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Abstract
This paper proposes network recasting as a general method
for network architecture transformation. The primary goal of
this method is to accelerate the inference process through the
transformation, but there can be many other practical applica-
tions. The method is based on block-wise recasting; it recasts
each source block in a pre-trained teacher network to a target
block in a student network. For the recasting, a target block is
trained such that its output activation approximates that of the
source block. Such a block-by-block recasting in a sequential
manner transforms the network architecture while preserving
the accuracy. This method can be used to transform an ar-
bitrary teacher network type to an arbitrary student network
type. It can even generate a mixed-architecture network that
consists of two or more types of block. The network recast-
ing can generate a network with fewer parameters and/or ac-
tivations, which reduce the inference time significantly. Nat-
urally, it can be used for network compression by recasting a
trained network into a smaller network of the same type. Our
experiments show that it outperforms previous compression
approaches in terms of actual speedup on a GPU.

Introduction
Deep Neural Networks (DNNs) are widely used for many
kinds of recognition and classification tasks because it
has outperformed previous machine learning methods in
terms of inference accuracy. New kinds of DNN archi-
tecture have been introduced to achieve even higher ac-
curacy (Lin, Chen, and Yan 2014; Szegedy et al. 2015;
Larsson, Maire, and Shakhnarovich 2017; He et al. 2016;
Zagoruyko and Komodakis 2016; Huang et al. 2017), and
the networks become deeper and deeper to take the expo-
nential advantage of depth (Goodfellow et al. 2016). To train
a deep network, He et al. (2016) proposed the residual net-
work (ResNet), which consists of the summation of iden-
tity mapping and output of convolutional layers. It helps to
propagate gradients from top layer to bottom layer, so it can
alleviate the vanishing-gradient problem. The densely con-
nected network (DenseNet) is also proposed to solve that
problem and improve information flow (Huang et al. 2017).
DenseNet uses the feature concatenation method instead of
summation, so bottom layers can access gradients directly
through the concatenation path.
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Figure 1: ResNet and DenseNet Top-1 validation errors
for different numbers of multiplications (left) and inference
times (right). To measure the inference time, single NVIDIA
Titan X (Pascal) is used and batch size is set to 16. DenseNet
has much fewer multiplications than ResNet, but its infer-
ence time is much longer.

Deeper network architectures help to achieve higher accu-
racy, but those have a huge amount of parameters and com-
putation redundancies. To design a compact network archi-
tecture, the 1× 1 convolution is added (Szegedy et al. 2015;
He et al. 2016; Huang et al. 2017). The additional 1 × 1
convolution reduces the number of channels of output ac-
tivation. The number of parameters and multiplications in
the 3 × 3 convolution are also reduced thanks to the 1 × 1
convolution. In this reason, bottleneck block in ResNet and
dense block in DenseNet use the 1 × 1 convolution for the
parameter and multiplication reduction.

However, the bottleneck and dense block actually increase
inference time even though the number of multiplications
is reduced. Figure 1 shows the number of multiplications
and actual inference time for three models of ResNet and
DenseNet. ResNet-50 has a number of multiplications sim-
ilar to that of ResNet-34 thanks to the 1 × 1 convolution,
but it takes 1.8× longer than ResNet-34. This is because
the bottleneck block of ResNet has four times larger acti-
vation map compared with basic residual block, so it causes
four times more activation load from off-chip memory. Al-
though DenseNet has a much smaller number of parame-
ters and multiplications compared with ResNet, its inference
time is much longer than that of ResNet. DenseNet has much
smaller total activations than ResNet, but actual activation
load of DenseNet is much larger than that of ResNet because
the layers in DenseNet use output activations of all previous
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layers and thus actual activation load is much larger than the
total activation size.

