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Abstract

For video super-resolution, current state-of-the-art ap-
proaches either process multiple low-resolution (LR) frames
to produce each output high-resolution (HR) frame separately
in a sliding window fashion or recurrently exploit the pre-
viously estimated HR frames to super-resolve the following
frame. The main weaknesses of these approaches are: 1) sep-
arately generating each output frame may obtain high-quality
HR estimates while resulting in unsatisfactory flickering arti-
facts, and 2) combining previously generated HR frames can
produce temporally consistent results in the case of short in-
formation flow, but it will cause significant jitter and jagged
artifacts because the previous super-resolving errors are con-
stantly accumulated to the subsequent frames.
In this paper, we propose a fully end-to-end trainable frame
and feature-context video super-resolution (FFCVSR) net-
work that consists of two key sub-networks: local network
and context network, where the first one explicitly utilizes a
sequence of consecutive LR frames to generate local feature
and local SR frame, and the other combines the outputs of
local network and the previously estimated HR frames and
features to super-resolve the subsequent frame. Our approach
takes full advantage of the inter-frame information from mul-
tiple LR frames and the context information from previously
predicted HR frames, producing temporally consistent high-
quality results while maintaining real-time speed by directly
reusing previous features and frames. Extensive evaluations
and comparisons demonstrate that our approach produces
state-of-the-art results on a standard benchmark dataset, with
advantages in terms of accuracy, efficiency, and visual quality
over the existing approaches.

The goal in image and video super-resolution (SR)
is to reconstruct a high-resolution (HR) image or video
from its down-sampled low-resolution (LR) version. Super-
resolution approaches commonly serve as an important step
for a variety of computer vision applications including im-
age and video compression (Li et al. 2017; Kappeler et al.
2016a), medical imaging (Yang et al. 2012), object recog-
nition (Yang et al. 2018), satellite imaging (Demirel and
Anbarjafari 2011), face recognition (Gunturk et al. 2003),
etc. To recover high-frequency details, single image super-
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Figure 1: The proposed approach consistently outperforms
state-of-the-art video super-resolution methods in terms of
reconstruction quality and efficiency (x4 SR on Vid4).

resolution needs to fully exploit spatial statistics, while tem-
poral correlations from multiple input frames are required to
be exploited in order to improve reconstruction in the case
of video super-resolution. Therefore, how to effectively ex-
ploit temporal redundancies becomes the key issue for video
super-resolution.

Recent advances in video super-resolution are remark-
able, benefiting mostly from the successful application
of Deep Convolutional Neural Networks (DCNNs). How-
ever, there is still a large room for improvement over the
DCNN based video super-resolution (SR) models that do not
consider the super-resolution quality and temporal consis-
tency simultaneously. The latest state-of-the-art approaches
(Dong, Chen, and Tang 2016; Kim, Lee, and Lee 2016;
Liu and Sun 2011; Liao et al. 2015; Kappeler et al. 2016b;
Caballero et al. 2017; Tao et al. 2017; Jo et al. 2018) formu-
late the task of video super-resolution as a great deal of sep-
arate multi-frame super-resolution subtasks. They exploit a
sequence of consecutive LR frames to generate a single HR
estimate, focusing on obtaining high-quality reconstruction
results for each single frame. However, the way of separately
generating each HR estimate results in temporally inconsis-
tent frames, producing unsatisfactory flickering artifacts. In
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addition, such approaches have high computational cost be-
cause each input frame is processed several times.

To address the above issues, (Sajjadi, Vemulapalli, and
Brown 2018) proposed a frame-recurrent video super-
resolution model that recurrently exploits the previously es-
timated HR frames to super-resolve the subsequent frame.
This approach is able to generate temporally consistent re-
sult because the current super-resolving frame will refer to
those previously HR estimates. However, only referring to
previously inferred HR frames will produce significant jit-
ter and jagged artifacts because the previous super-resolving
errors are constantly accumulated to the subsequent frames.

