
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Parallel Restarted SGD with Faster Convergence and Less
Communication: Demystifying Why Model Averaging Works for Deep Learning

Hao Yu, Sen Yang, Shenghuo Zhu
Machine Intelligence Technology Lab, Alibaba Group (U.S.) Inc., Bellevue, WA.

Abstract

In distributed training of deep neural networks, parallel mini-
batch SGD is widely used to speed up the training process
by using multiple workers. It uses multiple workers to sam-
ple local stochastic gradients in parallel, aggregates all gradi-
ents in a single server to obtain the average, and updates each
worker’s local model using a SGD update with the averaged
gradient. Ideally, parallel mini-batch SGD can achieve a lin-
ear speed-up of the training time (with respect to the number
of workers) compared with SGD over a single worker. How-
ever, such linear scalability in practice is significantly lim-
ited by the growing demand for gradient communication as
more workers are involved. Model averaging, which period-
ically averages individual models trained over parallel work-
ers, is another common practice used for distributed train-
ing of deep neural networks since (Zinkevich et al. 2010)
(McDonald, Hall, and Mann 2010). Compared with paral-
lel mini-batch SGD, the communication overhead of model
averaging is significantly reduced. Impressively, tremendous
experimental works have verified that model averaging can
still achieve a good speed-up of the training time as long as
the averaging interval is carefully controlled. However, it re-
mains a mystery in theory why such a simple heuristic works
so well. This paper provides a thorough and rigorous theoret-
ical study on why model averaging can work as well as par-
allel mini-batch SGD with significantly less communication
overhead.

Introduction
Consider the distributed training of deep neural networks
over multiple workers (Dean et al. 2012), where all work-
ers can access all or partial training data and aim to find a
common model that yields the minimum training loss. Such
a scenario can be modeled as the following distributed par-
allel non-convex optimization

min
x∈Rm

f(x)
∆
=

1

N

N∑
i=1

fi(x) (1)

where N is the number of nodes/workers and each fi(x)
∆
=

Eζi∼Di [Fi(x; ζi)] is a smooth non-convex function where
Di can be possibly different for different i. Following the

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

standard stochastic optimization setting, this paper assumes
each worker can locally observe unbiased independent
stochastic gradients (around the last iteration solution xt−1

i)
given by Gt

i = ∇Fi(xt−1
i ; ζti) with Eζti∼Di

[Gt
i|ζ

[t−1]] =

∇fi(xt−1
i),∀i where ζ[t−1] ∆

= [ζτi]i∈{1,2,...,N},τ∈{1,...,t−1}
denotes all the randomness up to iteration t− 1.

One classical parallel method to solve problem (1) is to
sample each worker’s local stochastic gradient in parallel,
aggregate all gradients in a single server to obtain the aver-
age, and update each worker’s local solution using the aver-
aged gradient in its SGD step1 (Dekel et al. 2012) (Li et al.
2014). Such a classical method, called parallel mini-batch
SGD in this paper, is conceptually equivalent to a single
node Stochastic Gradient Descent (SGD) with a batch size
N times large and achievesO(1/

√
NT) convergence with a

linear speed-up with respect to (w.r.t.) the number of workers
(Dekel et al. 2012). Since every iteration of parallel mini-
batch SGD requires exchanging of local gradient informa-
tion among all workers, the corresponding communication
cost is heavy and often becomes a performance bottleneck.

There have been many attempts to reduce communication
overhead in parallel mini-batch SGD. One notable method
called decentralized parallel SGD (D-PSGD) is studied
in (Lian et al. 2017)(Jiang et al. 2017) (Lian et al. 2018).
Remarkably, D-PSGD can achieve the same O(1/

√
NT)

convergence rate as parallel mini-batch SGD, i.e., the lin-
ear speed-up w.r.t. the number of workers is preserved,
without requiring a single server to collect stochastic gra-
dient information from local workers. However, since D-
PSGD requires each worker to exchange their local solu-
tions/gradients with its neighbors at every iteration, the total
number of communication rounds in D-PSGD is the same as
that in parallel mini-batch SGD. Another notable method to
reduce communication overhead in parallel mini-batch SGD
is to let each worker use compressed gradients rather than
raw gradients for communication. For example, quantized

1Equivalently, we can let the server update its solution using
the averaged gradient and broadcast this solution to all local work-
ers. Another equivalent implementation is to let each worker take
a single SGD step using its own gradient and send the updated lo-
cal solution to the server; let the server calculate the average of all
workers’ updated solutions and refresh each worker’s local solution
with the averaged version.

5693

SGD studied in (Seide et al. 2014)(Alistarh et al. 2017)(Wen
et al. 2017) or sparsified SGD studied in (Strom 2015)(Dry-
den et al. 2016)(Aji and Heafield 2017) allow each worker
to pass low bit quantized or sparsified gradients to the server
at every iteration by sacrificing the convergence to a mild
extent. Similarly to D-PSGD, such gradient compression
based methods require message passing at every iteration
and hence their total number of communication rounds is
still the same as that in parallel mini-batch SGD.

