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Abstract

The issue of data imbalance occurs in many real-world appli-
cations especially in medical diagnosis, where normal cases
are usually much more than the abnormal cases. To alleviate
this issue, one of the most important approaches is the over-
sampling method, which seeks to synthesize minority class
samples to balance the numbers of different classes. How-
ever, existing methods barely consider global geometric in-
formation involved in the distribution of minority class sam-
ples, and thus may incur distribution mismatching between
real and synthetic samples. In this paper, relying on optimal
transport (Villani 2008), we propose an oversampling method
by exploiting global geometric information of data to make
synthetic samples follow a similar distribution to that of mi-
nority class samples. Moreover, we introduce a novel regu-
larization based on synthetic samples and shift the distribu-
tion of minority class samples according to loss information.
Experiments on toy and real-world data sets demonstrate the
efficacy of our proposed method in terms of multiple metrics.

Introduction
The imbalanced data issue occurs in many real-world ap-
plications, where the samples of one class are much more
than samples of other classes (He and Garcia 2008; Branco,
Torgo, and Ribeiro 2016; Lin et al. 2018; González et al.
2019). Especially in the area of medical diagnosis, the ab-
normal samples with a disease are expensive and difficult
to collect, while normal samples are much easier to obtain.
As a result, we usually face an imbalanced learning prob-
lem where normal samples are much more than the abnor-
mal ones (Bhattacharya, Rajan, and Shrivastava 2017).

Standard machine learning methods usually focus on re-
ducing loss over the whole training data set. These meth-
ods usually pay more attention to the training loss on ma-
jority class samples while omitting the minority class sam-
ples, thus fail to achieve promising performance. This issue
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becomes even worse in medical diagnosis, since misclassi-
fying an abnormal one is much severer than misclassifying
a normal one, which will delay the medical treatment.

To alleviate the imbalanced issue, several kinds of algo-
rithms have been proposed in the last decades. Among these
methods, oversampling attracts much attention because of
its simplicity and efficacy (Fernández et al. 2018). Oversam-
pling aims to synthesize minority class samples to balance
the numbers of different classes, so that standard machine
learning methods can be performed on the augmented data
set. Oversampling methods usually synthesize new samples
based on a minority class sample and its nearest neighbors.
However, they barely consider global geometric information
in the distribution of minority class samples, and thus may
incur distribution mismatching between real and synthetic
samples obtained by oversampling methods.

In this paper, we aim to exploit global geometric infor-
mation of data to oversample minority class samples via op-
timal transport (Villani 2008). Motivated by this, we pro-
pose a novel oversampling method called Optimal Transport
for OverSampling (OTOS), which applies optimal transport
to synthesize samples that follow a similar distribution to
the one of minority class samples. Specifically, we move
random points from a prior distribution to that of minority
class samples, as shown in Figure 1, so that the transported
samples can be taken as synthetic minority class data for
training. In addition, we introduce a regularization based on
the transported samples for optimal transport, and leverage
loss information to concentrate more on those minority class
samples close to the decision boundary.

We apply a projected gradient method to optimize the re-
sultant constrained problem, and conduct extensive experi-
ments on both toy and real-world data sets, including bench-
mark data from LIBSVM1 and medical image data. Mul-
tiple metrics regarding imbalanced learning are adopted to
demonstrate the effectiveness of our proposed method.

The principal contributions are summarized as follows:

• We exploit global geometric information of data via opti-
mal transport to guarantee distribution matching between
synthetic and real minority class samples.

1https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets

5605



positive point negative point random point synthetic point

-2 -1 0 1 2

 x1

-3

-2

-1

0

1

2

3

 x
2

(a)

-2 -1 0 1 2

 x1

-3

-2

-1

0

1

2

3

 x
2

(b)

Figure 1: An illustration of our idea. Positive and neg-
ative points are minority and majority class samples, re-
spectively. (a) Positive points and negative points. (b) Pos-
itive points, negative points, random points, and synthetic
points obtained by optimal transport. Dot lines indicate
the transport plan from random points to synthetic points,
and random points are drawn from the uniform distribution
U(−0.5, 0.5).

• We shift the empirical distribution of minority class sam-
ples based on training loss, rather than adopting a uniform
distribution for them, which is commonly used in existing
works (Courty et al. 2017b; Yan et al. 2018).

• We design a novel regularization with transported samples
to avoid synthesizing noisy samples, which is achieved by
enlarging the difference between the predicted values of a
transported sample and a majority class sample.