The above issues motivate us to develop a new approach
for video super-resolution by introducing frame and feature
as context to simultaneously improve the super-resolution
quality and temporal consistency. Specifically, we design
a novel end-to-end trainable video super-resolution frame-
work that consists of two key sub-networks: local network
and context network. The local network explicitly utilizes a
batch of LR frames to generate local feature and local SR
frame. Then, the context network combines the outputs of
local network and the previously estimated HR frames and
features to super-resolve the subsequent frame, which guides
the network learning alignment between frames to maintain
consistency. This framework offers three advantages:

• The inter-frame information from multiple LR frames can
be effectively exploited by local network to generate high-
quality SR frames (local SR frame) and reference features
(local feature) that provides the context network higher-
quality data to work with.

• By utilizing the context information from previously pre-
dicted HR frames and features and the outputs of local
network, our framework naturally encourages the video
super-resolution model to generate temporally consistent
results, making it to learn alignment between SR frames.

• It has low computational cost due to its recurrent nature
of using previous frames and features and no motion com-
pensation block.

Benefiting from the property of combining context infor-
mation from previous frames and features, the resulting ar-
chitecture produces the most consistent results while con-
taining finer details in each SR frame. Our model is fully
convolutional and no other prior information such as optical
flow estimation and motion compensation. To demonstrate
the effectiveness of the proposed framework, we conduct
ablation study for analyzing the importance of each compo-
nent of our model. Besides, we compare our FFCVSR with
several latest video super-resolution approaches and show
that it produces state-of-the-art results on a standard bench-
mark dataset, with advantages in terms of accuracy, speed,
and visual quality over the existing algorithms (see Fig. 1).
Furthermore, based on the characteristics of our framework,
we propose a suppression-updating algorithm to effectively
solve the problem of error accumulation of high frequency
information. Finally, we also apply our trained model to real
scenes to demonstrate its good abilities of generalization and
practicability.

Related Works
Over the past decades, a large number of image and video
super-resolution approaches have been developed, ranging
from traditional image processing methods such as Bilin-
ear and Bicubic interpolation to example-based frameworks
(Timofte, De, and Gool 2014; Jeong, Yoon, and Paik 2015;
Xiong et al. 2013; Freedman and Fattal 2011), self-similarity
methods (Huang, Singh, and Ahuja 2015; Yang, Huang, and
Yang 2010), and dictionary learning (Perezpellitero et al.
2016). Some efforts have devoted to study different loss
functions for high-quality resolution enhancement (Sajjadi,
Scholkopf, and Hirsch 2017). A complete survey of these
approaches is beyond the scope of this work. Readers can
refer to a recent survey (Walha et al. 2016; Agustsson and
Timofte 2017) on super-resolution approaches for details.
Here, we focus on discussing recent video super-resolution
approaches based on deep network.

Benefiting from the explosive development of convolu-
tional neural network (CNN) in deep learning, CNN based
approaches have refreshed the previous super-resolution
state-of-the-art records. Since (Dong et al. 2014) uses a sim-
ple and shallow CNN to implement single super-resolution
and achieves state-of-the-art results, following this fash-
ion, numerous works have proposed various deep net-
work architectures. Most of the existing CNN based video
super-resolution approaches regard the task of video super-
resolution as a large number of separate multi-frame super-
resolution subtasks. They exploit a sequence of consecutive
LR frames to generate a single HR estimate. (Kappeler et
al. 2016b) uses an optical flow method to warp video frames
LRt−1 and LRt+1 onto the frame LRt. Then, these three
frames are combined to feed into a CNN model that out-
puts the HR frame SRt. Similar to (Kappeler et al. 2016b),
(Caballero et al. 2017) uses a trainable motion compensa-
tion network to replace the optical flow method in (Kap-
peler et al. 2016b). Following this fashion, Tao et al. (Tao et
al. 2017) propose a network comprising motion estimation,
motion compensation, and detail fusion to process a batch of
LR frames and output HR estimate.