In this paper, we focus on the inference time reduction
rather than parameter and multiplication reduction. To re-
duce the inference time, we propose the network recast-
ing method by transforming the network architecture for
smaller activation load. We transform the network architec-
ture through block-wise recasting of source blocks into tar-
get blocks. The recasting is done by training the target block
to mimic the output activation of the source block, so the
accuracy can be preserved after recasting. We can obtain a
mixed-architecture network by recasting parts of the trained
network. By the mixed-architecture network, we mean a net-
work having multiple types of block that can exploit the ad-
vantages of individual block types within a single network.
In addition, we can use the network recasting method for
network compression by recasting each block to a smaller
one of the same type. We have achieved up to 3.2× actual
speedup with 0.22% top-5 accuracy loss on ILSVRC2012
dataset by the DenseNet-121 recasting.

Related Works
Network pruning To reduce the size and inference time of
a trained network, several pruning methods such as weight
pruning and filter pruning have been proposed. Han et
al. (2015) propose an iterative weight pruning method that
removes connections and neurons according to the absolute
value of parameters. Guo, Yao, and Chen (2016) also pro-
pose iterative weight pruning that also gives a chance to re-
store connections for pruned weight. However, weight prun-
ing methods generate sparse parameter matrices rather than
smaller matrices, so its actual speedup is much less than the
parameter reduction in general purpose hardware (Liu et al.
2015). The filter pruning methods reduce the size of param-
eter and activation matrices after the pruning, so they are
more effective to accelerate the inference in any kinds of
hardware. To find filters to be pruned, average percentage
of zeros (APoZ), sum of absolute values, and reconstruction
error of activation are used (Hu et al. 2016; Li et al. 2016;
Luo, Wu, and Lin 2017; He, Zhang, and Sun 2017). Luo,
Wu, and Lin (2017) find and remove filters that have the
smallest influence on the output activation of the next layer,
and He, Zhang, and Sun (2017) train a channel pruning mask
minimizing the reconstruction error of current output activa-
tion and prune the channel of filters according to the trained
mask. Liu et al. (2017) and Luo and Wu (2018) use channel
scaling factor by adapting additional trainable parameters or
squeeze-and-excitation layer (Hu, Shen, and Sun 2018), and
then prune filters according to the scaling factor. Recently,
Lin et al. (2017) use deep reinforcement learning to select
pruning candidates at runtime.

Knowledge distillation To train a smaller network with
higher accuracy, mimic learning and knowledge distillation
(KD) are introduced by Ba and Caruana (2014) and Hin-
ton, Vinyals, and Dean (2014), respectively. These meth-
ods train a smaller network called student network using
logits of a large network called teacher network. Ba and

Caruana (2014) train a student network by minimizing L2
loss between logits of student and teacher networks. Hin-
ton, Vinyals, and Dean (2014) use logits of the teacher
network to generate soft target, and train student network
by minimizing cross-entropy loss with the soft target. It is
hard to train a deep student network due to the vanishing-
gradient problem, so several KD methods have been pro-
posed to train a deep student network (Romero et al. 2015;
Luo et al. 2016). To train a thinner and deeper student net-
work using KD, Romero et al. (2015) propose hint train-
ing that trains a hidden layer with a convolutional regres-
sor. Luo et al. (2016) make additional paths from a hidden
layer to the output layer for gradient propagation without
vanishing. In addition, Zagoruyko and Komodakis (2017)
introduce the attention transfer method to reduce the num-
ber of residual blocks while conserving the accuracy. Yim et
al. (2017) also propose the residual block reduction method
using the relationship between input and output activations.
Also, there is a recent research to train the ResNet using log-
its of DenseNet (Furlanello et al. 2018).

Key differences Our work is for general recasting of neu-
ral networks. It can be used in various ways such as net-
work size reduction or network type transformation. Com-
pared to the previous work on network size reduction using
weight/filter pruning, our work is different in that the infer-
ence process of the reduced network can be made signifi-
cantly faster through the reduction of activations. We also
reveal the fact that reducing activation size is more important
for inference speed than reducing the number of parameters.
Compared to other approaches using the knowledge distilla-
tion technique, our work is different in that the technique is
applied sequentially to further enhance the accuracy.