Related Studies
Imbalanced Learning
Most existing methods of imbalanced learning belong to
two categories: cost-sensitive approaches and oversampling
approaches (Lemaı̂tre, Nogueira, and Aridas 2017). Cost-
sensitive approaches try to assign different weights for
classes, so that losses on minority class samples are em-
phasized to contribute more for training (Liu et al. 2017;
Zhang et al. 2018). Nevertheless, these methods omit geo-
metric information hidden in the structure of training data,
which limits their performance on imbalanced problems.

Oversampling approaches seek to augment minority class
data to balance the numbers of two classes (Das, Krishnan,
and Cook 2015; Sen et al. 2016; Abdi and Hashemi 2016;
Pérez-Ortiz et al. 2016; Bellinger, Drummond, and Japkow-
icz 2018). Among them, SMOTE is a classical method,
which takes linear interpolations of a minority class sample
and its nearest neighbors as new training samples (Chawla et
al. 2002). bSMOTE improves SMOTE by finding so-called
DANGER samples from the minority class (Han, Wang, and
Mao 2005). ADASYN further extends SMOTE by consid-
ering different effects of training samples (He et al. 2008).
In (Das, Krishnan, and Cook 2015), a Gibbs oversampling
method is proposed. MWMOTE finds informative minority
class samples and oversample data based on a clustering ap-
proach (Barua et al. 2014). (Peng 2015) proposes an adap-

tive sampling method to form multiple classifiers over dif-
ferent subsets. (Fernández et al. 2018) provides a summary
regarding recent advances of SMOTE.

Compared to the above oversampling methods, the key
differences in our work are two folds: firstly, we exploit
global geometric information of data via optimal transport,
which makes synthetic samples follow a similar distribution
to that of minority class samples, while existing oversam-
pling methods barely consider the global geometric infor-
mation; secondly, our proposed method provides a global
oversampling paradigm based on the Wasserstein barycen-
ter (Cuturi and Doucet 2014; Peyré and Cuturi 2017), which
does not rely on nearest neighbor searching commonly used
in existing oversampling methods.

Optimal Transport
Optimal transport (Villani 2008), which was firstly intro-
duced by Monge in (Monge 1781), originally aims to study
how to transport mass into a given place with the mini-
mal cost. After that, Kantorovitch further developed opti-
mal transport and applied it for economic applications (Kan-
torovitch 1958). The minimal cost in optimal transport is
also known as the Wasserstein distance or Earth Mover Dis-
tance. To efficiently solve the optimization problem involved
in optimal transport, some fast numerical algorithms are pro-
posed in (Cuturi 2013; Benamou et al. 2015). Recently, opti-
mal transport has been actively applied in machine learning
problems (Peyré and Cuturi 2017). In (Courty et al. 2017a;
2017b), optimal transport is applied in unsupervised domain
adaptation. Yan et al. leveraged optimal transport to address
the problem of heterogeneous domain adaptation in (Yan et
al. 2018). The Wasserstein distance is also used in the gen-
erative model to measure the distance between two distribu-
tions (Arjovsky, Chintala, and Bottou 2017).

Methodology
Problem Statement and Notations
Given training data X = [x1, . . . ,xn]> ∈ Rn×d and their
labels y = [y1, . . . , yn]> ∈ {+1,−1}n, where n is the
number of training data, and d is the number of features.
Among the training data, the positive data are represented as
X+ = [x+

1 , . . . ,x
+
n+ ]> ∈ Rn+×d with n+ being the number

of positive samples, and the negative data are represented as
X− = [x−1 , . . . ,x

−
n− ]> ∈ Rn−×d with n− being the num-

ber of negative samples. Without loss of generality, we have
n+ � n−, which means that the number of positive sam-
ples is much smaller than that of negative samples. We also
call the positive label as the minority class, and the negative
label as the majority class.

1n denotes a vector in the space Rn with all the elements
being 1. For a vector a, diag(a) is a diagonal matrix with
the diagonal elements being a. For a matrix A, let Aij be
the (i, j)-th element of A. The trace of the square matrix A
is defined as tr(A) =

∑
iAii. For two matrices A and B, let

A⊗B be the Kronecker product, A�B be the element-wise
product, and the inner product is defines as

〈A,B〉 =
∑
i

∑
j

AijBij = tr(A>B) = tr(AB>).
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Optimal Transport for Oversampling
Optimal transport aims to transport samples from one dis-
tribution to another distribution with the minimal transport
cost (Peyré and Cuturi 2017; Courty et al. 2017b). As a re-
sult, we can obtain more samples in the target distribution.
Motivated by this, we apply optimal transport to transport
some random samples into the distribution of minority class
samples to augment training data.