Different from the above mentioned approaches, (Sajjadi,
Vemulapalli, and Brown 2018) proposes a frame recurrent
video super-resolution (FRVSR) framework that combines
the previous HR estimates to generate subsequent frame.
This method warps the SRt−1 frame onto the SRt based
on the optical flow information estimated from LRt−1 and
LRt. Then, it uses a trainable super-resolution network to
fuse the warped SRt−1 and LRt, yielding the SRt frame.
Therefore, there are two loss items in their loss function, the
mean squared error between SRt and HRt, and the warped
LRt−1 and LRt. The FRVSR has advantage of producing
temporally consistent results in the case of short information
flow, but it will cause jitter and jagged artifacts because the
previous super-resolving errors are constantly accumulated
to the subsequent frames.

Though significant progress have been achieved by these
studies in recent years, there is still a large room for im-
provement over the CNN based video super-resolution ap-
proaches that do not consider the super-resolution quality
and temporal consistency simultaneously.
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Figure 2: Overview of the proposed FFCVSR framework. It
consists of two trainable components: local network NETL

(shown in yellow) and context network NETC (shown in
blue). The NETL produces local frame SRLocal

t and lo-
cal feature FLocal

t by processing a sequence of LR frames.
Then, the NETC outputs the super-resolved result SRt and
an additional output Ft. During training, the loss is applied
on the output of NETL and NETC , and back-propagated
through both NETL and NETC for jointly training them.

Method
To overcome the aforementioned problems, we pro-
pose a frame and feature-context video super-resolution
(FFCVSR) approach to reasonably combine both previ-
ous frames and features for accurate and fast video super-
resolution. We will dedicate to state the proposed approach
in detail in following subsections.

FFCVSR Framework
1. Overview of the Proposed FFCVSR Framework: To
better understand our FFCVSR, we start out with the intro-
duction of FFCVSR architecture, as illustrated in Fig. 2. It
consists of two trainable components: local network NETL

(shown in yellow) and context network NETC (shown
in blue). Given a sequence of LR frames, the local net-
work NETL outputs local frame SRLocal

t and local fea-
ture FLocal

t by exploiting inherent inter-frame information
in the form of local correlations, helping the following con-
text network NETC to recover lost high-frequency details.
Considering the super-resolved results should maintain tem-
poral consistency, the context network NETC not only ex-
ploits the local frame SRLocal

t and previous SR frame SRt

but also combines the local feature FLocal
t and previous SR

feature Ft, yielding visually pleasing and temporally con-
sistent results. We will investigate the importance of each

component by performing ablation study in the experiment,
providing several insights for further designing better video
super-resolution approach. Note that our FFCVSR frame-
work has no motion compensation module commonly used
in previous methods, which has additional advantage of re-
ducing the computational cost. This processing flow is sum-
marized in Algorithms 1.

Algorithm 1 Frame and Feature-Context Video Super-
Resolution
Input: A sequence of consecutive LR frames, LRt−n:t+n.

T is the updating step. T = 50 in our experiment.
Output: Estimated high-resolution frame, SRt.

for t = 1→ V ideoLen do
if t == 1 then
SRt ← SRLocal

t
Ft ← FLocal

t
else

(SRt, Ft)← NETC(SRt−1, Ft−1, SRLocal
t , FLocal

t )

end if
end for
% Suppression updating algorithm
if t mod T == 0 then
SRt−1 ← SRLocal

t
Ft−1 ← FLocal

t
else
SRt−1 ← SRt

Ft−1 ← Ft

end if

2. Architecture of Local Network: The proposed local
network NETL is shown in Fig. 4. It exploits inherent inter-
frame information in the form of local correlations and out-
puts local frame and feature by processing a sequence of
LR frames. For demonstration convenience, we only show
three consecutive LR frames including current frame that
needs to be super-resolved. Our simple NETL consists of
5 convolutions (kernel size=3 × 3, stride=1), 1 deconvolu-
tion (kernel size=8 × 8, stride=4), and 8 ResBlocks (Lim et
al. 2017). The ResBlock in purple (shown on the right side
of Fig. 3) contains two convolutions with skip connection.
We use the sum of the deconvolution result and the Bicubic
interpolation result of LRt as the output SRLocal

t . The out-
put FLocal

t is produced by adding a new side output with two
convolution operations. Let T = (LRt, HRt), t = 1, . . . , N
denotes the training data set, where LRt is the input LR
frame and HRt denotes the corresponding ground truth
high-resolution frame. We use WL to denote the collection
of all network layer parameters in NETL. Thus, the local
frame and feature can be given by:

SRLocal
t , FLocal

t = NETL(LRt−1, LRt, LRt+1;WL).
(1)

3. Architecture of Context Network: The proposed con-
text network NETC is shown in Fig. 3. It produces the
HR estimate SRt and feature Ft by exploiting the con-
text information from previously predicted HR frames and
features (SRt−1, Ft−1) and the outputs of local network
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Figure 3: Architecture of the proposed NETC . It produces the HR frame SRt and feature Ft by exploiting the context informa-
tion from previously predicted HR frames and features (i.e., SRt−1, Ft−1) and the outputs of NETL (i.e., SRLocal

t , FLocal
t ).

Figure 4: Architecture of the proposed local network
NETL. It processes a sequence of LR frames to output local
frame SRLocal

t and local feature FLocal
t .

(SRLocal
t , FLocal

t ), where the context information means
that generating HR estimate will refer to previous HR frames
and features to maintain temporal consistency. Our NETC

consists of 5 convolutions (kernel size=3×3, stride=1), 1 de-
convolution (kernel size=8× 8, stride=4), 4 ResBlocks, and
2 space-to-depth transformations (shown in yellow) (Sajjadi,
Vemulapalli, and Brown 2018). Here, we use space-to-depth
transformation to reduce the computational cost. We use the
sum of the deconvolution result and local frame SRLocal

t
as the final output SRt. We also provide another output of
feature Ft for super-resolving subsequent frame by adding
a new side output with two convolution operations. We use
WC to denote the collection of all network layer parameters
in NETC . Thus, the estimated HR frame and feature can be
given by:

SRt, Ft = NETC(SRt−1, Ft−1, SR
Local
t , FLocal

t ;WC).
(2)

Loss Function
The proposed local network NETL and context network
NETC in our FFCVSR framework are seamlessly com-
bined and jointly trained with the loss function defined as:

Loss(WL,WC) =
∥∥SRLocal

t −HRt

∥∥2
2
+‖SRt −HRt‖22 .

(3)

The loss is applied on the output of NETL and NETC ,
and back-propagated through both NETL and NETC . Note
that there is no need for defining additional loss function
to constrain the output of features FLocal

t and Ft, because
as training progresses, both of them gradually provide high-
quality data required by the NETC network.

Suppression Updating Algorithm
There is a key observation that the super-resolved video has
significant jitter and jagged artifacts when using the previ-
ously inferred HR frames as reference information to gener-
ate subsequent frame, because the previous super-resolving
errors are constantly accumulated to the subsequent frames.
The Fig. 10 provides intuitive image examples for showing
this observation. To overcome this problem, based on the
characteristics of our FFCVSR framework, we propose a
simple suppression-updating algorithm to effectively solve
the problem of error accumulation of high frequency infor-
mation. Specifically, we replace the SRt−1 and Ft−1 out-
putted by NETC with SRLocal

t and FLocal
t outputted by

NETL at each interval of T frames, respectively (see also
Algorithms 1), because after several iterations, the outputs of
NETC have accumulated a considerable amount of super-
resolving error while the outputs of NETL still maintain
accurate information from current LR frame without intro-
ducing accumulative error from previous SR frames. In the
experiment, we observe that T = 50 can produce favorable
results.

Training and Inference
Our training dataset consists of 2 high-resolution videos (4k,
60fps): Venice and Myanmar downloaded from harmonic1.
The lengths of these two videos are 1,077 seconds and 527
seconds, respectively. We select them as training set because
they contain more than 140 different scenes including hu-
man, natural scene, building, traffic, etc. To produce HR
videos, we firstly downscale the original videos by factors of
4 (960×540), 6 (640×360), 8 (480×270), 12 (320×180),
and 16 (240×135) to obtain the high-resolution ground truth
with a variety of receptive fields. Then, we extract patches
of size 128× 128 to produce the HR videos. To produce the

1https://www.harmonicinc.com/free-4k-demo-footage/
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input LR videos, we downsample them to the original 1/4
size using bilinear interpolation.