Network Recasting
The network recasting method recasts a pre-trained network
into a network of different type and/or size. Given the pre-
trained teacher network, we transform each block (source
block) in the teacher network into a new block (target block)
of pre-defined type and size in the student network. The
transformation is done by training the target block to gen-
erate output activations similar to those of the source block.
We call this process block recasting. In this process, the
source block can be considered as an unknown function, and
the target block can be considered as a functional approxi-
mator similar to a multilayer perceptron (Hornik 1991). Af-
ter recasting all candidate blocks, we obtain the student net-
work, which is faster than the teacher network while preserv-
ing the functionality or accuracy. We call the entire process
network recasting.

Recasting from DenseNet to ResNet and ConvNet
The DenseNet has a lot of activation load due to the dense
connection, and by recasting the dense block into a basic
residual block (we call the basic residual block as basic
block for simplicity), we can reduce the inference time. We
consider a basic block consisting of two 3 × 3 convolution
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Figure 2: Block recasting of a dense block into a basic block
(Case 1) and a convolution block (Case 2). The basic block
has shorter inference time than the dense block because it
has much smaller activation load. The convolution block is
even faster than the basic block, but its capacity is much
smaller and so it can cause accuracy loss.
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Figure 3: Block recasting of a residual block—basic block
(Case 1) and bottleneck (Case 2)— into a convolution block.
The recasting of the basic block keeps the same number of
input and output channels. However, since the bottleneck
block uses a smaller number of channels for the feature ex-
traction, we recast it into a convolution block that has the
same number of input and output channels as the original
3× 3 convolution.

and shortcut as shown in Figure 2. Even though the ba-
sic block has more parameters and multiplications than the
dense block, its activation load is much smaller and thus it
is much faster. For more inference time reduction, we can
recast the dense block into a single convolution block, al-
though it can cause more accuracy loss because it has a very
small capacity. Figure 2 shows the two examples of recast-
ing the first dense block in DenseNet-121.

Recasting from ResNet to ConvNet
Figure 3 illustrates the block recasting of a residual block
into a convolution block. In the basic block, local features
are extracted from the input activations using 3 × 3 filters,
and thus, we recast the basic block into a 3 × 3 convolu-
tion block. Since the new convolution block has the same
number of filters as the original basic block, the dimension
of the output activations is not changed. However, in bottle-
neck block recasting, the dimension of the output activation
is reduced as shown in Figure 3 (Case 2) for the first bot-
tleneck block of ResNet-50. Although the output activation
becomes smaller, the number of linearly independent fea-

Table 1: Candidates for the network recasting.

Recasting Type Source Target Dimension

Transformation

Dense
Dense
Basic

Bottleneck

Basic
Convolution
Convolution
Convolution

Preserved
Preserved
Preserved
Reduced

Compression Basic
Convolution

Basic
Convolution

Reduced
Reduced

tures is not changed because the second 1×1 convolution in
the source block just combines its input activations linearly
to extend the dimension of output activation. Therefore, the
next block in the student network still can reconstruct simi-
lar activation map.

Compression
The network recasting can be used to compress the large
network while preserving accuracy. In this case, we assume
that the network has redundancy such as ineffectual filters
and redundant filters. An ineffectual filter denotes a filter
that cannot extract any meaningful feature, and a redundant
filter denotes a filter that extracts a feature very similar to
the one extracted by some other filter or a feature that can
be obtained by combining features from other filters. To re-
move those filters, previous approaches use APoZ (Hu et al.
2016), sum of absolute values of a filter (Li et al. 2016),
or influence on next activations (Luo, Wu, and Lin 2017;
He, Zhang, and Sun 2017) as the criteria, but redundant fil-
ters cannot be founded with those approaches. A possible
approach is to find such redundant filters by checking the
similarity between every pair of filters. However, it requires
a huge amount of computations for similarity check and does
not guarantee a good result. Instead, we recast a given source
block into a smaller target block that has the same type as
the source block. Then we train the target block and the next
block to reconstruct the output activation of the next block
with smaller number of filters. If the next block can recon-
struct a similar output activation, the new target block can
extract effective features for reconstruction. For example, a
convolution block is recast into another convolution block
that has a smaller number of filters. Then we train both the
new convolution block and the next block to reconstruct the
orginal activation map of the source next block. After train-
ing, we can obtain a more effective filter set without any
similarity or effectiveness check criteria.

