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Abstract

In this paper, we propose a Deep Metric Learning (DML) ap-
proach that supports soft labels. DML seeks to learn represen-
tations that encode the similarity between examples through
deep neural networks. DML generally presupposes that data
can be divided into discrete classes using hard labels. How-
ever, some tasks, such as our exemplary domain of speech
emotion recognition (SER), work with inherently subjective
data, data for which it may not be possible to identify a sin-
gle hard label. We propose a family of loss functions, f -
Similarity Preservation Loss (f -SPL), based on the dual form
of f -divergence for DML with soft labels. We show that the
minimizer of f -SPL preserves the pairwise label similarities
in the learned feature embeddings. We demonstrate the effi-
cacy of the proposed loss function on the task of cross-corpus
SER with soft labels. Our approach, which combines f -SPL
and classification loss, significantly outperforms a baseline
SER system with the same structure but trained with only
classification loss in most experiments. We show that the pre-
sented techniques are more robust to over-training and can
learn an embedding space in which the similarity between
examples is meaningful.

1 Introduction
Deep metric learning (DML) aims to use deep neural net-
works (DNN) to project input data to a learned space, in
which the similarity between examples can be directly mea-
sured (Lu, Hu, and Zhou 2017). DML has been successfully
applied to many visual understanding tasks, such as face ver-
ification, image classification, and person re-identification
(Taigman et al. 2014; Schroff, Kalenichenko, and Philbin
2015; Hoffer and Ailon 2015; Yi et al. 2014). These tasks
often rely on hard class labels to determine the pairwise re-
lationship between data. Yet, soft labels may be preferable
to hard labels in some cases: they provide more information
for each training example (Hinton, Vinyals, and Dean 2015)
and are more robust against label noise (Thiel 2008).

However, the additional information contained in soft la-
bels is not fully exploited in traditional DML approaches.
Motivated by this, we propose a family of loss functions, the
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f -Similarity Preservation Loss (f -SPL), based on the dual
form of f -divergence. f -SPL is designed for DML with soft
labels, here defined as real-valued labels that are distributed
along one or multiple dimensions. f -SPL aims to preserve
the label similarities in the learned feature space and can
be applied to tasks that require either continuous or discrete
(e.g., a class index) test output. Further, we introduce a pair
sampling method for the efficient implementation of f -SPL
in neural networks.

We evaluate our methods on cross-corpus speech emotion
recognition (SER). SER aims to automatically identify hu-
man emotions from speech. SER is complicated by the co-
modulations that are present in the speech signals (e.g., lexi-
cal information and speaker identity). Networks may be un-
intentionally over-trained to capture signals that are specific
to certain speakers or lexical artifacts in the data, resulting
in poor generalizability and poor robustness in cross-corpus
tasks. DML can be used to generate an embedding space in
which distances between examples correspond to the label
relationships. This provides a mechanism to reduce the influ-
ence of factors other than emotion. However, conventional
DML based on hard labels may not be ideal for SER. The la-
bels used in SER systems are usually collected through per-
ceptual experiments. The variability in emotion expression
and the subjectivity of emotion perception lead to datasets
with uncertain labels. Previous work in SER has demon-
strated the efficacy of using soft labels given uncertainty
(Steidl et al. 2005; Mower, Mataric, and Narayanan 2011;
Fayek, Lech, and Cavedon 2016).

We form the problem as binary classification of soft-
labeled valence (positive vs. negative) and activation (calm
vs. excited) (Russell 1980). We combine the proposed loss
with classification loss in the training of DNN classifiers.
Our baseline is the same classifier trained with classification
loss only. The results show that our multi-task framework
with the added f -SPL statistically significantly increases
system performance in the majority of the experiments and
is more robust to over-training than the baseline system.

2 Related Works
2.1 Deep Metric Learning
Deep metric learning approaches predominantly focus on
hard labels (Lu, Hu, and Zhou 2017). These approaches of-

5725



ten rely on loss functions that aim to pull data from the
same class closer while pushing data from different classes
farther apart. Some works use contrastive loss for pairs of
examples through Siamese networks (Bromley et al. 1994;
Chopra, Hadsell, and LeCun 2005), identifying “positive
pairs” of examples from the same class and “negative pairs”
of examples from different classes. This loss then aims to
learn a space where the distance between a positive pair is
less than a margin τ+ while the distance between a negative
pair is larger than a margin τ− , where 0 ≤ τ+ < τ−.