During training, we extract clips of 10 consecutive frames
from the videos. We avoid the clips containing keyframes
that have large scene changes. The extracted LR patches
are randomly flipped horizontally and vertically for data
augmentation. Besides, the order of sequences is also ran-
domly reversed. We employ the brightness channel y to train
the proposed model. The parameters are updated with ini-
tial learning rate of 10−4 before 300K iteration steps and
changed to 10−5 at the following 50K. The loss is mini-
mized using Adam optimizer (Kingma and Ba 2015) and
back-propagated through both networks NETL and NETC

as well as through time. After repeatedly minimizing the loss
on the training data, the resulting network is capable of di-
rectly producing the full video frames, without needing any
additional post-processing operations.

When super-resolving the first frame SRt=1 in each clip,
the local network NETL upsamples it at both training and
testing time. At the same time, we regard the local frame
and feature as the previously inferred frame and feature and
feed them into the the context network NETC to produce
SRt and Ft. This simple technique that reuses the outputs of
NETL to deal with the first frame without prior information
can encourage the network to exploit local information from
LR frames during early training instead of only depending
on the previously inferred HR estimates. Our architecture is
fully end-to-end trainable and does not require pre-training
sub-networks.

During inference, the trained model can process videos
with arbitrary length and size due to the fully convolutional
property of the networks. We can obtain the enhanced video
by performing a single feedforward inference over frame by
frame. In the following section, we report the reconstruction
accuracy, efficiency, and visual quality of the model.

Experiments and Analyses

In this section, we introduce compared methods and uti-
lized dataset, and report the performance of our proposed
approach. Firstly, we conduct ablation experiments to inves-
tigate the importance of each component of our approach,
providing insight into how the performance of our FFCVSR
varies with context information. Then, we compare our ap-
proach with current state-of-the-art methods on the standard
Vid4 benchmark dataset (Liu and Sun 2011) in terms of
visual quality, objective metric, temporal consistency, and
computational cost. Following (Caballero et al. 2017), the
evaluation metrics of Peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) are computed on the brightness
channel on the 4-video dataset Vid4. Thirdly, we detail the
suppression-updating algorithm for depressing iteration er-
ror of high-frequency information. Finally, real-world exam-
ples are provided to verify the effectiveness of our approach.
All experiments are carried out for 4x upscaling.

We conduct our experiments on a machine with an Intel
i7-7700k CPU and an Nvidia GTX 1080Ti GPU. Our frame-
work is implemented on the TensorFlow platform.

Table 1: Experimental result of ablation study. Average
video PSNR of different architectures on Vid4.

Methods Calendar City Walk Foliage average
SISR 21.789 25.926 27.742 24.429 24.971
only local network 23.206 27.166 29.465 25.713 26.387
w/o feature context 23.601 27.393 29.908 26.079 26.745
w/o feature context+
with optical flow 23.528 27.405 29.842 26.044 26.705

Full model 23.828 27.564 30.172 26.296 26.965

Ablation Analysis
Our architecture consists of two key components: local net-
work NETL and context network NETC . We experiment
with different design options to illustrate the contribution of
each component to the video super-resolution result in terms
of objective metric and visual quality. To explore the perfor-
mance of local network in the proposed architecture shown
in Fig. 2, we remove the context network and use “only lo-
cal network” to denote the resulting model, i.e., blue arrows
are removed in Fig. 2. Besides, we also explore the effective-
ness of utilizing features including local feature (blue dashed
arrow in Fig. 2) and context feature (yellow dashed arrow
in Fig. 2) in the proposed framework. Thus, we remove the
local feature and context feature from the architecture and
use “w/o feature context” to denote it. Finally, we use “Full
model” to denote our complete model including NETL and
NETC . Since optical flow method (Sajjadi, Vemulapalli,
and Brown 2018) is widely employed in prior art, we in-
corporate it into our architecture to test whether it improves
the recovering ability of our model. Here, we use “w/o
feature context + with optical flow” to denote the model
that removes feature information and introduces optical flow
method. We also compare our model with a single im-
age super-resolution (SISR) baseline, which is obtained by
only feeding the current frame LRt into the local network.