Block Training
For the target block to work properly, it should be trained
with the source block as the teacher. We can easily train the
target block by approximating the output activations to those
of the source block if both blocks have the same dimen-
sion of output activations. However, dimension mismatch
happens in the block recasting especially when we reduce
the number of channels for network size reduction. Table 1
shows the recasting cases that we handle in this paper. To
avoid the dimension mismatch problem, when training a tar-
get block, we train the target block together with the next
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Figure 4: The dimension mismatch happens when the source
block is recast into a smaller target block. The next block is
used to match the dimension of output activation. After re-
building the next block, both blocks are trained by minimiz-
ing Lmse(WT ,WS).

block by approximating the output activations of the next
block as shown in Figure 4. The next block is rebuilt from
the corresponding source block by reducing the filter size
when the target block has a smaller number of channels.
Both the target block and the next block are initialized ran-
domly and trained to minimize the loss of mean-square error
(MSE) between teacher’s and student’s activations given by,

Lmse(WT ,WS) =
1

N
‖A(x;WT )−A(x;WS)‖22, (1)

where A means the activation of the next block, and x is
the input data. WT and WS indicate parameters of teacher
network and student network, respectively. N denotes the
size of an output activation of the next block.

Sequential Recasting and Fine-tuning
To recast the entire network, we apply the block recasting
method sequentially. Figure 5 shows an example of sequen-
tial recasting method. The type and dimension of the first
(target) block of the student network are determined, and
then the second block is rebuilt from the second block of the
teacher network; if there is no dimension mismatch, the sec-
ond block will be the same as that of the teacher network.
The two blocks are initialized randomly and trained by min-
imizing Lmse(WT ,WS). Now, the second block becomes
the target. Thus, its type and dimension are determined, the
third block is rebuilt, and both blocks are initialized ran-
domly. To train the second and third blocks, we reuse the
trained first block. The first block is already trained in the
previous step, but it still has approximation errors. We can
reduce the effect of its errors by training both the previous
and current blocks. Therefore, three blocks are trained in the
second step by minimizing Lmse(WT ,WS). This process
is continued for the following blocks until the last block is
recast as a new block. We can select arbitrary blocks as can-
didates for recasting so that the student network can consist
of multiple types of block. For example, the student network
can have both residual and dense blocks when only the first
dense block is recast into a residual block. We call the net-
work that has multiple types of block as mixed-architecture

network. The mixed-architecture network can have advan-
tages of both blocks. For example, by mixing dense blocks
and residual blocks, we can obtain a mixed-architecture net-
work that is faster than DenseNet and has fewer parameters
than ResNet.

The block-by-block sequential recasting has two advan-
tages. First, the functionality of each block is much simpler
than that of the whole network. Thus, it is easier to approxi-
mate the functionality of each block. By approximating each
of easier sub-functions, we can finally obtain the student net-
work with smaller approximation error. Secondly, sequen-
tial recasting can alleviate the vanishing-gradient problem.
When the source block is recast as a convolution block, the
student network cannot be trained well due to the gradient
vanishing. However, sequential recasting has very short gra-
dient paths from the output activation to the target block, so
it can be trained well. Therefore, we can obtain the student
network with higher accuracy using sequential recasting.

After finishing sequential recasting, we use the knowl-
edge distillation approach to fine-tune the student network.
There are approximation errors after sequential recasting,
and we can reduce the effect of those errors by training the
whole network. We train the student network with logits of
the teacher network and ground truth. Thus, our knowledge
distillation (KD) loss is defined by

Lkd(WT ,WS) = Lmse logit(WT ,WS) + Lce(ytrue,WS),
(2)

where Lmse logit is the MSE loss for the logits, and Lce

is the cross-entropy loss between the given label ytrue and
softmax output of the student network that is parameterized
by Ws.