Recall that parallel mini-batch SGD can be equivalently
interpreted as a procedure where at each iteration each local
worker first takes a single SGD step and then replaces its
own solution by the average of individual solutions. With
a motivation to reduce the number of inter-node commu-
nication rounds, a lot of works suggest to reduce the fre-
quency of averaging individual solutions in parallel mini-
batch SGD. Such a method is known as model averag-
ing and has been widely used in practical training of deep
neural networks. Model averaging can at least date back to
(Zinkevich et al. 2010) (McDonald, Hall, and Mann 2010)
where individual models are averaged only at the last iter-
ation before which all workers simply run SGD in parallel.
The method in (Zinkevich et al. 2010) (McDonald, Hall, and
Mann 2010), referred to as one-shot averaging, uses only
one single communication step at the end and is numerically
shown to have good solution quality in many applications.
However, it is unclear whether the one-shot averaging can
preserve the linear speed-up w.r.t. the number of workers. In
fact, (Zhang et al. 2016) shows that one-shot averaging can
yield inaccurate solutions for certain non-convex optimiza-
tion. As a remedy, (Zhang et al. 2016) suggests more fre-
quent averaging should be used to improve the performance.
However, the understanding on how averaging frequency
can affect the performance of parallel SGD is quite limited
in the current literature. Work (Zhou and Cong 2017) proves
that by averaging local worker solutions only every I itera-
tions, parallel SGD has convergence rate O(1/

√
(N/I)T)

for non-convex optimization. That is, the convergence slows
down by a factor of I by saving I times inter-node commu-
nication.2 A recent exciting result reported in (Stich 2018)
proves that for strongly-convex minimization, model aver-
aging can achieve a linear speed-up w.r.t. N as long as the
averaging (communication) step is performed once at least
every I = O(

√
T/
√
N) iterations. Work (Stich 2018) pro-

vides the first theoretical analysis that demonstrates the pos-
sibility of achieving the same linear speedup attained by
parallel mini-batch SGD with strictly less communication
for strongly-convex stochastic optimization. However, it re-
mains as an open question in (Stich 2018) whether it is possi-
ble to achieve O(1/

√
NT) convergence for non-convex op-

timization, which is the case of deep learning.
On the other hand, many experimental works (Povey,

Zhang, and Khudanpur 2015) (Chen and Huo 2016) (McMa-
han et al. 2017) (Su, Chen, and Xu 2018) (Kamp et al.
2018) (Lin, Stich, and Jaggi 2018) observe that model av-

2In this paper, we shall show that if I is chosen as I =

O(T 1/4/N3/4), parallel SGD for non-convex optimization does
not sacrifice any factor in its convergence rate.

eraging can achieve a superior performance for various deep
learning applications. One may be curious whether these
positive experimental results are merely coincidences for
special case examples or can be attained universally. In
this paper, we shall show that model averaging indeed can
achieve O(1/

√
NT) convergence for non-convex optimiza-

tion by averaging only every I = O(T 1/4/N3/4) iterations.
That is, the same O(1/

√
NT) convergence is preserved for

non-convex optimization while communication overhead is
saved by a factor of O(T 1/4/N3/4). To our knowledge, this
paper is the first3 to present provable convergence rate guar-
antees (with the linear speed-up w.r.t. number of workers
and less communication) of model averaging for non-convex
optimization such as deep learning and provide guidelines
on how often averaging is needed without losing the linear
speed-up.

Besides reducing the communication cost, the method of
model averaging also has the advantage of reducing privacy
and security risks in the federated learning scenario re-
cently proposed by Google in (McMahan et al. 2017). This
is because model averaging only passes deep learning mod-
els, which preserve good differential privacy, and does not
pass raw data or gradients owned by each individual worker.

Parallel Restarted SGD and Its Performance
Analysis

Throughout this paper, we assume problem (1) satisfies the
following assumption.

Assumption 1.
1. Smoothness: Each function fi(x) is smooth with modu-

lus L.
2. Bounded variances and second moments: There exits

constants σ > 0 and G > 0 such that

Eζi∼Di‖∇Fi(x; ζi)−∇fi(x)‖2 ≤ σ2,∀x,∀i

Eζi∼Di
‖∇Fi(x; ζi)‖2 ≤ G2,∀x,∀i

Consider the simple parallel SGD described in Algorithm
1. If we divide iteration indices into epochs of length I , then
in each epochs all N workers are running SGD in parallel
with the same initial point y that is the average of final in-
dividual solutions from the previous epoch. This is why we
call Algorithm 1 “Parallel Restarted SGD”. The “model
averaging” technique used as a common practice for train-
ing deep neural networks can be viewed as a special case
since Algorithm 1 calculates the model average to obtain y
every I iterations and performs local SGDs at each worker
otherwise. Such an algorithm is different from elastic aver-
aging SGD (EASGD) proposed in (Zhang, Choromanska,

3After the preprint (Yu, Yang, and Zhu 2018) of this paper is
posted on ArXiv in July 2018, another work (Wang and Joshi 2018)
subsequently analyzes the convergence rate of model averaging for
non-convex optimization. Their independent analysis relaxes our
bounded second moment assumption but further assumes all fi(x)
in formulation (1) are identical, i.e, all workers must access a com-
mon training set when training deep neural networks.