Quantitative Comparison: The quantitative results are
reported in Table 1. The “only local network” model that ex-
ploits temporal information from input consecutive frames
outperforms SISR baseline, which demonstrates that ex-
ploiting temporal redundancies is helpful to recover high-
frequency details for video super-resolution. The “w/o
feature context” model utilizing previously estimated HR
frames further improves the performance of “only local
network”. This result implies that propagating information
from previous HR frames to the following step helps the
model to recover lost fine details. The complete model
“Full model”, simultaneously exploiting previously inferred
frames and features, obtains the best results on all videos
from Vid4. The result well demonstrates the effectiveness of
introducing local and context features.

Compared with “w/o feature context”, the “w/o feature
context + with optical flow” method incorporating optical
flow component leads to a slight decrease in PSNR. The
possible reason is that the convolutional kernels are better at
learning motion information from consecutive frames than
optical flow method because of small motion of pixels in
consecutive frames. We observe that directly using convolu-
tional kernels to learn motion information instead of optical
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Table 2: Quantitative comparison with state-of-the-art approaches. Values marked with a star are referenced from the corre-
sponding publications. Obviously, our approach outperforms other methods in terms of PSNR, SSIM, and computational cost.

Methods BayesSR* DESR* VSRNet* VESPCN* VDSR* Tao et al.* FRVSR DUF Ours
x4 PSNR 24.42 23.50 22.81 25.35 24.31 25.52 26.43 26.40 26.97
x4 SSIM 0.72 0.67 0.65 0.76 0.67 0.76 0.80 0.80 0.83
time (ms) - - - - 73.2 140 43.2 70 31.2

Figure 5: A visual comparison of oblation study. The “Full
model” produces the best result having fine details.

Figure 6: Visual comparison with state-of-the-art ap-
proaches (x4 SR).

flow method not only improves the reconstruction accuracy
of the model, but also decreases its computational cost. All
the above experiments show that the proposed architecture
for video super-resolution is reasonable and appropriate.

Visual Comparison: Figure 5 shows a visual compari-
son of oblation study with different design options for our
framework. We can observe that the “Full model” is capable
of recovering finer details and generating visually satisfac-
tory results. Compared with “only local network” and “w/o
feature context” methods, the recovered result produced by
“Full model” is both sharper and closer to the ground truth,
as shown in the white snow in Fig. 5.

Comparison with prior art
We compare the proposed approach with various state-of-
the-art video super-resolution methods, including VDSR
(Kim, Lee, and Lee 2016), BayesSR (Liu and Sun 2011),
DESR (Liao et al. 2015), VSRNet (Kappeler et al. 2016b),
VESPCN (Caballero et al. 2017), Tao et al. (Tao et al.
2017), FRVSR (Sajjadi, Vemulapalli, and Brown 2018), and
DUF with 16 layer (Jo et al. 2018) on the Vid4 benchmark

Figure 7: Demonstration of temporal profiles for comparing
temporal consistency of different approaches.

dataset in terms of PSNR and SSIM. For all competing ap-
proaches except FRVSR and DUF, the PSNR and SSIM val-
ues are directly referenced from the corresponding publica-
tions by authors. Since FRVSR and DUF are the newest ap-
proaches, we implement them on the TensorFlow platform.
For fair comparison, these two implements are trained and
tested on the identical dataset used by our approach.

Quantitative Comparison: Table 2 reports the PSNR
and SSIM produced by our approach and previous state-of-
the-art methods on Vid4. It is obvious that our proposed ap-
proach substantially outperforms the current state-of-the-art
methods by a large margin in terms of reconstruction accu-
racy and efficiency. Comparing with the current best results,
our approach surpasses them by more than 0.5 dB in PSNR
and 0.03 score in SSIM. This implies that our approach pro-
duces the most accurate result and our architecture is rea-
sonable and appropriate for video super-resolution.