Experiments
We conducted several experiments for the network recast-
ing. For the experiments, we used CIFAR and ILSVRC2012
dataset and four kinds of network architectures; ResNet (He
et al. 2016), Wide ResNet (WRN) (Zagoruyko and Ko-
modakis 2016), DenseNet (Huang et al. 2017), and VGG-
16 (Simonyan and Zisserman 2015). We adopted batch nor-
malization (Ioffe and Szegedy 2015) for all networks, be-
cause it was also effective for block-wise training. The net-
work recasting was implemented on the PyTorch framework.
We used the Xavier initializer (Glorot and Bengio 2010) in
all experiments. We used SGD with Nesterov momentum
(Sutskever et al. 2013) to train the teacher network and used
Adam optimizer (Kingma and Ba 2015) for the network re-
casting. In addition, we trained the student network with KD
and back propagation from scratch using SGD with Nes-
terov momentum for the comparison.

Visualization of Filter Reduction
The network recasting can be used for network compres-
sion; it can remove redundant filters as well as ineffectual
filters. To show the filter reduction, we compressed only the
first layer of AlexNet and visualized the filter set in Fig-
ure 6. The first layer of the original AlexNet had 64 fil-
ters, but we decreased the number to 25 in the student net-
work. Then we trained the first block of the student network
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Figure 5: An example of sequential recasting for ResNet-50. All blocks are recast in this example. In each step, the target block
and the next block (shaded blocks) are initialized randomly and trained by minimizing Lmse(WT ,WS).

Figure 6: Visualization of filters in the first layer of AlexNet
(left) and a student network (right). Redundant filters are re-
moved after network recasting.

for eight epochs, and fine-tuned the entire student network;
the learning rates for the recasting of the first block and the
fine-tuning were 0.0005 and 0.0001, respectively. Every five
epochs, the running rates were divided by 10. Figure 6 shows
filters extracted from the first layers of the teacher and stu-
dent networks. Filters of the teacher network consist of many
ineffectual and redundant filters, but those are eliminated as
shown in Figure 6. In addition, the student network achieves
the top-1 error of 44.20% and the top-5 error of 21.54%.
The top-1 and the top-5 errors increase by only 0.72% and
0.61%, respectively. Note that it is hard to remove many fil-
ters without accuracy loss because AlexNet has a relatively
large (11 × 11) filters. The filter size is related to the di-
mension of filter vector, and many more filters are required
to span the vector space as the filter size increases. As ex-
pected, we could remove many more filters on both VGG-16
and ResNet, which have only 3× 3 filters.

CIFAR
For CIFAR dataset, we used ResNet-56, ResNet-83, WRN-
28-10, DenseNet-100, and VGG-16. Especially, ResNet-83
has the same number of blocks with ResNet-56, but consists
of bottleneck blocks. In addition, we used a modified ver-
sion of VGG16, which has only one hidden fully-connected
layer with 512 neurons. Teacher networks were trained from

scratch using back propagation. We used CIFAR-10 and 100
dataset with the standard data augmentation, which consists
of four pixel zero-padding and random cropping, and hori-
zontal flipping with 0.5 probability.

In CIFAR experiments, we recast all blocks of teacher net-
works, so there is no mixed-architecture result. We counted
the number of parameters, multiplications, and activation
loads for the convolution operation. Especially, we reported
the activation load of a single image in Table 2. Table 2
shows the architecture transformation results. The network
recasting achieved similar accuracy with the teacher net-
work, and activation access is reduced significantly. It shows
lower test error compared to other methods in all network ar-
chitectures. When networks were recast into a plain convolu-
tional network, the network recasting achieved much lower
test error compared with both KD and back propagation.
The sequential recasting can alleviate the vanishing-gradient
problem, so its results outperformed the others.

We also compressed the VGG-16 and WRN-28-10 us-
ing the network recasting. In this experiment, source blocks
were recast into 2.5× and 5× smaller blocks in VGG-16
and WRN-28-10, respectively. Table 3 shows compression
results of both networks. The network recasting achieved the
smallest accuracy loss compared with other methods. Espe-
cially, network recasting achieved 1.58% and 3.57% lower
test error compared with KD and back propagation in VGG-
16 compression on CIFAR-100.