5694

Algorithm 1 Parallel Restarted SGD (PR-SGD)
1: Input: Initialize x0

i = y ∈ Rm. Set learning rate γ > 0
and node synchronization interval (integer) I > 0

2: for t = 1 to T do
3: Each node i observes an unbiased stochastic gradi-

ent Gt
i of fi(·) at point xt−1

i
4: if t is a multiple of I , i.e., t mod I = 0, then
5: Calculate node average y

∆
= 1

N

∑N
i=1 x

t−1
i

6: Each node i in parallel updates its local solution

xti = y − γGt
i, ∀i (2)

7: else
8: Each node i in parallel updates its local solution

xti = xt−1
i − γGt

i, ∀i (3)

9: end if
10: end for

and LeCun 2015) which periodically drags each local solu-
tion towards their average using a controlled weight. Note
that synchronization (of iterations) across N workers is not
necessary inside each epoch of Algorithm 1. Furthermore,
inter-node communication is only needed to calculate the
initial point at the beginning of each epoch and is longer
needed inside each epoch. As a consequence, Algorithm 1
with I > 1 reduces its number of communication rounds by
a factor of I when compared with the classical parallel mini-
batch SGD. The linear speed-up property (w.r.t. number of
workers) with I > 1 is recently proven only for strongly
convex optimization in (Stich 2018). However, there is no
theoretical guarantee on whether the linear speed-up with
I > 1 can be preserved for non-convex optimization, which
is the case of deep neural networks.

Fix iteration index t, we define

xt
∆
=

1

N

N∑
i=1

xti (4)

as the average of local solution xti over all N nodes. It is
immediate that

xt = xt−1 − γ 1

N

N∑
i=1

Gt
i (5)

Inspired by earlier works on distributed stochastic optimiza-
tion (Zhang, Wainwright, and Duchi 2012) (Lian et al. 2017)
(Mania et al. 2017) (Stich 2018) where convergence analy-
sis is performed for an aggregated version of individual so-
lutions, this paper focuses on the convergence rate analysis
of xt defined in (4). An interesting observation from (5) is:
Workers in Algorithm 1 run their local SGD independently
for most iterations, however, they still jointly update their
node average using a dynamic similar to SGD.The main is-
sue in (5) is an “inaccurate” stochastic gradient, which is a
simple average of individual stochastic gradients at points
different from xt, is used. Since each worker in Algorithm
1 periodically restarts its SGD with the same initial point,

deviations between each local solution xti and xt are ex-
pected to be controlled by selecting a proper synchroniza-
tion interval I . The following useful lemma relates quantity
E[‖xt − xti‖2] and algorithm parameter I . A similar lemma
is proven in (Stich 2018).

Lemma 1. Under Assumption 1, Algorithm 1 ensures

E[‖xt − xti‖2] ≤ 4γ2I2G2,∀i,∀t

where xt is defined in (4) and G is the constant defined in
Assumption 1.

Proof. Fix t ≥ 1 and i ∈ {1, 2, . . . , N}. Note that Al-
gorithm 1 calculates the node average y

∆
= 1

N

∑N
i=1 x

t−1
i

every I iterations. Consider the largest t0 ≤ t such that
y = xt0 at iteration t0 in Algorithm 1. (Note that such t0
must exist and t− t0 ≤ I .) We further note, from the update
equations (2) and (3) in Algorithm 1, that

xti = y − γ
t∑

τ=t0+1

Gτ
i (6)

By (5), we have xt = y − γ
∑t
τ=t0+1

1
N

∑N
i=1 G

τ
i .

Thus, we have

E[‖xti − xt‖2]

=E[‖γ
t∑

τ=t0+1

1

N

N∑
i=1

Gτ
i − γ

t∑
τ=t0+1

Gτ
i ‖2]

=γ2E[‖
t∑

τ=t0+1

1

N

N∑
i=1

Gτ
i −

t∑
τ=t0+1

Gτ
i ‖2]

(a)

≤2γ2E[‖
t∑

τ=t0+1

1

N

N∑
i=1

Gτ
i ‖2 + ‖

t∑
τ=t0+1

Gτ
i ‖2]

(b)

≤2γ2(t− t0)E[

t∑
τ=t0+1

‖ 1

N

N∑
i=1

Gτ
i ‖2 +

t∑
τ=t0+1

‖Gτ
i ‖2]

(c)

≤2γ2(t− t0)E[

t∑
τ=t0+1

(
1

N

N∑
i=1

‖Gτ
i ‖2) +

t∑
τ=t0+1

‖Gτ
i ‖2]

(d)

≤4γ2I2G2

where (a)-(c) follows by using the inequality ‖
∑n
i=1 zi‖2 ≤

n
∑n
i=1 ‖zi‖2 for any vectors zi and any positive integer n

(using n = 2 in (a), n = t− t0 in (b) and n = N in (c)); and
(d) follows from Assumption 1.

Theorem 1. Consider problem (1) under Assumption 1. If
0 < γ ≤ 1

L in Algorithm 1, then for all T ≥ 1, we have

1

T

T∑
t=1

E[‖∇f(xt−1)‖2] ≤
2

γT
(f(x0)− f∗)+4γ2I2G2L2 +

L

N
γσ2

where f∗ is the minimum value of problem (1).