Some works have proposed loss calculations over triplets,
defined as sets of three examples: an anchor, a positive ex-
ample from the anchor’s class, and a negative example from
a different class (Weinberger and Saul 2009). DNNs with
triplet loss (Hoffer and Ailon 2015; Schroff, Kalenichenko,
and Philbin 2015) aim to learn an embedding space where
the distance between the anchor and the positive example is
at least smaller than the distance between that anchor and
the negative example by a margin τ .

Some works have extended the triplet loss, by consider-
ing all positive and negative pairs within a batch (Song et al.
2016), using multiple negative examples in each set (Sohn
2016), or using the cluster center rather than a single exam-
ple as the anchor (Liu et al. 2016; 2017). Yang et al. (2018)
proposed a loss function designed for image sentiment anal-
ysis, based on the relationships between neighboring senti-
ment classes on the Mikels’ emotion wheel (Mikels et al.
2005). They added “related” examples, defined as examples
from a different class than the anchor but on the same half
of the emotion wheel, to triplets. Denoting the distance be-
tween anchor and the positive example as anchor-positive,
their approach aimed to find a space where anchor-positive is
at least smaller than anchor-related by τ1, and anchor-related
is at least smaller than anchor-negative by τ2. The distance
is scaled by class similarity, implemented using a factor pro-
portional to the class distance on the emotion wheel.

Two recent works have used DML for regression. Wang,
Wan, and Yuan (2017) combined metric learning for ker-
nel regression with DNN for crowdedness regression.
Doumanoglou et al. (2016) proposed a loss function via
Siamese network for pose estimation. They compared the
distance between labels (dl) and embeddings (df ) given
pairs of data. Their approach aim to minimize the combi-
nation of df − dl and regression loss. However, we note that
df − dl is not guaranteed to be non-negative in the loss.

In this work, we propose a family of loss functions for
DML with real-valued labels and provide theoretical justifi-
cations. We experiment on classification tasks with soft la-
bels. However, the application of the loss functions could
also be extended to other tasks, including regression.

2.2 Speech Emotion Recognition with Soft Labels
Emotion expression is subtle, and emotion perception is sub-
jective. This leads to inter-rater variability and uncertainty in
emotion labels. One way to take this variability and uncer-
tainty into account is to avoid single hard labels. For exam-
ple, researchers have represented emotion information us-
ing probability distributions over emotion classes (Aldeneh
et al. 2017), confidence scores that capture the presence or

absence of multiple emotion classes (Mower, Mataric, and
Narayanan 2011), or by estimating distributions over evalu-
ator perception (Zhang, Essl, and Mower Provost 2017).

Researchers have investigated the efficacy of using soft
labels while training SER systems. They found that training
with soft labels increases system performance in terms of
standard classification measures (Fayek, Lech, and Cavedon
2016) or an entropy-based measure that takes human con-
fusion into account (Steidl et al. 2005). Lotfian and Busso
(2017) proposed considering emotion perception of an utter-
ance as a multidimensional Gaussian distribution over emo-
tion classes. They showed that systems trained using soft
labels, calculated by taking the mean of the estimated Gaus-
sian distribution, outperformed systems trained using hard
labels. Collectively, the complexity of the task and the effi-
cacy of soft labeling makes SER an ideal task for demon-
strating the impact of deep metric learning with soft labels.

2.3 f -Divergence
f -divergence is a family of non-symmetric measures of dif-
ference between two distributions, based on the family of
convex functions f (Ali and Silvey 1966). These measures
are widely used in the learning literature. Common mem-
bers of the f -divergence family include Kullback–Leibler
(KL) divergence and total variation distance. Nguyen, Wain-
wright, and Jordan (2009) proposed a duality technique of
f -divergence, which plays a key role in mutual informa-
tion estimation (Nguyen, Wainwright, and Jordan 2010),
the design of a type of generative adversarial networks, f -
GANs (Nowozin, Cseke, and Tomioka 2016), and the design
of information elicitation mechanisms and co-training algo-
rithms (Kong and Schoenebeck 2018). Motivated by these
works, we use the dual formulation of f -divergence to de-
rive our f -Similarity Preservation Loss.