The born again network (BAN) proposed by (Furlanello et
al. 2018) also trains ResNet student using logits of DenseNet
teacher. However, they proposed only switching DenseNet
with ResNet, and the test error of BAN will be higher than
that of network recasting because BAN only uses the KD
method as shown in Table 2 and 3. We propose any to any
architecture transformation, and deep student networks that
have only convolution blocks can also be trained well by
applying sequential recasting because it can alleviate the
vanishing-gradient problem. In addition, we also propose
mixed-architecture network, which can also be trained well
by using the proposed network recasting.
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Table 2: Error rates (%) of architecture transform results on CIFAR datasets. (B/M: billion/million)

Method Type C10+ C100+ Params Mults Acts/image Time/image
ResNet-56

Baseline 7.02 30.89 0.85M (1.0×) 125.75M (1.0×) 0.56M (1.0×) 1.05ms

Recasting Conv 6.75 32.14 0.41M (2.1×) 61.78M (2.0×) 0.27M (2.0×) 0.50ms
KD Conv 9.43 33.22 0.41M (2.1×) 61.78M (2.0×) 0.27M (2.0×) 0.50ms
Backprop Conv 10.61 37.85 0.41M (2.1×) 61.78M (2.0×) 0.27M (2.0×) 0.50ms

ResNet-83
Baseline 6.34 28.13 0.83M (1.0×) 125.09M (1.0×) 1.69M (1.0×) 1.51ms

Recasting Conv 6.90 31.04 0.41M (2.0×) 61.78M (2.0×) 0.27M (6.2×) 0.95ms
KD Conv 8.95 32.75 0.41M (2.0×) 61.78M (2.0×) 0.27M (6.2×) 0.95ms
Backprop Conv 9.77 37.14 0.41M (2.0×) 61.78M (2.0×) 0.27M (6.2×) 0.95ms

WRN-28-10
Baseline 4.06 19.54 36.45M (1.0×) 5.24B (1.0×) 2.52M (1.0×) 0.81ms

Recasting Conv 4.11 19.74 4.86M (7.5×) 1.17B (4.5×) 0.90M (2.8×) 0.41ms
KD Conv 4.40 19.94 4.86M (7.5×) 1.17B (4.5×) 0.90M (2.8×) 0.41ms
Backprop Conv 4.67 20.90 4.86M (7.5×) 1.17B (4.5×) 0.90M (2.8×) 0.41ms

DenseNet-100
Baseline 5.11 23.62 0.74M (1.0×) 0.29B (1.0×) 4.41M (1.0×) 2.12ms

Recasting Basic 4.91 22.39 2.53M (0.3×) 0.77B (0.4×) 0.89M (4.9×) 0.27ms
KD Basic 4.71 22.71 2.53M (0.3×) 0.77B (0.4×) 0.89M (4.9×) 0.27ms
Backprop Basic 5.39 24.57 2.53M (0.3×) 0.77B (0.4×) 0.89M (4.9×) 0.27ms

Recasting Conv 6.82 25.60 0.87M (0.9×) 0.19B (1.5×) 0.51M (8.6×) 0.16ms
KD Conv 6.75 26.52 0.87M (0.9×) 0.19B (1.5×) 0.51M (8.6×) 0.16ms
Backprop Conv 8.11 30.05 0.87M (0.9×) 0.19B (1.5×) 0.51M (8.6×) 0.16ms

Table 3: Error rates (%) of compression results on CIFAR datasets. (B/M: billion/million)

Method Type C10+ C100+ Params Mults Acts/image Time/image
VGG-16

Baseline 6.85 28.80 14.71M (1.0×) 313.20M (1.0×) 0.31M (1.0×) 0.37ms

Recasting Conv 8.31 31.56 2.36M (6.2×) 50.63M (6.2×) 0.13M (2.4×) 0.31ms
KD Conv 9.24 33.14 2.36M (6.2×) 50.63M (6.2×) 0.13M (2.4×) 0.31ms
Backprop Conv 8.71 35.13 2.36M (6.2×) 50.63M (6.2×) 0.13M (2.4×) 0.31ms