5695

Proof. Fix t ≥ 1. By the smoothness of f , we have

E[f(xt)] ≤E[f(xt−1)] + E[〈∇f(xt−1),xt − xt−1〉]

+
L

2
E[‖xt − xt−1‖2] (7)

Note that

E[‖xt − xt−1‖2]
(a)
= γ2E[‖ 1

N

N∑
i=1

Gt
i‖2]

(b)
=γ2E[‖ 1

N

N∑
i=1

(Gt
i −∇fi(x

t−1
i))‖2] + γ2E[‖ 1

N

N∑
i=1

∇fi(xt−1
i)‖2]

(c)
=γ2

1

N2

N∑
i=1

E[‖Gt
i −∇fi(x

t−1
i)‖2] + γ2E[‖ 1

N

N∑
i=1

∇fi(xt−1
i)‖2]

(d)

≤
1

N
γ2σ2 + γ2E[‖ 1

N

N∑
i=1

∇fi(xt−1
i)‖2] (8)

where (a) follows from (5); (b) follows by noting that
E[Gt

i] = ∇fi(xt−1
i) and applying the basic inequality

E[‖Z‖2] = E[‖Z − E[Z]‖2] + ‖E[Z]‖2 that holds for any
random vector Z; (c) follows because each Gt

i−∇fi(x
t−1
i)

has 0 mean and is independent across nodes; and (d) follows
from Assumption 1.

We further note that

E[〈∇f(xt−1),xt − xt−1〉]

(a)
= − γE[〈∇f(xt−1),

1

N

N∑
i=1

Gt
i〉]

(b)
= − γE[〈∇f(xt−1),

1

N

N∑
i=1

∇fi(xt−1
i)〉]

(c)
= − γ

2
E
[
‖∇f(xt−1)‖2 + ‖ 1

N

N∑
i=1

∇fi(xt−1
i)‖2

− ‖∇f(xt−1)− 1

N

N∑
i=1

∇fi(xt−1
i)‖2

]
(9)

where (a) follows from (5); (b) follows because

E[〈∇f(xt−1),
1

N

N∑
i=1

Gt
i〉]

=E[E[〈∇f(xt−1),
1

N

N∑
i=1

Gt
i〉|ζ

[t−1]]]

=E[〈∇f(xt−1),
1

N

N∑
i=1

E[Gt
i|ζ

[t−1]]〉]

=E[〈∇f(xt−1),
1

N

N∑
i=1

∇fi(xt−1
i)〉]

where the first equality follows by the iterated law of ex-
pectations, the second equality follows because xt−1 is de-
termined by ζ[t−1] = [ζ1, . . . , ζt−1] and the third equal-
ity follows by E[Gt

i|ζ
[t−1]] = E[∇Fi(xt−1

i ; ζti)|ζ
[t−1]] =

∇fi(xt−1
i); and (c) follows from the basic identity

〈z1, z2〉 = 1
2

(
‖z1‖2 + ‖z2‖2 − ‖z1 − z2‖2

)
for any two

vectors z1, z2 of the same length.
Substituting (8) and (9) into (7) yields

E[f(xt)]

≤E[f(xt−1)]−
γ − γ2L

2
E[‖ 1

N

N∑
i=1

∇fi(xt−1
i)‖2]

−
γ

2
E[‖∇f(xt−1)‖2]

+
γ

2
E[‖∇f(xt−1)−

1

N

N∑
i=1

∇fi(xt−1
i)‖2] +

L

2N
γ2σ2

(a)

≤E[f(xt−1)]−
γ − γ2L

2
E[‖ 1

N

N∑
i=1

∇fi(xt−1
i)‖2]

−
γ

2
E[‖∇f(xt−1)‖2] + 2γ3I2G2L2 +

L

2N
γ2σ2 (10)

(b)

≤E[f(xt−1)]−
γ

2
E[‖∇f(xt−1)‖2] + 2γ3I2G2L2 +

L

2N
γ2σ2

(11)

where (b) follows from 0 < γ ≤ 1
L and (a) follows because

E[‖∇f(xt−1)− 1

N

N∑
i=1

∇fi(xt−1
i)‖2]

=E[‖ 1

N

N∑
i=1

∇fi(xt−1)− 1

N

N∑
i=1

∇fi(xt−1
i)‖2]

=
1

N2
E[‖

N∑
i=1

(
∇fi(xt−1)−∇fi(xt−1

i)
)
‖2]

≤ 1

N
E[

N∑
i=1

‖∇fi(xt−1)−∇fi(xt−1
i)‖2]

≤L2 1

N

N∑
i=1

E[‖xt−1 − xt−1
i ‖

2]

≤4γ2I2G2L2

where the first inequality follows by using ‖
∑N
i=1 zi‖2 ≤

N
∑N
i=1 ‖zi‖2 for any vectors zi; the second inequality fol-

lows from the smoothness of each fi by Assumption 1; and
the third inequality follows from Lemma 1.

Dividing both sides of (11) by γ
2 and rearranging terms

yields

E
[
‖∇f(xt−1)‖2

]
≤ 2

γ

(
E
[
f(xt−1)

]
− E

[
f(xt)

])
+ 4γ2I2G2L2 +

L

N
γσ2

(12)

Summing over t ∈ {1, . . . , T} and dividing both sides by T

5696

yields

1

T

T∑
t=1

E
[
‖∇f(xt−1)‖2

]
≤ 2

γT

(
f(x0)− E

[
f(xT)

])
+ 4γ2I2G2L2 +

L

N
γσ2

(a)

≤ 2

γT

(
f(x0)− f∗

)
+ 4γ2I2G2L2 +

L

N
γσ2

where (a) follows because f∗ is the minimum value of prob-
lem (1).

The next corollary follows by substituting suitable γ, I
values into Theorem 1.

Corollary 1. Consider problem (1) under Assumption 1. Let
T ≥ N .

1. If we choose γ =
√
N

L
√
T

in Algorithm 1, then we

have 1
T

∑T
t=1 E[‖∇f(xt−1)‖2] ≤ 2L√

NT

(
f(x0)− f∗

)
+

4N
T I2G2 + 1√

NT
σ2.