3 f -Similarity Preservation Loss (f -SPL)
Our goal is to learn an embedding space on which the sim-
ilarity between examples equals to the label similarity. In
Section 3.1, we define a family of loss functions, f -SPL,
based on the dual form of f -divergence. Then in Section 3.2,
we mathematically prove that we can achieve our goal by
minimizing f -SPL. Finally in Section 3.3, we explain how
f -SPL can be implemented in a multi-task framework.

3.1 Definition of f -SPL
We denote data and soft labels as x1, x2, ... ∈ AX and
y1, y2, ... ∈ AY , respectively. The functionC : AY ×AY 7→
[0, 2] measures label similarity. A feature learning function
(i.e., a neural network) g ∈ G, maps inputs from AX to a
new space AG and S : AG × AG 7→ [0, 2] measures the
similarity on AG. We seek to find a function, F (S(g), C),
that optimizes over g. The optimal solution of F , g∗, satis-
fies S(g∗(xi), g

∗(xj)) = C(yi, yj) for every i 6= j, i.e., the
similarity between the examples on the learned space is the
same as the similarity between their labels.

We use the dual form of f -divergence to construct
F (S(g), C). We name the resulting functions f -Similarity
Preservation Gain (f -SPG). We then modify f -SPG to a
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f -divergence f(t) f -SPG(S,C) f -SPL(S,C)

KL divergence t log t C ∗ (1 + logS)− S S − C log(S)− C + C log(C)

Reverse KL − log t C ∗ (− 1
S )− (logS − 1) log(S) + C

S − log(C)− 1

Pearson χ2 (t− 1)2 C ∗ 2(S − 1)− (S2 − 1) (C − S)2

Squared Hellinger (
√
t− 1)2 C ∗ (1−

√
1
S )− (

√
S − 1)

√
S + C

√
1
S − 2

√
C

Jensen-Shannon (JS) −(t+ 1) log t+1
2 + t log t C ∗ log 2S

1+S + log( 2
1+S )

(C + 1) log(1 + S)− C log(2S)
Divergence −(C + 1) log(1 + C) + C log(2C)

Table 1: Reference for common f -divergences, their corresponding convex functions f (Nowozin, Cseke, and Tomioka 2016),
f -SPG(S,C), and f -SPL(S,C).

family of loss functions, f -SPL, such that: (1) f -SPL is al-
ways non-negative and (2) maximizing f -SPG is equivalent
to minimizing f -SPL.

f -SPG Given a convex function f , a feature learning func-
tion g ∈ G, and a pair of examples p = [(x, y), (x′, y′)], we
define f -SPG based on the dual formulation of f -divergence
(Section 3.2, Lemma 2) as:

f -SPG(p; g) :=f -SPG(Sp(g), Cp)

:=Cp ∗ ∂f(Sp(g))− f?(∂f(Sp(g))),

where Cp := C(y, y′), Sp(g) := S(g(x), g(x′)), ∂f is the
subdifferential of f , and f? is the convex conjugate of f
(formally defined in Section 3.2).

Given a set of pairs I = {[(x, y), (x′, y′)], ...}, we define
the total f -SPG as the sum of the individual f -SPG:

f -SPG(I; g) :=
∑
p∈I

f -SPG(p; g).

Fixing the set I , we seek g that maximizes f -SPG(I; g).
When the convex function f is differentiable and ∂f is in-
vertible, and the set, I , satisfies a balance condition,∑

p∈I
(Cp − 1) = 0,

our main theorem (Theorem 3) in Section 3.2 will show
that: (1) the maximizer of f -SPG, g∗, preserves the pair-
wise similarity, that is, for every p = [(x, y), (x′, y′)] ∈ I ,
C(y, y′) = S(g∗(x), g∗(x′)); (2) the maximum of f -SPG
represents the amount of information contained in the pairs.

f -SPL We convert f -SPG to a loss function, f -SPL, so
that it can be used as a component of neural network train-
ing. To do this, we identify the maximal point of f -SPG at
which the label similarity is equal to the feature similarity,
f -SPG(Cp, Cp), and subtract from it f -SPG(Sp(g), Cp):

f -SPL(p; g) := f -SPG(Cp, Cp)− f -SPG(Sp(g), Cp)

andf -SPL(I; g) :=
∑
p∈I

f -SPL(p; g).