WRN-28-10
Baseline 4.06 19.54 36.45M (1.0×) 5.24B (1.0×) 2.52M (1.0×) 0.81ms

Recasting Basic 5.18 24.13 1.46M (24.9×) 0.21B (24.5×) 0.52M (4.9×) 0.56ms
KD Basic 5.48 25.28 1.46M (24.9×) 0.21B (24.5×) 0.52M (4.9×) 0.56ms
Backprop Basic 5.39 25.78 1.46M (24.9×) 0.21B (24.5×) 0.52M (4.9×) 0.56ms

ILSVRC2012

For ILSVRC2012 dataset, we used the pre-trained ResNet-
50, DenseNet-121, and VGG-16 available from torchvi-
sion which is one of the PyTorch packages. These pre-
trained networks were used as the teacher networks. We
recast the blocks of ResNet-50 into convolution blocks,
and the blocks of DenseNet-121 into basic blocks. In ad-
dition, we recast only parts of these networks to obtain
mixed-architecture networks. In Table 4, Recasting(C) indi-
cates that the student network only has convolution blocks,
and Recasting(C+Rbt) denotes that the student network
has both convolution and bottleneck blocks. In the same
way, Recasting(Rbs) and Recasting(Rbs+D) denotes that the
student networks consist of only basic blocks and both
basic blocks and dense blocks, respectively. KD(C+Rbt)
and KD(Rbs+D) have the same network architecture as

Recasting(C+Rbt) and Recasting(Rbs+D) respectively, but
those are trained with only KD method. For the VGG-16
compression, we used two criteria: higher parameter reduc-
tion (Recasting(C P)) and higher activation reduction (Re-
casting(C A)). In addition, we measured the actual inference
time for all networks on an NVIDIA Titan X (Pascal) GPU,
and batch sizes were set to 1 and 64.

We measured the training time for Recasiting(C+Rbt),
KD(C+Rbt), Recasting(Rbs+D) and KD(Rbs+D) to com-
pare the training time and accuracy. Recasting(C+Rbt) took
7.6 days, and KD(C+Rbt) took 6.3 days on a GPU. Com-
pared to KD(C+Rbt), Recasting(C+Rbt) took 20% longer,
but achieved 2.00%p and 0.59%p improvement in top-
1 and top-5 accuracy, respectively. On the other hand,
Recasting(Rbs+D) took 3.9 days, while KD(Rbs+D) took 8.9
days with similar accuracy. Those results show that network
recasting can achieve higher accuracy with slightly longer
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Table 4: Error rate (%) of network recasting results on ILSVRC2012. (B/M: billion/million)

Method Top1 Top5 Params Mults Acts/image Time/image Time/bacth
ResNet-50

Baseline 23.85 7.13 25.50M 4.09B 11.57M 6.16ms 107.17ms

Recasting(C) 30.74 10.39 10.29M 1.71B 2.53M 2.12ms 37.21ms
Recasting(C+Rbt) 25.00 7.71 21.72M 2.40B 3.69M 3.79ms 49.97ms
KD(C+Rbt) 27.00 8.30 21.72M 2.40B 3.69M 3.79ms 49.97ms

DenseNet-121
Baseline 25.57 8.03 7.89M 2.75B 16.52M 12.73ms 111.31ms

Recasting(Rbs) 26.42 8.25 32.23M 8.15B 5.32M 3.95ms 81.17ms
Recasting(Rbs+D) 24.87 7.59 10.42M 5.72B 9.15M 9.40ms 88.94ms
KD(Rbs+D) 24.90 7.65 10.42M 5.72B 9.15M 9.40ms 88.94ms

VGG-16
Baseline 26.63 8.50 138.34M 15.47B 15.09M 6.17ms 200.47ms

Recasting(C P) 28.25 9.41 81.93M 4.73B 8.27M 3.45ms 116.45ms
Recasting(C A) 30.05 10.38 120.61M 3.12B 3.30M 3.61ms 63.52ms

Table 5: Comparison of error rate (%) with previous works on ILSVRC2012. (B/M: billion/million)