2. If we further choose I ≤ T 1/4

N3/4 , then
1
T

∑T
t=1 E[‖∇f(xt−1)‖2] ≤ 2L√

NT
(f(x0) − f∗) +

4√
NT

G2 + 1√
NT

σ2 = O(1√
NT

) where f∗ is the
minimum value of problem (1).

Remark 1. For non-convex optimization, it is generally im-
possible to develop a convergence rate for objective values.
In Theorem 1 and Corollary 1, we follow the convention in
literature (Ghadimi and Lan 2013) (Lian et al. 2017) (Alis-
tarh et al. 2017) to use the (average) expected squared gra-
dient norm to characterize the convergence rate. Note that
the average can be attained in expectation by taking each
xt−1 with an equal probability 1/T .

From Theorem 1 and Corollary 1, we have the following
important observations:

• Linear Speedup: By part (1) of Corollary 1, Algorithm 1
with any fixed constant I has convergence rate O(1√

NT
+

N
T). If T is large enough, i.e., T > N3, then the term
N
T is dominated by the term 1√

NT
and hence Algorithm

1 has convergence rate O(1√
NT

). That is, our algorithm
achieves a linear speed-up with respect to the number of
workers. Such linear speedup for stochastic non-convex
optimization was previously attained by decentralized-
parallel stochastic gradient descent (D-PSGD) considered
in (Lian et al. 2017) by requiring at least T > N5. See,
e.g., Corollary 2 in (Lian et al. 2017).4

• Communication Reduction: Note that Algorithm 1 re-
quires inter-node communication only at the iterations
that are multiples of I . By Corollary 1, it suffices to

4In fact, for a ring network considered in Theorem 3 in (Lian et
al. 2017), D-PSGD requires a even larger T > N9 since its imple-
mentation depends on the network topology. In contrast, the linear
speedup of our algorithm is irrelevant to the network topology.

choose any I ≤ T 1/4

N3/4 to ensure the O(1√
NT

) conver-
gence of our algorithm. That is, compared with parallel
mini-batch SGD or the D-PSGD in (Lian et al. 2017), the
number of communication rounds in our algorithm can be
reduced by a factor T 1/4

N3/4 . Although Algorithm 1 does not
describe how the node average y is obtained at each node,
in practice, the simplest way is to introduce a parameter
server that collects all local solutions and broadcasts their
average as in parallel mini-batch SGD (Li et al. 2014). Al-
ternatively, we can perform an all-reduce operation on the
local models(without introducing a server) such that all
nodes obtain y independently and simultaneously. (Using
an all-reduce operation among all nodes to obtain gradi-
ents averages has been previously suggested in (Goyal et
al. 2017) for distributed training of deep learning.)

Extensions
Using Time-Varying Learning Rates
Note that Corollary 1 assumes time horizon T is known and
uses a constant learning rate in Algorithm 1. In this subsec-
tion, we consider the scenario where the time horizon T is
not known beforehand and develop a variant of Algorithm
1 with time-varying rates to achieve the same computation
and communication complexity. Compared with Algorithm
1, Algorithm 2 has the advantage that its accuracy is being
improved automatically as it runs longer.

Algorithm 2 PR-SGD with Time-Varying Learning Rates
1: Input: Set time-varying epoch learning rates γs > 0.
2: Initialize: Initialize x0,K0

i = x0 ∈ Rm.
3: for epoch index s = 1 to S do
4: Set epoch length Ks and initialize xs,0i =

1
N

∑N
i=1 x

s−1,Ks−1

i to be the node average of local
worker solutions from the last epoch.

5: for k = 1 to Ks do
6: Each node i observes an unbiased gradient Gs,k

i

of fi(·) at point xs,k−1
i and in parallel updates

xs,ki = xs,k−1
i − γsGs,k

i , ∀i (13)

7: end for
8: end for

Although Algorithm 2 introduces the concept of epoch
for the convenience of description, we note that it is nothing
but a parallel restarted SGD where each worker restarts it-
self every epoch using the node average of the last epoch’s
final solutions as the initial point. If we sequentially reindex
{xs,ki }s∈{1,...,S},k∈{1,...,Ks} as xti (note that all xs,0i are ig-

nored since xs,0i = xs−1,Ks−1

i), then Algorithm 2 is mathe-
matically equivalent to Algorithm 1 except that time-varying
learning rates γs are used in different epochs. Similarly to
(4), we can define xs,k via xs,k

∆
= 1

N

∑N
i=1 x

s,k
i and have

xs,k = xs,k−1 − γ 1

N

N∑
i=1

Gs,k
i (14)

5697

Theorem 2. Consider problem (1) under Assumption 1. If
we choose Ks = d s

1/3

N e and γs = N
s2/3

in Algorithm 2, then
for all S ≥ 1, we have5

1∑S
s=1

∑Ks

k=1 γ
s

S∑
s=1

Ks∑
k=1

E
[
γs‖∇f(xs,k−1)‖2

]
≤ Õ(

1
√
NT

)

where T =
∑S
s=1K

s.

Proof. See our ArXiv full version.