As a result, f -SPL has the following properties: (1) f -SPL
is always non-negative; (2) minimizing f -SPL(I; g) over g
is equivalent to maximizing f -SPG(I; g) over g. Table 1
shows five special cases of f -SPL based on the convex func-
tions corresponding to common f -divergence measures.

3.2 Theoretical Justifications
We will show the feature learning function, g∗, that mini-
mizes f -SPL(I; g) to zero and maximizes f -SPG(I; g) to
the amount of information contained in the set I , also pre-
serves the pairwise similarity of I .

To give the theoretical justification, we first give the for-
mal definition of f -divergence and its dual form.

f -divergence (Ali and Silvey 1966; Csiszár, Shields, and
others 2004) Given set Σ and the set of all possible dis-
tributions over Σ, ∆Σ, f -divergence Df : ∆Σ × ∆Σ 7→ R
is a non-symmetric measure of the difference between two
distributions, p,q ∈ ∆Σ, and is defined as

Df (p,q) =
∑
σ∈Σ

p(σ)f

(
q(σ)

p(σ)

)
where f : R 7→ R is a convex function and f(1) = 0.
Definition 1 (Fenchel Duality (Rockafellar and others
1966)). Given any function f : R 7→ R, we define its convex
conjugate f? as a function that also maps R to R such that

f?(x) = sup
t
tx− f(t).

Lemma 2 (Dual form of f -divergence (Nguyen, Wain-
wright, and Jordan 2009; 2010)).

Df (p,q) ≥ sup
u∈Σ

Epu− Eqf
?(u)

= sup
u∈G

∑
σ

u(σ)p(σ)−
∑
σ

f?(u(σ))q(σ)

where G is a set of functions that map Σ to R. The equality
holds if and only if u(σ) = u∗(σ) ∈ ∂f

(
p(σ)
q(σ)

)
, i.e., the

subdifferential of f on value p(σ)
q(σ) .

We define C and 1 as distributions over the pairs in I

such that C(p) =
Cp∑

p∈I Cp
and 1(p) = 1

|I| for all p ∈ I .
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Figure 1: The proposed multi-task framework for training. The inputs are batches of triplets. The loss is the combination of the
classification loss calculated on the anchor a only and the f -SPL between a and a similar example s plus a and a dissimilar
example d (s.t., C(ya, ys) + C(ya, yd) ≈ 2). α is the weighting term for f -SPL. The test phase does not depend on triplets.

Df (C,1) measures the amount of information contained in
the chosen pairs: when all chosen pairs are neither very simi-
lar nor very dissimilar, C is close to 1, which implies a small
amount of information contained in the pairs; when all cho-
sen pairs are either very similar or very dissimilar, C is far
away from 1, which implies a large amount of information
contained in the pairs.

We use the above lemma to show our main theorem:
Theorem 3. Given a convex function f , a balanced set I ,
when f is differentiable and ∂f is invertible, for every mini-
mizer g∗ of f -SPL(I; g), for every [(x, x′), (y, y′)] ∈ I ,

S(g∗(x), g∗(x′)) = C(y, y′).

g∗ minimizes f -SPL(I; g) to zero and maximizes f -
SPG(I; g) to Df (C,1).

Proof. The balance condition implies that∑
p∈I

Cp = |I|

Thus, by dividing |I|, we can rewrite f -SPG(I; g) as∑
p∈I

∂f(Sp(g))) ∗C(p)− f?(∂f(Sp(g))) ∗ 1(p).