Quality Comparison: Fig. 6 demonstrates quality com-
parison of different approaches. From the close-up images,
we observe that the proposed approach produces better
structural detail than other competing methods. This result
indicates that our strategy of exploiting previously inferred
information in terms of frame and feature is essential such
that the resultant SR images look much closer to the ground
truth.

Temporal Consistency
To compare temporal consistency of different approaches,
following (Caballero et al. 2017), we use temporal profile to
show the result on paper. Fig. 7 reports a temporal profile on
the row highlighted by a red line across a number of frames.
While (Tao et al. 2017) generates better results than VDSR
method, it still contains considerable flickering artifacts due
to separately estimating each output frame. By referring pre-
vious frames, FRVSR has improved a lot in the temporal
consistency, but it has some blurs compared with the ground
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Figure 8: Real-world examples to evaluate the practical abil-
ity of different approaches.

Figure 9: Performance of FRVSR, our full model, and “only
local network” on HongKong as a function of the num-
ber of previous frames processed. Our suppression-updating
algorithm can effectively depress iteration error of high-
frequency information from previous frames processed.

truth. In contrast, our approach produces the most temporal
coherence result that looks much closer to the ground truth.

Computational Efficiency
Figure 1 and Table 2 illustrate the comparison result of com-
putational efficiency. Note that the running times of com-
pared approaches including BayesSR (Liu and Sun 2011),
DESR (Liao et al. 2015), VSRNet (Kappeler et al. 2016b),
VESPCN (Caballero et al. 2017) are not listed in Table 2,
because their running times are not stated in correspond-
ing publications. The result clearly shows that our model
is much more efficient than other approaches. It averagely
takes 31.2 ms with our unoptimized TensorFlow implemen-
tation on an Nvidia GTX 1080Ti when running on Vid4
to generate a single HR image for 4x upsampling. Bene-
fiting from directly taking advantage of previous features
and frames, our approach is able to maintain real-time speed
while producing high-quality temporal-coherency result.

RealWorld Examples
To evaluate the performance of our approach on real-world
data, following (Caballero et al. 2017), a visual comparison
result is reported in Fig. 8. From the close-up images, we ob-
serve that our approach is able to recover the fine details and

Figure 10: Illustration of iteration error of high-frequency
information.

remove the blur artifacts, even though the model is trained
on a set of LR-HR frame pairs, where the LR frames are
obtained by performing bicubic down-sampling.

Suppressing Iteration Error of High-Frequency
Information

Because the previous super-resolving errors are constantly
accumulated to the subsequent frames, the super-resolved
video has significant jitter and jagged artifacts when using
previously inferred HR frames. Fig. 9 illustrates the perfor-
mance of FRVSR, our full model, and “only local network”
(without context network) on HongKong2 as a function of
the number of previous frames processed. It shows that the
reconstruction accuracy of FRVSR approach is high in the
early stage and decreased slightly in the low range of in-
formation flow (less than 100 frames), but it decreases dra-
matically when the number of previous frames processed is
over 100, even worse than our “only local network”. In con-
trast, benefiting from the proposed suppression-updating al-
gorithm, our full model and “only local network” are not af-
fected by the number of previous frames processed and both
achieve stable performance. Interestingly, the “full model”
outperforms “only local network” method in all frames,
which intuitively demonstrates the key contribution of the
context network NETC . Fig. 10 shows a visual compar-
ison of iteration error of high-frequency information. Our
approach effectively removes the unpleasing flickering arti-
facts existed in FRVSR method.

Conclusion

In this paper, we presented a frame and feature-context
video super-resolution approach. Instead of only exploit-
ing multiple LR frames to separately generate each out-
put frame, we propose a fully end-to-end trainable frame-
work consisting of local network and context network to
simultaneously utilize previously inferred frames and fea-
tures. Furthermore, based on the characteristics of our
framework, we propose a suppression-updating algorithm
to effectively solve the problem of error accumulation of
high frequency information. Extensive experiments includ-
ing ablation study demonstrate that our approach signifi-
cantly advances the state-of-the-art on a standard benchmark
dataset and is capable of efficiently producing high-quality
temporal-consistency video resolution enhancement.

2https://www.harmonicinc.com/free-4k-demo-footage/
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