Asynchronous Implementations in Heterogeneous
Networks
Algorithm 1 requires all workers to compute the average of
individual solutions every I iterations and synchronization
among local workers are not needed before averaging. How-
ever, the fastest worker still needs to wait until all the other
workers finish I iterations of SGD even if it finishes its own
I iteration SGD much earlier. (See Figure 1 for a 2 worker
example where one worker is significantly faster than the
other. Note that orange “syn” rectangles represent the proce-
dures to compute the node average.) As a consequence, the
computation capability of faster workers is wasted. Such an
issue can arise quite often in heterogeneous networks where
nodes are equipped with different hardwares. Intuitively, if

idlelocal SGD (I iterations) syn

local SGD (I iterations) syn

slow worker

fast worker
idlelocal SGD (I iterations) syn

local SGD (I iterations) syn
slow worker

fast worker

Figure 1: An illustration of Algorithm 1 implemented in a
2 worker heterogeneous network. Orange “syn” rectangles
represent the procedures to compute the node average.

one worker finishes its I iteration local SGD earlier, to avoid
wasting its computation capability, we might want to let this
worker continue running its local SGD until all the other
workers finish their I iteration local SGD. However, such a
method can drag the node average too far towards the local
solution at the fastest worker. Note that if fi(·) in (1) are sig-
nificantly different from each other such that the minimizer
of fi(·) at the i-th worker, which is the fastest one, deviates
the true minimizer of problem (1) too much, then dragging
the node average towards the fastest worker’s local solution
is undesired. In this subsection, we further assume that prob-
lem (1) satisfies the following assumption:
Assumption 2. The distributionsDi in the definition of each
fi(x)

∆
= Eζi∼Di

[Fi(x; ζi)] in (1) are identical.

5A logarithm factor log(NT) is hidden in the notation Õ(·).

Note that Assumption 2 is satisfied if all local workers
can access a common training data set or each local train-
ing data set is obtained from uniform sampling from the
global training set. Consider the restarted local SGD for het-
erogeneous networks described in Algorithm 3. Note that
if Ii ≡ I, ∀i for some fixed constant I , then Algorithm 3
degrades to Algorithm 1. In practice, if the hardware con-

Algorithm 3 PR-SGD in Heterogeneous Networks
1: Input: Set learning rate γ > 0 and epoch length of each

worker i as Ii.
2: Initialize: Initialize x0,Ii

i = x0 ∈ Rm.
3: for epoch index s = 1 to S do
4: Initialize xs,0i = 1

N

∑N
i=1 x

s−1,Ii
i as the node aver-

age of local worker solutions from the last epoch.
5: Each worker i in parallel runs its local SGD for Ii

iterations via:

xs,ki = xs,k−1
i − γGs,k

i , ∀i (15)

where Gs,k
i is an unbiased stochastic gradient at point

xs,k−1
i .

6: end for

figurations or measurements (from previous experiments) of
each local worker are known, we can predetermine the value
of each Ii, i.e., if worker i is two times faster than worker j,
then Ii = 2Ij . Alternatively, under a more practical imple-
mentation, we can set a fixed time duration for each epoch
and let each local worker keep running its local SGD until
the given time elapses. By doing so, within the same time
duration, the faster a worker is, the more SGD iterations it
runs. In contrast, if we apply Algorithm 1 in this setting, then
all local workers have to run the same number of SGD iter-
ations as that can be run by the slowest worker within the
given time interval. This subsection shows that, under As-
sumption 2, Algorithm 3 can achieve a better performance
than Algorithm 1 in heterogeneous networks where some
workers are much faster than others.

Without loss of generality, this subsection always indexes
local workers in a decreasing order of speed. That is, worker
1 is the fastest while worker N is the slowest. If we run Al-
gorithm 3 by specifying a fixed wall clock time duration for
each epoch, during which each local worker keeps running
its local SGD, then we have I1 ≥ I2 ≥ · · · ≥ IN . Fix epoch
index s, for all i 6= 1, variables xs,ki with k > Ii is never
used. However, for the convenience of analysis, we define

xs,ki
∆
= xs,k−1

i ,∀i 6= 1,∀k ∈ {Ii + 1, . . . , I1}.
Conceptually, the above equation can be interpreted as as-
suming worker i, which is slower than worker 1, runs extra
I1−Ii iterations of SGD by using 0 as an imaginary stochas-
tic gradient (with no computation cost). See Figure 2 for a
2 worker example where I1 = 16 and I2 = 8. Using the
definition xs,k

∆
= 1

N

∑N
i=1 x

s,k
i , we have

xs,k = xs,k−1 + γ
1

N

∑
i:Ii≥k

Gs,k
i ,∀s,∀k ∈ {1, 2, . . . , I1}.

5698

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

fast worker

slow worker

Figure 2: Left: A typical epoch of Algorithm 3 in a heteroge-
neous network with 2 workers. A wider rectangle means the
SGD iteration takes a longer wall clock time. Right: Imag-
ined extra SGD iterations with a 0 stochastic gradient (in
light blue rectangles) are added for the slow worker.

Theorem 3. Consider problem (1) under Assumptions 1 and
2. Suppose all workers are indexed in a decreasing order of
their speed, i.e., worker 1 is the fastest and worker N is the
slowest. If 0 < γ ≤ 1

L in Algorithm 3, then for all S ≥ 1,

1

S 1
N

∑N
i=1 Ii

S∑
s=1

I1∑
k=1

jk
N

E[‖∇f(xs,k−1)‖2]

≤ 2

γS 1
N

∑N
i=1 Ii

(f(x0)− f∗) + 4γ2I2
1G

2L2 +
L

N
γσ2

(16)

where jk for each given k is the largest integer in
{1, 2, . . . , N} such that k ≤ Ijk (That is, for each fixed k,
jk is the number of workers that are still using sampled true
stochastic gradients to update their local solutions at itera-
tion k.); and f∗ is the minimum value of problem (1).