Specifically, let µr be the empirical distributions of a set
of random vectors {xri }n

r

i=1 drawn from a prior distribution,
and µ+ be the empirical distribution of positive samples,
which are minority class samples in this paper. We propose
to transport samples from µr into µ+ to augment positive
samples. Define δ be the Dirac function at one point, pri
and p+i be probability masses with the simplex constraints∑nr

i=1 p
r
i = 1 and

∑n+

i=1 p
+
i = 1. The two empirical distri-

butions are written as

µr =

nr∑
i=1

pri δ
r
i , µ+ =

n+∑
i=1

p+i δ
+
i . (1)

A transport plan is represented as a joint distribution, which
is in the following definition domain:

T = {T ∈ (R+)n
r×n+

|T1n+ = µr,T>1nr = µ+}, (2)
and the entropy of T is defined as

H(T) = −
∑
ij

Tij(log Tij − 1).

Optimal transport aims to find a transport matrix with the
minimal cost, which is modelled as the following optimiza-
tion problem:

min
T∈T

〈T,Cr+〉 − εH(T), (3)

where ε is a trade-off parameter, Cr+ is the cost matrix with
Cr+ij being defined as

Cr+ij = c(xri ,x
+
j ) = ‖xri − x+

j ‖
2
2, (4)

and the entropic regularization H(T) is used to smoothen
the solution and speed up the optimization (Cuturi 2013).
In this way, the transported samples follow a similar distri-
bution to that of positive samples and can be taken as aug-
mented positive data. Specifically, let nr = n−−n+, so the
numbers of samples from two classes are balanced.

Oversampling by Data Transport
After obtaining the optimal transport matrix T, we can trans-
port the random vectors into the distribution of the positive
samples based on the Wasserstein barycenter, which repre-
sents the random points in the distribution of positive data
(Cuturi and Doucet 2014; Peyré and Cuturi 2017). Specifi-
cally, for the point xri , its representation in the positive data
distribution is denoted by x̂ri , which is obtained by solving
the following optimization problem:

x̂ri = arg min
x∈Rd

∑
j

Tijc(x,x
+
j )

= arg min
x∈Rd

∑
j

Tij‖x− x+
j ‖

2
2.

(5)

Taking the partial derivative w.r.t. x to zero, we obtain∑
j

Tijx−
∑
j

Tijx
+
j = 0, (6)

and the solution is given by the following:

x̂ri =

∑
j Tijx

+
j∑

j Tij
. (7)

Based on this, the transported data matrix can be written as

X̂ = diag(T1n+)−1TX+ = diag(µr)−1TX+. (8)

For simplicity, define Dr = diag(µr)−1, and Eq. (8) can be
rewritten as

X̂ = DrTX+. (9)

From Eq. (9), we observe that each synthetic positive sam-
ple is a convex combination of multiple positive samples.
This indicates that our approach leverages global informa-
tion from all the given minority class samples, which differs
from nearest neighbor searching commonly used in existing
oversampling methods. Therefore, global geometric infor-
mation extracted from minority class samples are exploited
in our approach.

Distribution Shifting based on Training Loss
For µr, we simply adopt a uniform distribution, i.e., µr =
[ 1
nr , . . . ,

1
nr ]>. For µ+, without more information about the

underlying distribution of positive data, one usually adopts
a uniform distribution (Courty et al. 2017b; Yan et al. 2018),
i.e., µ+ = [ 1

n+ , . . . ,
1
n+ ]>, in Problem (3). However, this

approach omits the loss information of samples. For SVM, a
sample closer to the decision boundary usually has a larger
loss and more information than one far away from the deci-
sion boundary.

Motivated by this intuition, we firstly pretrain an SVM
classifier, and then shift the positive data distribution based
on training loss to concentrate more on the ones with larger
loss values. Formally, we pretrain an SVM classifier with the
hinge loss, which is given as

min
w,ξ

1

2
‖w‖22 + C

n∑
i=1

ξi

s.t. yiw
>xi ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n,

(10)

where C is the trade-off parameter for loss. Let ξ+i =
max(1− y+i w>x+

i , 0) be the hinge loss of the positive sam-
ple x+

i , we apply the softmax function to shift the distribu-
tion of {x+

i }
n+

i=1 as

µ+ =
[ eξ

+
1∑n+

i=1 e
ξ+i
, . . . ,

e
ξ+n+∑n+

i=1 e
ξ+i

]>
. (11)

Consequently, the positive samples with larger losses con-
tribute more in optimal transport, making the transported
samples more informative for training an effective classifier.

