. To ensure the fairness of the comparison, all meth-
ods reported here utilize the VGG-16 as the backbone net-
works. A brief introduction about the comparing methods
are given as below.

No adaptation (NoAdapt)(Hoffman et al. 2016) directly
trains the segmentation networks on SYNTHIA and GTA-5
without any domain adaptation, which is the baseline for the
experiments.

FCNs in the wild (FCN Wld) (Hoffman et al. 2016) in-
troduces a pixel-level adversarial loss to the intermediate
layers of the network and impose constraints on label statis-
tics to the network output.

Curriculum domain adaptation (CDA, in ICCV 2017)
(Zhang, David, and Gong 2017) proposes a curriculum-style
learning approach to minimize the domain gap in semantic
segmentation. The curriculum domain adaptation first solves
easy tasks such as estimating label distributions, then infers
the necessary properties about the target domain.

Cross city adaptation (CCA, in ICCV 2017) (Chen et al.
2017) advances a joint global and class-specific domain ad-
versarial learning framework. Adaptation of pre-trained seg-
mentation networks to other domains can be achieved via
this framework without the need of any user annotation or
interaction.

Maximum classifier discrepancy (MCD, in CVPR
2018) (Saito et al. 2018) learns two classifiers from the
source domain and maximizes their disagreement on the tar-
get images in order to detect target examples that fall out of
the support of the source domain. After that, it updates the
generator to minimize the two classifiers’ disagreement on
the target domain.

Cycle-consistent adversarial domain adaptation (Cy-
CADA, in ICML 2018) (Hoffman et al. 2018) transforms
the synthetic images of the source domain to the style of
the target domain (real images) using CycleGAN (Zhu et al.
2017).

As shown in Table 1 and Table 2, all domain adapta-
tion results are significantly better than those without adap-
tation (NoAdapt), which demonstrates the large domain gap
between synthetic images and real ones. In both datasets,
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Table 2: Results of semantic segmentation by adapting from GTA-5 to CITYSCAPES. CCA (Chen et al. 2017) does not report
the experimental results on GTA-5 dataset with VGG-16 backbone networks. Thus we omit it in this table.
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NoAdapt 31.9 18.9 47.7 7.4 3.1 16.0 10.4 1.0 76.5 13.0 58.9 36.0 1.0 67.1 9.5 3.7 0.0 0.0 0.0 21.2
FCN Wld 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

CDA 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 16.6 28.9
MCD 86.4 8.5 76.1 18.6 9.7 14.9 7.8 0.6 82.8 32.7 71.4 25.2 1.1 76.3 16.1 17.1 1.4 0.2 0.0 28.8

CyCADA 83.5 38.3 76.4 20.6 16.5 22.2 26.2 21.9 80.4 28.7 65.7 49.4 4.2 74.6 16.0 26.6 2.0 8.0 0.0 34.8
Ours 85.2 19.8 77.8 25.0 12.2 28.7 29.8 13.6 79.2 25.9 74.9 54.1 12.1 82.7 21.6 10.4 0.0 19.9 5.1 35.7

Table 2: Results of semantic segmentation by adapting from GTA-5 to CITYSCAPES. CCA (Chen et al. 2017) does not report
the experimental results on GTA-5 dataset with VGG-16 backbone networks. Thus we omit it in this table.
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Ours 85.2 19.8 77.8 25.0 12.2 28.7 29.8 13.6 79.2 25.9 74.9 54.1 12.1 82.7 21.6 10.4 0.0 19.9 5.1 35.7

(a) (b) (c) (d)

Figure 3: Qualitative Results. (a) Input images from the CITYSCAPES dataset. (b) Ground-truth annotations. (c) Segmentation
maps with models trained on the GTA-5 dataset without domain adaptation technique. (d) Testing results of the model adapted
from GTA-5 dataset.

posed method for learning domain-invariant features. Com-
pared with the state of the art approaches (Hoffman et al.
2016; Zhang, David, and Gong 2017; Chen et al. 2017;
Saito et al. 2018; Hoffman et al. 2018), our method also out-
performs them by a large margin. Note that the IoUs of wall,
fence, and pole in CCA (Chen et al. 2017) are not reported.
For the remaining 13 classes, the mIoU of CCA is 35.7%,
while our method achieves 47.7% in this case. The qualita-
tive results are shown in Figure 3.