Proof. See our ArXiv full version.

The next corollary shows that Algorithm 3 in heteroge-
neous networks can ensure the convergence and preserve the
same O(1/

√
NT) convergence rate with the same O(T

1/4

N3/4)
communication reduction.

Corollary 2. Consider problem (1) under Assumptions 1
and 2. Let T ≥ N . If we use γ = Θ(

√
N√
T

) such that γ ≤ 1
L ,

Ii = Θ
(
T 1/4

N3/4

)
,∀i and S = T

IN
in Algorithm 3, then

1

S 1
N

∑N
i=1 Ii

S∑
s=1

I1∑
k=1

jk
N

E
[
‖∇f(xs,k−1)‖2

]
≤ O(

1√
NT

)

where jk for each given k is the largest integer in
{1, 2, . . . , N} such that k ≤ Ijk .

Proof. This simply follows by substituting specific values
of γ, Ii, S into (16) in Theorem 3.

Remark 2. Note that once Ii values are known, then jk for
any k in Theorem 3 and Corollary 2 are also available by its
definition. To appreciate the implication of Theorem 2, we
recall that Algorithm 1 is a special case of Algorithm 3 with
Ii ≡ IN ,∀i, i.e., all workers can only run the same num-
ber (determined by the slowest worker) of SGD iterations in
each epoch. In this perspective, Theorem 1 (with I = IN)

Figure 3: Training loss of ResNet20 over CIFAR10 on a ma-
chine with 8 P100 GPUs. In all schemes, each worker uses a
local batch size 32 and momentum 0.9. The initial learning
at each worker is 0.1 and is divided by 10 when 8 workers
together access 150 epochs and 275 epochs of training data.

implies that the performance of Algorithm 1 is given by

1

SIN

S∑
s=1

IN∑
k=1

E[‖∇f(xs,k−1)‖2]

≤ 2

γSIN
(f(x0)− f∗) + 4γ2I2

NG
2L2 +

L

N
γσ2 (17)

Note that the left sides of (16) and (17) (weighted aver-
age expressions) can be attained by taking each xs,k−1 ran-
domly with a probability equal to the normalized weight in
the summation. The first error term in (16) is strictly smaller
than that in (17) while the second error term in (16) is larger
than that in (17). Note that the constant factor f(x0) − f∗
in the first error term in (17) is large when a poor initial
point x0 is chosen (and dominates the second error term if
f(x0)−f∗) ≥ 2γ3I3

NG
2L2S). So the main message of The-

orem 3 is that if a poor initial point is selected, Algorithm 2
can possibly converges faster than Algorithm 1 (at least for
the first few epochs) in a heterogeneous network.

Experiment
The superior training speed-up performance of model av-
eraging has been empirically observed in various deep
learning scenarios, e.g., CNN for MNIST in (Zhang et al.
2016)(Kamp et al. 2018)(McMahan et al. 2017); VGG for
CIFAR10 in (Zhou and Cong 2017); DNN-GMM for speech
recognition in (Chen and Huo 2016) (Su, Chen, and Xu
2018); and LSTM for language modeling in (McMahan et
al. 2017). A thorough empirical study of ResNet over CIFAR
and ImageNet is also available in the recent work (Lin, Stich,
and Jaggi 2018). We compare model averaging, i.e., PR-
SGD (Algorithm 1) with I ∈ {4, 8, 16, 32}) with the clas-
sical parallel mini-batch SGD6 by training ResNet20 with

6The classical parallel mini-batch SGD is equivalent to Al-
gorithm 1 with I = 1. Our implementation with Horovod uses
the more efficient “all-reduce“method rather than the “parameter
server” method to synchronize information between workers.

5699

CIFAR10 on a machine with 8 P100 GPUs. Figure 3 plots
the training loss convergence. See our ArXiv full version for
a figure of test accuracy. Our implementation uses Horovod
(Sergeev and Del Balso 2018) for inter-worker communica-
tion and uses PyTorch 0.4 for algorithm implementations.

Conclusion
This paper studies parallel restarted SGD, which is a theo-
retical abstraction of the “model averaging” practice widely
used in training deep neural networks. This paper shows
that parallel restarted SGD can achieve O(1/

√
NT) conver-

gence for non-convex optimization with a number of com-
munication rounds reduced by a factor O(T 1/4) compared
with that required by the classical parallel mini-batch SGD.