5607



Learning with Transported Samples
Concentrating on those samples close to the decision bound-
ary can take better advantage of training samples. However,
a potential issue is that a few minority class samples that are
close to majority class samples may highly affect the results
of optimal transport, making some transported samples too
close to majority class samples and confusing the training
of the classifier. This issue will become even severer with
noisy minority samples. In order to alleviate this, for each
pair of a transported positive sample and a negative sample,
we propose to enlarge the difference between the predicted
values of them obtained by the pretrained model. To achieve
this, we design the following regularization:

Ω(T) =
1

2

nr∑
i=1

n−∑
j=1

∣∣∣∣∣∣(w>x̂i −w>x−j
)
− 1
∣∣∣∣∣∣2, (12)

and seek to solve the optimization problem as

min
T∈T

L(T) , Ω(T) + λ〈T,Cr+〉 − εH(T), (13)

where λ and ε are trade-off parameters. By rearranging the
above objective function, we obtain

L(T) =
1

2

nr∑
i=1

n−∑
j=1

∣∣∣∣∣∣(w>x̂i −w>x−j
)
− 1
∣∣∣∣∣∣2

+ λtr(T>Cr+)− εH(T)

=
1

2
n−tr

(
X̂ww>X̂>

)
− n−tr

(
X̂(1>nr ⊗w)

)
− tr

(
X̂
(
1>nr ⊗ (ww>(X−)>1n−)

))
+ λtr(T>Cr+)− εH(T) + constant.

(14)

By substituting Eq. (9) into Eq. (14), we simplify L(T) as

L(T) =
1

2
n−tr

(
DrTX+ww>(X+)>T>D>r

)
− tr

(
DrTX+(1>nr ⊗ ((ww>(X−)>1n−) + n−w)

))
+ λtr(T>Cr+)− εH(T) + constant

=
1

2
n−tr

(
TX+ww>(X+)>T>D>r Dr

)
− tr

(
TX+(1>nr ⊗ ((ww>(X−)>1n−) + n−w)

)
Dr

)
+ λtr(T>Cr+)− εH(T) + constant.

(15)

We define the matrix variables Θ, Φ and Ψ as

Θ = λ(Cr+)> −X+
(
1>nr ⊗ ((ww>(X−)>1n− ) + n−w)

)
Dr,

Φ = X+ww>(X+)>,

Ψ = D>r Dr.
(16)

As a result, L(T) is reformulated as

L(T) =
1

2
n−tr

(
TΦT>Ψ

)
+ tr(TΘ)−εH(T)+constant.

(17)

Optimization Details
For simplicity, we define

f(T) =
1

2
n−tr

(
TΦT>Ψ

)
+ tr(TΘ), (18)

and L(T) can be rewritten as

L(T) = f(T)− εH(T) + constant. (19)

Minimizing L(T) w.r.t. T is non-trivial because of the
equality constraints. To solve it, we apply a projected gra-
dient descent algorithm based on the exponentiated gradient
and the Kullback-Leibler divergence (Benamou et al. 2015;
Peyré, Cuturi, and Solomon 2016). Specifically, at the τ -th
iteration, we firstly update Tτ by the exponentiated gradient
method as follows:

T̃τ := Tτ � exp
(
− α∇L(Tτ )

)
, (20)

where α > 0 is a step size. After that, we project T̃τ into
the definition domain T with the Kullback-Leibler metric as

Tτ+1 := ΠKL
T (T̃τ ) = arg min

T′∈T
KL(T′|T̃τ ). (21)

According to (Benamou et al. 2015), the projection opera-
tion in Eq. (21) can be rewritten as the following regularized
optimal transport problem:

Tτ+1 := ΠKL
T (T̃τ )

= arg min
T′∈T

〈−ε log(T̃τ ),T′〉 − εH(T′),
(22)

which can be efficiently solved by the Sinkhorn’s fixed point
algorithm (Sinkhorn 1967; Cuturi 2013). In Problem (22),
the transport cost matrix −ε log(T̃τ ) can be simplified as

−ε log(T̃τ ) = −ε log
(
Tτ � exp

(
− α∇L(Tτ )

))
= ∇f(Tτ )

= Θ> + n−ΨTτΦ,

(23)

where we set εα = 1.
Algorithm 1 summarizes the procedure of OTOS.

Algorithm 1 Optimal Transport for OverSampling (OTOS)

1: Initialize T = µr(µ+)>, τ = 1.
2: Train w over X+ and X− by solving Problem (10).
3: Compute µ+ based on Eq. (11).
4: Construct Θ, Φ and Ψ according to Eq. (16).
5: repeat
6: Calculate Eq. (23) based on Tτ .
7: Obtain Tτ+1 by solving Problem (22).
8: τ := τ + 1.
9: until Convergence.