Based on Lemma 2, for every maximizer g∗ of f -
SPG(I; g)/minimizer of f -SPL(I; g), we have

∂f(Sp(g
∗)) = ∂f

(
C(p)

1(p)

)
= ∂f(Cp)

for every p ∈ I and the maximum of f -SPG is Df (C,1),
which also implies the minimum of f -SPL is zero.

Therefore, when f is differentiable and ∂f is invertible,
g∗ preserves the pairwise similarity of the pairs in I .

3.3 Multi-Task Framework
In this work, we use a multi-task framework that jointly re-
duces classification loss and f -SPL, as shown in Figure 1.
The first block of neural network layers corresponds to g
and the second block of layers is denoted as ω. Previous
work has demonstrated the efficacy of using DML loss with
hard labels within multi-task frameworks (Liu et al. 2017;
Yang et al. 2018). We hypothesize that DML loss will also
enhance classification performance given soft labels. The

classification loss provides direction for the optimization,
while f -SPL, calculated on the output of an intermediate
layer, enforces that the learned representation preserves pair-
wise similarity.

Recall that the theoretical guarantee of the f -SPL is sub-
ject to a balanced condition:∑

p∈I
(Cp − 1) = 0,

where C : AY × AY 7→ [0, 2] is the label similarity.
We wish to satisfy this condition regardless of data shuf-
fling or the selection of batch size, while still allowing for
randomness. Therefore, we generate the pairs in a triplet
form. For each anchor (xa, ya), we pick a similar exam-
ple (xs, ys) and a dissimilar example (xd, yd) that satisfy
C(ya, ys)−1 ≈ 1−C(ya, yd). Specifically, we calculate the
label similarity between the anchor and all other examples
(can be reduced to a subset of examples, if the training set is
very large) and generate a dictionary with unique similarity
values (rounded to two decimal point) as keys and utterance
indices as values. We keep a key only if 2-key is also in the
dictionary. When generating a triplet, we randomly select a
key c, and two examples, each from c and 2−c, respectively.
As a result, every batch of triplets

T = {tri = [(xa, ya), (xs, ys), (xd, yd)], ...}
naturally implies a balanced set
IT = {s = [(xa, ya), (xs, ys)], d = [(xa, ya), (xd, yd)], ...}.

The overall loss function for each triplet, tri, is
L(tri; g, ω) = Lcls(ya, ŷa)+

α(f -SPL(Ss(g), Cs) + f -SPL(Sd(g), Cd)),

where ŷa = ω(g(xa)) is the prediction over classes.
In the loss function, Lcls is the classification loss calcu-

lated on the anchor only, and α is the trade off between Lcls
and f -SPL. Cs and Cd are the label similarity between ya
and ys, ya and yd, respectively. Ss(g) and Sd(g) are the
similarity between g(xa) and g(xs), g(xa) and g(xd), re-
spectively.

The total loss of the batch is the mean of all triplets’
losses: L(T ; g, ω) := 1

N

∑
tri∈T L(tri; g, ω), where N is

the batch size. Note that the f -SPL portion of L(T ; g, ω)
equals α

N f -SPL(IT ; g).
The multi-task framework is only used in the training

phase. In the testing phase, the trained network takes batches
of individual examples as the input.
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4 Experiments
We experiment on IEMOCAP (Busso et al. 2008) and MSP-
Improv (Busso et al. 2017). We select these datasets be-
cause: (1) they are relatively large, which allows us to train
neural networks; (2) they provide ordinal evaluations of va-
lence and activation; (3) they use similar emotion elicitation
methods, but differ in speakers, lexical content, recording
conditions, and the number of evaluations per utterance.

All experiments use cross-corpus evaluation. This results
in four experiments (2 training-testing combination × 2 di-
mensions). We introduce the data, model, and experimental
settings in more detail in the following subsections.

4.1 Data
IEMOCAP The IEMOCAP dataset consists of five dyadic
sessions, each between a male and a female actor, resulting
in 12 hours of recordings in total. Interactive scenarios, both
scripted and improvised, were used to elicit the emotions of
the speakers. The dataset was segmented into 10,039 utter-
ances according to speaker turns. The valence and activation
levels of each utterance were assessed by at least two evalu-
ators using a 5-point Likert scale (Busso et al. 2008).