Parameter Analysis
The attention threshold τatt and the weighting factor λcon
for the unsupervised consistency loss are two important pa-
rameters. In this subsection, we evaluate the performance
of the proposed framework with different τatt and λcon on
SYTNHIA dataset. The smoothing coefficient α in the ex-
ponential moving average is empirically set as 0.99 in our

experiments.
The weighting factor λcon controls the balance between

the unsupervised consistency loss and the supervised seg-
mentation loss. On the one hand, setting a too small λcon
would make the framework ignore the adaptation part in the
target-domain data during the training. On the other hand, a
large λcon would prevent the framework from learning good
representations on the source-domain data, making the stu-
dent network very poor. The experimental results in Table
3 demonstrate that a larger λcon is more detrimental than a
smaller one. In the case of λcon = 10, the mIoU is only 21.4,
which is much worse than the case of small λcon.

As for the attention threshold τatt, generally speaking,
adaptation with high attention threshold fails to yield good
mIoUs since the attention mask filters most of the regions in
the image. Thus, very few pixels can participate in the cal-
culation of consistency loss, resulting in poor performance.
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mIoUs since the attention mask filters most of the regions in
the image. Thus, very few pixels can participate in the cal-
culation of consistency loss, resulting in poor performance.
As shown in Table 4, in the case of τatt = 0.5, the mIoU
is only 31.2, which is even worse than τatt = 0 case. By
contrast, choosing a relatively small threshold value like 0.3
can enable the framework to concentrate on the adaptation
of those noteworthy regions.

Table 3: Parameter analysis of the weighting factor λcon for
the unsupervised consistency loss.

SYTNHIA→CITYSCAPES
λcon 0.1 0.3 1 3 10

mIoU (%) 36.3 37.5 36.1 24.2 21.4

Table 4: Parameter analysis of the attention threshold τatt.
SYTNHIA→CITYSCAPES

τatt 0.0 0.1 0.3 0.5 0.7

mIoU (%) 34.6 36.2 37.5 31.2 31.9

As shown in Table 4, in the case of τatt = 0.5, the mIoU
is only 31.2, which is even worse than τatt = 0 case. By
contrast, choosing a relatively small threshold value like 0.3
can enable the framework to concentrate on the adaptation
of those noteworthy regions.

Table 3: Parameter analysis of the weighting factor λcon for
the unsupervised consistency loss.

SYTNHIA→CITYSCAPES
λcon 0.1 0.3 1 3 10

mIoU (%) 36.3 37.5 36.1 24.2 21.4

Table 4: Parameter analysis of the attention threshold τatt.
SYTNHIA→CITYSCAPES

τatt 0.0 0.1 0.3 0.5 0.7

mIoU (%) 34.6 36.2 37.5 31.2 31.9

(a) (b) (c)

Figure 4: Illustrations of the learnt attention maps. (a) Input
images from the CITYSCAPES dataset. (b) Attention maps
obtained at the 500th iteration. (c) Attention maps obtained
at the 1500th iteration. Red regions in the map correspond to
high attention while blue ones correspond to low attention.

In order to further investigate where the attention network
puts more attention in the domain adaptation, we further vi-
sualize the learnt attention maps. As shown in Figure 4 (b),
during the early period of the training, the network mainly
concentrates on the road regions in the image. As the iter-
ation goes on, the attention expands to wider regions, but
the road category is still the most attractive one, as shown in
Figure 4 (c). It can also be observed that the sky regions at-
tract the least attention from the network. One reason for this
phenomenon may lie on the fact that the sky objects share a
relatively similar appearance in both source and target do-
mains. According to the results in Table 1, even without do-
main adaptation, the segmentation network directly trained
on source domain can get an IoU of 66.8% for the sky class

in target domain, which is a very high score. By contrast,
the NoAdapt method can only get an IoU of 6.4% for the
road class in target domain. Therefore, the proposed atten-
tion mechanism does help the framework to focus more on
those noteworthy regions.

Conclusion
In this paper, we propose self-ensembling attention networks
to address domain shift for semantic segmentation. Consid-
ering that different regions in the image usually correspond
to different levels of domain gap, we introduce the atten-
tion mechanism into the proposed framework to generate
attention-aware features, which are further utilized to guide
the calculation of consistency loss in the target domain.
There are two main components in the proposed framework:
a student network which plays a role of base networks and
a teacher network which plays a role of the ensemble net-
works. With the help of the consistency loss, the student
network can thereby learn from the output of the teacher
network. As the iteration goes on, the student network be-
comes more accurate, and the ensemble predictions in the
teacher network also get closer to the correct labels in the
target domain. In this way, domain-invariant features can
be learnt correspondingly. Experiments on two benchmark
datasets demonstrate that the proposed framework can yield
competitive performance compared with the state of the art
methods.

Since the performance of the framework depends largely
on the quality of teacher-generated predictions, our future
work will try to further improve the robustness of the teacher
network.
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