10: Synthesize samples X̂ based on Eq. (9).
11: Train w over X+, X− and X̂.
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Figure 2: Results on a 2D toy data set. Positive and negative points are minority and majority class samples, respectively. (a)
Positive points and negative points. (b) Positive points, negative points, and synthetic points obtained by OTOS-α. (c) Positive
points, negative points, and synthetic points obtained by OTOS-β. (d) Positive points, negative points, and synthetic points
obtained by OTOS. Dot lines indicate the transport plan from random points to synthetic points.

Experiments
To verify our proposed method, we firstly conduct empirical
studies on a toy data set, and then apply our method on sev-
eral real-world data sets, which include benchmark data sets
from LIBSVM and medical image data.

Compared Methods
• SVM. We perform SVM (Fan et al. 2008) on an imbal-

anced data set to train a classifier. SVM is a straightfor-
ward method without considering the imbalance issue.

• ROS. Random oversampling (ROS) randomly selects
samples from the minority class and adds them to train-
ing data.

• SMOTE. In the method of synthetic minority oversam-
pling technique (SMOTE) (Chawla et al. 2002), for a mi-
nority class sample, the linear interpolations of it and its
nearest neighbors are taken as new samples for training.

• bSMOTE. Borderline-SMOTE (bSMOTE) (Han, Wang,
and Mao 2005) firstly finds some so-called DANGER
samples for the minority class, and then takes the linear
interpolations of them and their nearest neighbors as new
training samples.

• ADASYN. Adaptive synthetic (ADASYN) (He et al.
2008) extends SMOTE by adaptively adjusting the num-
bers of artificial samples for each minority class sample.
If a minority class sample has more nearest neighbors be-
longing to the majority class, ADASYN will synthesize
more artificial samples based on the sample and its near-
est neighbors.

• MWMOTE. Majority weighted minority oversampling
technique (MWMOTE) (Barua et al. 2014) identifies in-
formative minority class samples, and synthesizes sam-
ples according to the weighted informative minority class
samples based on a clustering method.

• OTOS-α. OTOS-α is a simplified version of OTOS.
OTOS-α adopts a uniform distribution for µ+. It firstly
obtains T by solving Problem (3), and then synthesizes
samples based on Eq. (9).

• OTOS-β. OTOS-β is also a simplified version of OTOS.
OTOS-β replaces the uniform distribution of µ+ in
OTOS-α by the distribution in Eq. (11).

Experiments on Toy Data
To demonstrate the effects of the proposed method, we
firstly conduct experiments on a 2D toy data set, in which
42 positive points are minority class samples, and 201 nega-
tive points are majority class samples. Figure 2(a) shows the
positive and negative points.

From Figure 2(b), the synthetic points obtained by OTOS-
α follow a similar distribution to that of the minority class
samples. Figure 2(c) presents synthetic points obtained by
OTOS-β. Compared to OTOS-α, OTOS-β synthesizes more
samples near to those samples that are close to the borderline
between two classes, since it pays more attention to those
samples based on the distribution in Eq. (11). Nevertheless,
the nearest positive point to the negative ones highly affects
the result of OTOS-β, making it sensitive to noisy samples.
Figure 2(d) shows the results of OTOS. Compared to OTOS-
α, OTOS synthesizes more samples close to the borderline
between two classes. In addition, by introducing the regu-
larization in Eq. (12) into optimal transport, OTOS is more
robust to noisy points than OTOS-β.

Experiments on Real-World Data
Data Sets Tables 1 and 2 present the statistical informa-
tion of the adopted benchmark and medical image data sets,
respectively. In the tables, “size” represents #samples ×
#features, and “ratio” is #majority class samples

#minority class samples . In the
following, we describe the details of the data sets.

• Benchmark data. We adopt six benchmark data sets
from LIBSVM (australian, breast-cancer, diabetes, ger-
man, svmguide2, and svmguide4) in the experiments. For
the data sets that are split into training and testing sub-
sets, we only adopt training subsets for simplicity. For the
multi-class data sets, we take one class as positive and the
others as negative to construct imbalanced binary classifi-
cation tasks.
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Table 1: Statistical information of the benchmark data sets.

name size ratio
australian 690× 14 1.25

breast-cancer 683× 10 1.86
diabetes 768× 8 1.87
german 1, 000× 24 2.33

svmguide2 391× 20 1.30
svmguide4 300× 10 4.66

Table 2: Statistical information of the medical image data
sets.

name size ratio
ORIGA 650× 2, 048 2.87

iSee-AMD 8, 480× 2, 048 10.78
iSee-DR 8, 016× 2, 048 30.31

iSee-glaucoma 8, 208× 2, 048 17.32

• Medical data. We also use four fundus image data
sets, among which iSee-AMD, iSee-DR, iSee-glaucoma
are used to detect Age-Related Macular Degeneration
(AMD), Diabetic Retinopathy (DR) and glaucoma, re-
spectively, and ORIGA is used to detect glaucoma. We ex-
tract features from the pool5 layer of the ResNet-152 (He
et al. 2016) pretrained on ImageNet (Deng et al. 2009) to
obtain a 2,048-dimensional vector for one image.