MSP-Improv The MSP-Improv dataset contains six
dyadic sessions, each between a male and a female actor,
resulting in nine hours of speech. The emotion elicitation
methods include both improvisations and target sentences
embedded in interactive scenes. Similar to IEMOCAP, the
dataset was segmented into 8,438 utterances. Each utterance
was evaluated by at least five annotators for valence and ac-
tivation using a 5-point Likert scale (Busso et al. 2017).

Labels We focus on predicting binary valence and acti-
vation, where the classifiers are trained using soft labels.
We consider each evaluation as a vote to the two classes,
weighted by the distance to the opposite class. For example,
an evaluation value of 2 on the 5-point scale is converted to
[0.75, 0.25]. For each utterance, we average over the con-
verted evaluations and use the resulting two-dimensional
vector as the final soft label. The vector representing a soft
label always sums to one. The label similarity, C ∈ [0, 2], is
calculated by 2 − 2d, where d is the total variation distance
(∈ [0, 1]) between a pair of labels. Given the way we gen-
erate the soft labels, d is equivalent to the scaled Euclidean
distance between the average of the raw evaluations on the
one-dimensional space.

Features We preprocess the data such that the audio sam-
pling rate is 16,000 Hz for both datasets. We then extract 40-
dimensional log Mel-frequency Filterbank energy (MFB)
using Kaldi (Povey et al. 2011), with a frame size of 25ms
and a step size of 10ms, as in (Aldeneh and Mower Provost
2017; Zhang, Essl, and Mower Provost 2017; Aldeneh et al.
2017). We perform z-normalization for each feature dimen-
sion at the frame-level over each dataset, individually.

4.2 Classification Model
We use temporal Convolutional Neural Networks with
global pooling (Conv-Pool) as our model. The Conv-Pool

Figure 2: The Conv-Pool network structure.

structure has been demonstrated to be the state-of-the-
art on categorical emotion recognition in (Aldeneh and
Mower Provost 2017), and has shown good performance on
predicting the distribution of emotion perception in (Zhang,
Essl, and Mower Provost 2017). Figure 2 shows the ar-
chitecture the network. It consists of a 1D convolutional
layer over time with 128 kernels and a kernel width of 16,
a global max pooling, two fully-connected layers with a
layer size of 128, and a final fully connected softmax layer.
These hyper-parameters are selected according to (Aldeneh
and Mower Provost 2017; Zhang, Essl, and Mower Provost
2017). The inputs to the network are the variable-length
MFBs. The global max-pooling layer summarizes the output
of the 1D convolutional layer and generates a fixed-length
representation. This representation is then fed into the fully-
connected layers. We use Rectified Linear Units (ReLU) as
the activation functions, except in the last fully-connected
layer, where softmax is used instead.

We calculate f -SPL on the output of FC1 (see Figure 2).
In this way, we allow room for modeling non-linearity on
both sides of the intermediate representation. We first nor-
malize the output of FC1 to unit vectors and then calculate
the Euclidean distance between the embeddings. It is worth
noting that although the distance, D, between two unit vec-
tors has a range of [0, 2], our embeddings have non-negative
entries due to ReLU and thus D ∈ [0,

√
2]. Therefore, we

scale the distance and convert it to the embedding similarity
S ∈ [0, 2] by 2−

√
2D.

The structure of the model is kept the same in all experi-
ments. We use cross-entropy computed using the soft labels
as the classification loss. We weigh the two classes using
N/
(

2
∑N
i=1 y

c
i

)
in the loss calculation to reduce the in-

fluence of data imbalance. Here, N is the total number of
training utterances, yci is the value for class c in the label
vector of data point i. We consider a loss function contain-
ing only the cross-entropy classification loss as the baseline.
For the multi-task loss, we select f -SPL based on the con-
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Train Test Dim Epoch Chance CE CE+KL CE+RKL CE+PS CE+HLG CE+JS

MSP IEMOCAP Valence 23 58.41 64.45 66.01* 65.73* 65.55* 65.76* 65.94*
Activation 33 62.74 80.79 81.67* 81.16 81.53* 81.10 81.41