References
Aji, A. F., and Heafield, K. 2017. Sparse communication for dis-
tributed gradient descent. In Conference on Empirical Methods in
Natural Language Processing (EMNLP).
Alistarh, D.; Grubic, D.; Li, J.; Tomioka, R.; and Vojnovic, M.
2017. QSGD: Communication-efficient SGD via gradient quan-
tization and encoding. In Advances in Neural Information Pro-
cessing Systems (NIPS).
Chen, K., and Huo, Q. 2016. Scalable training of deep learning
machines by incremental block training with intra-block parallel
optimization and blockwise model-update filtering. In Proceedings
of IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP).
Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.;
Senior, A.; Tucker, P.; Yang, K.; Le, Q. V.; et al. 2012. Large
scale distributed deep networks. In Advances in Neural Information
Processing Systems (NIPS).
Dekel, O.; Gilad-Bachrach, R.; Shamir, O.; and Xiao, L. 2012.
Optimal distributed online prediction using mini-batches. Journal
of Machine Learning Research 13(165–202).
Dryden, N.; Moon, T.; Jacobs, S. A.; and Van Essen, B. 2016.
Communication quantization for data-parallel training of deep neu-
ral networks. In Workshop on Machine Learning in HPC Environ-
ments (MLHPC).
Ghadimi, S., and Lan, G. 2013. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM Journal on
Optimization 23(4):2341–2368.
Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.;
Kyrola, A.; Tulloch, A.; Jia, Y.; and He, K. 2017. Accurate, large
minibatch SGD: training imagenet in 1 hour. arXiv:1706.02677.
Jiang, Z.; Balu, A.; Hegde, C.; and Sarkar, S. 2017. Collaborative
deep learning in fixed topology networks. In Advances in Neural
Information Processing Systems (NIPS).
Kamp, M.; Adilova, L.; Sicking, J.; Hüger, F.; Schlicht, P.; Wirtz,
T.; and Wrobel, S. 2018. Efficient decentralized deep learning by
dynamic model averaging. arXiv:1807.03210.
Li, M.; Andersen, D. G.; Smola, A. J.; and Yu, K. 2014. Com-
munication efficient distributed machine learning with the parame-
ter server. In Advances in Neural Information Processing Systems
(NIPS).
Lian, X.; Zhang, C.; Zhang, H.; Hsieh, C.-J.; Zhang, W.; and Liu, J.
2017. Can decentralized algorithms outperform centralized algo-
rithms? A case study for decentralized parallel stochastic gradient
descent. In Advances in Neural Information Processing Systems
(NIPS).

Lian, X.; Zhang, W.; Zhang, C.; and Liu, J. 2018. Asynchronous
decentralized parallel stochastic gradient descent. In Proceedings
of International Conference on Machine Learning (ICML).
Lin, T.; Stich, S. U.; and Jaggi, M. 2018. Don’t use large mini-
batches, use local SGD. arXiv:1808.07217.
Mania, H.; Pan, X.; Papailiopoulos, D.; Recht, B.; Ramchandran,
K.; and Jordan, M. I. 2017. Perturbed iterate analysis for asyn-
chronous stochastic optimization. SIAM Journal on Optimization
27(4):2202–2229.
McDonald, R.; Hall, K.; and Mann, G. 2010. Distributed training
strategies for the structured perceptron. In Proceedings of North
American Chapter of the Association for Computational Linguis-
tics (NAACL).
McMahan, H. B.; Moore, E.; Ramage, D.; Hampson, S.; et al.
2017. Communication-efficient learning of deep networks from
decentralized data. In International Conference on Artificial Intel-
ligence and Statistics (AISTATS).
Povey, D.; Zhang, X.; and Khudanpur, S. 2015. Parallel training of
DNNs with natural gradient and parameter averaging. In Proceed-
ings of the International Conference on Learning Representations
(ICLR).
Seide, F.; Fu, H.; Droppo, J.; Li, G.; and Yu, D. 2014. 1-bit stochas-
tic gradient descent and its application to data-parallel distributed
training of speech DNNs. In Annual Conference of the Interna-
tional Speech Communication Association (INTERSPEECH).
Sergeev, A., and Del Balso, M. 2018. Horovod: fast and easy
distributed deep learning in TensorFlow. arXiv:1802.05799.
Stich, S. U. 2018. Local SGD converges fast and communicates
little. arXiv:1805.09767.
Strom, N. 2015. Scalable distributed DNN training using com-
modity GPU cloud computing. In Annual Conference of the Inter-
national Speech Communication Association (INTERSPEECH).
Su, H.; Chen, H.; and Xu, H. 2018. Experiments on par-
allel training of deep neural network using model averaging.
arXiv:1507.01239v3.
Wang, J., and Joshi, G. 2018. Cooperative SGD: A unified frame-
work for the design and analysis of communication-efficient SGD
algorithms. arXiv:1808.07576.
Wen, W.; Xu, C.; Yan, F.; Wu, C.; Wang, Y.; Chen, Y.; and Li,
H. 2017. Terngrad: Ternary gradients to reduce communication
in distributed deep learning. In Advances in Neural Information
Processing Systems (NIPS).
Yu, H.; Yang, S.; and Zhu, S. 2018. Parallel restarted SGD for
non-convex optimization with faster convergence and less commu-
nication. arXiv:1807.06629.
Zhang, J.; De Sa, C.; Mitliagkas, I.; and Ré, C. 2016. Parallel SGD:
When does averaging help? arXiv:1606.07365.
Zhang, S.; Choromanska, A. E.; and LeCun, Y. 2015. Deep learn-
ing with elastic averaging SGD. In Advances in Neural Information
Processing Systems (NIPS).
Zhang, Y.; Wainwright, M. J.; and Duchi, J. C. 2012.
Communication-efficient algorithms for statistical optimization. In
Advances in Neural Information Processing Systems (NIPS).
Zhou, F., and Cong, G. 2017. On the convergence properties of
a K-step averaging stochastic gradient descent algorithm for non-
convex optimization. arXiv:1708.01012.
Zinkevich, M.; Weimer, M.; Li, L.; and Smola, A. J. 2010. Par-
allelized stochastic gradient descent. In Advances in Neural Infor-
mation Processing Systems (NIPS).

5700