Experimental Settings For all the compared methods, we
synthesize minority class samples until that the numbers of
minority and majority class samples are the same, and use
linear SVM with the default parameter C = 1 as the classi-
fier. For our method, we draw random samples from a prior
uniform distribution U(0, 1). The parameters λ and ε are se-
lected in the range 10{−1,0,1,2,3,4,5}, and the best results are
adopted. We repeat all the experiments 10 times and report
the mean and standard derivation values, and results of each
time are obtained by the mean of 10-fold cross-validation.

Evaluation Metrics We adopt multiple evaluation metrics
to test the performance of the proposed method. Specifically,
let yi be a true label and ŷi be a predicted label, we count
the numbers of true positive (TP ), false positive (FP ), false
negative (FN ) and true negative (TN ) samples, which are
formally defined as follows:

TP =
∣∣{xi|yi = +1 ∧ ŷi = +1, i = 1, . . . , n}

∣∣,
FP =

∣∣{xi|yi = −1 ∧ ŷi = +1, i = 1, . . . , n}
∣∣,

FN =
∣∣{xi|yi = +1 ∧ ŷi = −1, i = 1, . . . , n}

∣∣,
TN =

∣∣{xi|yi = −1 ∧ ŷi = −1, i = 1, . . . , n}
∣∣.

(24)

Based on the above notations, we define the following met-
rics:

Sensitivity =
TP

TP + FN
, (25)

F1 =
2 · TP

2 · TP + FN + FP
, (26)

G-mean =

√
TP

TP + FN
· TN

TN + FP
. (27)

Table 3: Significance test results (win/tie/loss) with paired
t-test at 0.05 level for OTOS against other methods.

method Sensitivity F1 G-mean
SVM 9/0/1 10/0/0 10/0/0
ROS 7/2/1 8/2/0 8/2/0

SMOTE 7/3/0 9/1/0 8/2/0
bSMOTE 9/0/1 9/1/0 10/0/0
ADASYN 5/3/2 8/2/0 6/4/0
MWMOTE 9/1/0 7/3/0 8/2/0
OTOS-α 8/2/0 4/5/1 6/4/0
OTOS-β 4/6/0 4/6/0 4/6/0

Results and Discussions Table 3 summarizes the signifi-
cance test results for OTOS against other methods on all the
metrics and adopted data sets, and Tables 4 and 5 present
the results on the benchmark and medical image data sets,
respectively. The best results are indicated with boldface
type and the second best results are underlined. We also
apply paired t-test at 0.05 level for performing the signifi-
cance tests between OTOS and other methods. “•” means
that OTOS significantly outperforms a baseline method, and
“◦” means that a baseline method significantly outperforms
OTOS. We draw several interesting observations as follows.

• OTOS achieves the best Sensitivity results on 7 data sets,
the best F1 results on 7 data sets, and the best G-mean
results on all the adopted data sets. This demonstrates the
effectiveness of OTOS.

• For all the three metrics, most of the best or the second
best results are obtained by OTOS-α, OTOS-β or OTOS,
which indicates that optimal transport is able to synthe-
size high-quality minority class samples to enhance the
classification performance.

• Compared to OTOS-α and OTOS-β, OTOS usually gets
better or highly comparable results, which verifies the ef-
fects of the shifted distribution in Eq. (11) and the regu-
larization in Eq. (12).

• OTOS-β performs better than OTOS-α on most exper-
iments, which validates that concentrating on minority
class samples close to a borderline between two classes
is beneficial for training an effective classifier.

• From Table 3, OTOS significantly outperforms other
methods on most comparisons, which demonstrates the
consistent superiority of OTOS over other methods.