IEMOCAP MSP Valence 20 54.43 61.31 60.81 60.71 60.48 60.78 60.44
Activation 16 54.21 72.74 74.17* 74.30* 74.17* 74.04* 74.03*

Table 2: UAR (%) for the four cross-corpus experiments. The best performance in each experiment is marked by bold and
underline. Epoch: the number of epochs trained; CE: cross-entropy loss only (baseline); CE+KL, CE+RKL, CE+PS, CE+HLG,
and CE+JS: multi-task with cross-entropy and f -SPL, where f is the convex function that corresponds to KL divergence,
Reserve-KL, Pearson χ2, Squared Hellinger, and JS divergence, respectively. “*” indicates that the marked performance is
significantly better than CE, where significance is assessed at p <0.05 using the Tukey’s honest test on the ANOVA statistics.

vex functions corresponding the five common f -divergence
measures, as shown in Table 1. An epsilon value of 1e-12 is
added to the denominators and the input of log in f -SPL in
implementation for numerical stability.

For the multi-task frameworks, every training example is
used as the anchor once in each epoch. Therefore, the classi-
fication loss is calculated over the same data as in the base-
line. The triplets are randomly generated using the similarity
dictionary (Section 3.3) at the beginning of each epoch. Em-
pirical results show that the values of f -SPL is about a mag-
nitude smaller than the classification loss, because triplets
with extreme similarity values are rare in our data. There-
fore, we use a α value of 10 in the loss function.

4.3 Performance Measure and Cross-Validation
In the testing phase, we convert the output of the network
to a class prediction. We use Unweighted Average Recall
(UAR) as the performance measure due to data imbalance,
as discussed in (Rosenberg 2012). In the case that the ground
truth labels are tied (i.e., [0.5, 0.5]), we consider predictions
for either class as correct, as in (Aldeneh et al. 2017). This
is true for both the baseline CNN and f -SPL approaches. As
a result, the chance performance calculated by generating
predictions uniformly at random is higher than 50%.

We experiment using PyTorch version 0.2.0, using a
learning rate of 0.0001 with the Adam optimizer (Kingma
and Ba 2015) and a batch size of 100. We select weight de-
cay in {0, 0.0001, 0.001, 0.01} and the number of epochs
to train in [1, 50] by leave-one-session-out cross-validation
(LOSOCV) on the training dataset. In each experiment (e.g.,
valence, train on IEMOCAP and test on MSP-Improv), the
weight decay and number of training epochs that lead to
the highest LOSOCV UAR of the baseline model (averaged
over three runs) are used for all models. In the cross-corpus
training and testing, we run each experiment 30 times to re-
duce performance fluctuations. We report the average UAR
and conduct significance tests using all the results.

5 Results and Discussion
5.1 Performance Comparison
We present the UAR of the four experiments (2 training-
testing combinations × 2 dimensions) of all the models
in Table 2. Each reported UAR is averaged over 30 runs.
All cross-validation experiments selected the same weight-
decay value of 0.001. The models include:

• CE: Conv-Pool network (Figure 2) with only cross-
entropy classification loss. This is used as the baseline.

• CE+f , where f ∈ KL, RKL, PS, HLG, JS: Conv-Pool
network using the multi-task framework illustrated in Fig-
ure 1, with the convex functions corresponding to KL
divergence, Reserve-KL, Pearson χ2, Squared Hellinger,
and JS divergence as f for f -SPL.
For each experiment, we first test if the influence of

model is significant, using a one-way Analysis of variance
(ANOVA) test and asserting significance at p <0.05. We
treat the result of each run as a random example, and group
them by the model. This results in 180 examples (30 runs×6
models) in each test. We find that the influence of model
is significant for valence when training on MSP-Improv
and testing on IEMOCAP (denoted as MSP→IEMOCAP
Valence), and for activation with both training-testing
combinations. The statistics are F(5,174)=8.1, p=6.9e-7
for MSP→IEMOCAP Valence, F(5,174)=3.7, p=0.0033 for
MSP→IEMOCAP Activation, and F(5,174)=9.7, p=3.3e-8
for IEMOCAP→MSP Activation, respectively.