Method Top1 Top5 Params Mults Acts/batch Actual speed-up
ResNet-50

Recasting(C+Rbt) 25.00 7.71 21.72M 2.40B 236.16M 2.1×
ThiNet-30 (Luo, Wu, and Lin 2017) 31.58 11.7 8.66M 1.10B - 1.3×
AutoPruner (r = 0.3) (Luo and Wu 2018) 27.47 8.89 - 1.32B - -

VGG-16
Recasting(C A) 30.05 10.38 120.61M 3.12B 220.61M 3.2×
ThiNet-Conv (Luo, Wu, and Lin 2017) 30.20 10.47 131.44M 4.79B - 2.5×
RNP (3×) (Lin et al. 2017) - 12.42 - - - 2.3×
Channel Pruning (3×) (He, Zhang, and Sun 2017) - 11.10 - - - 2.5×
AutoPruner (r = 0.4) (Luo and Wu 2018) 31.57 11.57 - 4.09B - -

training time for a deep network and shorter training time
with similar accuracy for a shallow network.

As shown in Table 4, the network recasting signifi-
cantly reduced the inference time in all experiments. Re-
casting(C) and Recasting(Rbs) achieved 2.9× and 3.2× in-
ference time reduction for a single image compared with
original ResNet-50 and DenseNet- 121, respectively. More-
over, mixed-architecture networks also achieved significant
inference time reduction with smaller accuracy loss. For
the batch processing, Recasting(C+Rbt) achieved 2.1× time
reduction with 0.58% top-5 accuracy loss compared to
Baseline, and Recasting(Rbs+D) achieved 1.3× time re-
duction even with 0.44% higher top-5 accuracy. In par-
ticular, Recasting(Rbs+D) achieved similar accuracy and
inference time with 3.1× fewer parameters compared to
Recasting(Rbs). In VGG-16 compression, Recasting(C P)
and Recasting(C A) achieved 1.7× parameter reduction and
4.6× activation reduction with 0.91% and 2.05% top-5 ac-
curacy loss, respectively. Recasting(C A) achieved 3.2× in-
ference time reduction compared to the baseline.

We compared our results with several previous ap-
proaches (Luo, Wu, and Lin 2017; He, Zhang, and Sun 2017;
Lin et al. 2017; Luo and Wu 2018). For the comparison, we

used batch inference time because previous approaches have
reported inference time only for the batch processing. Ta-
ble 5 shows that the network recasting achieved much higher
inference time reduction. In ResNet-50, Recasting(C+Rbt)
achieved lower error rate and much higher actual speedup
compared with ThiNet (Luo, Wu, and Lin 2017). ThiNet
only reduced filters and multiplications in 3× 3 convolution
of bottleneck blocks, so it cannot accelerate the inference ef-
fectively because activation load is still large. However, the
network recasting can reduce the activation load effectively,
so it achieved 2.1× actual speedup with smaller accuracy
loss. Luo and Wu (2018) does not mention actual-speedup,
but we can guess that our network recasting result is much
faster than their AutoPruner result because they cannot re-
move the 1 × 1 convolution. For the VGG-16 compression,
the network recasting also achieves much higher speedup
with lower error rate compared to previous approaches. It
also achieves higher parameter and multiplication reduction
with similar accuracy compared to others.

Conclusion
In this paper, we proposed network recasting as a univer-
sal method for network architecture transformation. This
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method can accelerate network inference by transforming
the network (teacher) to a more efficient one (student). We
could recast residual and dense blocks into convolution and
residual blocks, respectively, to achieve much higher ac-
tual speedup at small accuracy loss. By recasting blocks
sequentially, the student network can be trained well even
though there is no shortcut or dense connection. In addition,
our method can recast arbitrary blocks, thereby producing
a mixed-architecture network. The mixed-architecture net-
works produced as such achieved 2.1× inference time with
0.58% top-5 accuracy loss compared to original ResNet-50,
and also achieved 1.3× inference time reduction with 0.44%
higher top-5 accuracy on DenseNet-121 recasting. We also
applied the network recasting for the purpose of compres-
sion and achieved higher compression ratio and speedup
compared to previous approaches. Our method can be ap-
plied to various kinds of network architecture to transform it
into various kinds of target network architecture.
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