Conclusion
In this paper, we propose a novel oversampling method for
imbalanced data via optimal transport. We exploit global
geometric information in the distribution of minority class
samples, and take transported samples as synthetic minor-
ity class data. Moreover, we design a regularization based
on the transported samples, and shift the distribution of mi-
nority class samples according to loss information. Exper-
imental results on benchmark and medical image data sets
demonstrate the effectiveness of our proposed method in
terms of multiple metrics.
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Table 4: Results on the benchmark data sets.

method
australian breast-cancer

Sensitivity F1 G-mean Sensitivity F1 G-mean
SVM 0.9230± 0.0040◦ 0.8479± 0.0029• 0.8575± 0.0028• 0.9630± 0.0055• 0.9556± 0.0030• 0.9675± 0.0028•
ROS 0.9247± 0.0055◦ 0.8486± 0.0032• 0.8581± 0.0027• 0.9722± 0.0062 0.9572± 0.0044 0.9703± 0.0038

SMOTE 0.9217± 0.0050 0.8480± 0.0032• 0.8578± 0.0027• 0.9730± 0.0057 0.9580± 0.0040 0.9709± 0.0034

bSMOTE 0.9287± 0.0032◦ 0.8509± 0.0020 0.8604± 0.0020• 0.9626± 0.0030• 0.9545± 0.0031• 0.9668± 0.0024•
ADASYN 0.9247± 0.0017◦ 0.8494± 0.0011• 0.8584± 0.0011• 0.9843± 0.0059◦ 0.9548± 0.0049• 0.9713± 0.0039

MWMOTE 0.9037± 0.0122• 0.8485± 0.0080 0.8601± 0.0075 0.9617± 0.0045• 0.9547± 0.0029• 0.9666± 0.0026•
OTOS-α 0.9173± 0.0034 0.8520± 0.0030 0.8624± 0.0029 0.9578± 0.0077• 0.9559± 0.0046• 0.9665± 0.0041•
OTOS-β 0.9167± 0.0022 0.8512± 0.0017 0.8620± 0.0014 0.9570± 0.0038• 0.9549± 0.0028• 0.9657± 0.0024•

OTOS 0.9180± 0.0036 0.8525± 0.0020 0.8627± 0.0020 0.9713± 0.0042 0.9604± 0.0025 0.9719± 0.0022

method
diabetes german

Sensitivity F1 G-mean Sensitivity F1 G-mean
SVM 0.5535± 0.0091• 0.6186± 0.0069• 0.6953± 0.0060• 0.4893± 0.0072• 0.5559± 0.0074• 0.6560± 0.0056•
ROS 0.7073± 0.0071• 0.6656± 0.0059• 0.7426± 0.0049• 0.7253± 0.0106• 0.6046± 0.0042• 0.7167± 0.0034•

SMOTE 0.7081± 0.0076• 0.6660± 0.0059• 0.7424± 0.0048• 0.7177± 0.0079• 0.6025± 0.0056• 0.7146± 0.0046•
bSMOTE 0.6777± 0.0070• 0.6559± 0.0058• 0.7337± 0.0047• 0.6900± 0.0077• 0.6023± 0.0067• 0.7137± 0.0049•
ADASYN 0.7365± 0.0125• 0.6697± 0.0080 0.7459± 0.0069 0.7407± 0.0135• 0.6057± 0.0105• 0.7173± 0.0093•
MWMOTE 0.6727± 0.0102• 0.6445± 0.0067• 0.7239± 0.0055• 0.5633± 0.0215• 0.5776± 0.0142• 0.6839± 0.0122•
OTOS-α 0.7115± 0.0099• 0.6679± 0.0063 0.7443± 0.0051 0.6977± 0.0118• 0.6041± 0.0071• 0.7161± 0.0061•
OTOS-β 0.7546± 0.0088 0.6709± 0.0072 0.7466± 0.0061 0.7507± 0.0068• 0.6094± 0.0048• 0.7204± 0.0042•

OTOS 0.7635± 0.0098 0.6733± 0.0064 0.7495± 0.0053 0.7590± 0.0077 0.6156± 0.0055 0.7255± 0.0042

method
svmguide2 svmguide4

Sensitivity F1 G-mean Sensitivity F1 G-mean
SVM 0.0000± 0.0000• 0.0000± 0.0000• 0.0000± 0.0000• 0.0000± 0.0000• 0.0000± 0.0000• 0.0000± 0.0000•
ROS 0.7229± 0.0170• 0.7943± 0.0165• 0.8181± 0.0133• 0.7160± 0.0227• 0.4155± 0.0178• 0.6612± 0.0156•

SMOTE 0.7206± 0.0191• 0.7954± 0.0124• 0.8179± 0.0105• 0.7460± 0.0165• 0.4207± 0.0104• 0.6719± 0.0091•
bSMOTE 0.0494± 0.0050• 0.0902± 0.0089• 0.1689± 0.0201• 0.2700± 0.0271• 0.2913± 0.0340• 0.4185± 0.0520•
ADASYN 0.7671± 0.0104• 0.8180± 0.0065• 0.8371± 0.0052• 0.7140± 0.0378• 0.4760± 0.0228• 0.7088± 0.0194•
MWMOTE 0.6935± 0.0356• 0.7765± 0.0190• 0.8019± 0.0154• 0.6180± 0.0114• 0.3536± 0.0056• 0.6017± 0.0059•
OTOS-α 0.8188± 0.0077• 0.8382± 0.0058• 0.8553± 0.0054• 0.7460± 0.0190• 0.5802± 0.0137• 0.7758± 0.0123•
OTOS-β 0.8312± 0.0079 0.8408± 0.0061 0.8575± 0.0058 0.7720± 0.0235• 0.5751± 0.0159• 0.7807± 0.0135•

OTOS 0.8347± 0.0098 0.8442± 0.0065 0.8610± 0.0060 0.8020± 0.0371 0.6090± 0.0248 0.8037± 0.0206

Table 5: Results on the medical image data sets.

method
ORIGA iSee-AMD

Sensitivity F1 G-mean Sensitivity F1 G-mean
SVM 0.4000± 0.0161• 0.4074± 0.0162• 0.5647± 0.0129• 0.3267± 0.0285• 0.3928± 0.0139• 0.5581± 0.0227•
ROS 0.4188± 0.0257 0.4257± 0.0205 0.5797± 0.0179 0.4878± 0.0158• 0.3814± 0.0057• 0.6606± 0.0093•

SMOTE 0.4188± 0.0312• 0.4253± 0.0251• 0.5798± 0.0234• 0.4997± 0.0122 0.3880± 0.0106• 0.6690± 0.0084

bSMOTE 0.4169± 0.0374• 0.4235± 0.0331• 0.5779± 0.0282• 0.4925± 0.0140• 0.3905± 0.0073• 0.6649± 0.0076•
ADASYN 0.4237± 0.0297 0.4275± 0.0275 0.5817± 0.0233 0.4957± 0.0177 0.3892± 0.0080• 0.6665± 0.0108•
MWMOTE 0.4281± 0.0172 0.4295± 0.0180 0.5824± 0.0150 0.3469± 0.0220• 0.3990± 0.0112 0.5743± 0.0169•
OTOS-α 0.4338± 0.0170 0.4372± 0.0138 0.5901± 0.0119 0.4354± 0.0160• 0.4215± 0.0079◦ 0.6387± 0.0104•
OTOS-β 0.4362± 0.0287 0.4404± 0.0256 0.5931± 0.0212 0.4875± 0.0150• 0.4030± 0.0094 0.6653± 0.0091•

OTOS 0.4475± 0.0265 0.4462± 0.0273 0.5983± 0.0208 0.5057± 0.0149 0.4064± 0.0066 0.6764± 0.0083

method
iSee-DR iSee-glaucoma

Sensitivity F1 G-mean Sensitivity F1 G-mean
SVM 0.1688± 0.0134• 0.2258± 0.0177• 0.3912± 0.0249• 0.1148± 0.0137• 0.1574± 0.0174• 0.3239± 0.0230•
ROS 0.2428± 0.0140• 0.2101± 0.0105• 0.4775± 0.0149• 0.3080± 0.0226• 0.2178± 0.0095• 0.5254± 0.0201•

SMOTE 0.2432± 0.0108• 0.2135± 0.0074• 0.4754± 0.0121• 0.3066± 0.0139• 0.2200± 0.0101• 0.5262± 0.0126•
bSMOTE 0.2492± 0.0171• 0.2172± 0.0117• 0.4837± 0.0173• 0.3039± 0.0115• 0.2159± 0.0073• 0.5233± 0.0103•
ADASYN 0.2500± 0.0148 0.2209± 0.0164• 0.4837± 0.0172 0.2986± 0.0201• 0.2167± 0.0118• 0.5197± 0.0185•
MWMOTE 0.1784± 0.0139• 0.2291± 0.0148• 0.4099± 0.0158• 0.1902± 0.0214• 0.2069± 0.0139• 0.4221± 0.0230•
OTOS-α 0.2512± 0.0148• 0.2474± 0.0098 0.4891± 0.0145 0.2905± 0.0181• 0.2427± 0.0114 0.5176± 0.0169•
OTOS-β 0.2696± 0.0138 0.2409± 0.0121 0.5034± 0.0124 0.3239± 0.0188 0.2334± 0.0099• 0.5416± 0.0149

OTOS 0.2652± 0.0156 0.2438± 0.0146 0.5014± 0.0164 0.3332± 0.0161 0.2406± 0.0096 0.5492± 0.0140
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