We find that in three out of four experiments, all the five
CE+f models show consistent performance improvement
over the baseline CE model, with the only exception of
IEMOCAP→MSP Valence. For the experiments where the
influence of model is significant, we conduct pairwise com-
parisons using the Tukey’s honest test on the statistics of the
ANOVA and assert significance at p <0.05. We find that in
MSP→IEMOCAP Valence, all five CE+f models are signif-
icantly better than CE, with p = 6.9e-7, 1.0e-4, 0.0017, 6.9e-
5, and 2.6e-6 for CE+KL, CE+RKL, CE+PS, CE+HLG,
and CE+JS, respectively. In MSP→IEMOCAP Activation,
CE+KL and CE+PS has significantly higher UAR than CE
(p=0.0028 and 0.022, respectively). In IEMOCAP→MSP
Activation, all the five CE+f models have significantly bet-
ter performance than CE. The p-values are 9.1e-7, 6.7e-8,
8.8e-7, 1.2e-5, and 1.3e-5 for CE+KL, CE+RKL, CE+PS,
CE+HLG, and CE+JS, respectively. We do not observe any
significant difference between the performances of the five
CE+f models in any experiments.

5.2 Analysis of Results
We further analyze the results to better understand the rea-
sons behind the improvement in performance. We plot the
test UAR against the number of training epochs in Figure 3
for the two experiments where the CE+f models achieved
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Figure 3: Test UAR against the number of training epochs for MSP→IEMOCAP Valence and IEMOCAP→MSP Activation.

Figure 4: IEMOCAP→MSP Activation embedding visual-
ization. Dots are data points in MSP. Colors represent the
activation labels, the darkest are [0, 1] and the lightest are
[1,0]. The rows are the embeddings at epoch 10, 30, 50 (e.g.,
E50). The columns correspond to the six models.

the highest performance gain over the baseline CE model.
We find that while the optimal results from different mod-
els do not differ much, the CE+f models are more stable
over time. More specifically, the CE model reaches the best
UAR around epoch 10 in MSP→IEMOCAP Valence and
within 5 epochs in IEMOCAP→MSP Activation. It starts
to show signs of over-training after that, even before reach-
ing the number of epochs to train we set and with weight-
decay, when both hyper-parameters are selected by cross-
validation. In contrast, the proposed CE+f models with the
exact same hyper-parameters do not show too much perfor-
mance decline after reaching the highest UAR.

We visualize the learned feature embeddings at epoch
10, 30, and 50 for IEMOCAP→MSP Activation with t-
Distributed Stochastic Neighbor Embedding in Figure 4.
The color of the dots in the figure represents the soft labels.
The dark end of the color gradient represents [0, 1] and the
light end represents [1, 0]. We find that the baseline CE mod-
els lead to several clusters, but the clusters do not correspond
to labels. On the other hand, the CE+f models often lead to
a single cluster where the opposite labels are more well sep-
arated and the data that are more uncertain (e.g., label ∼
[0.5, 0.5]) are in between. This shows that we can learn an
embedding that has emotional meaning using a multi-task
framework combining classification loss and f -SPL.

6 Conclusions
In this paper, we propose a family of loss functions, f -
Similarity Preservation Loss, based on the dual form of f -
divergence. These loss functions are designed for deep met-
ric learning with soft labels, i.e., labels with continuous val-
ues along one or multiple dimensions. We prove mathemati-
cally that the minimizer of the proposed loss functions, a set
of nonlinear mappings through neural networks, preserves
the pairwise label similarities in the learned feature embed-
dings when the pairs of data satisfy a balanced condition.
We propose a pair sampling method that guarantees the bal-
anced condition regardless of shuffling and batch size with-
out losing randomness. Finally, we introduce a framework
that combines f -SPL with the traditional classification loss.

We apply the proposed methods on the task of cross-
corpus speech emotion recognition with dimensional emo-
tion descriptors. We show that our methods significantly out-
perform the baseline model, which uses only the classifi-
cation loss for optimization. This demonstrates the efficacy
of our f -SPL in the multi-task framework. Further analy-
sis shows that our methods are more robust to over-training
and are able to learn an emotionally-meaningful embedding
space. In the future, we are interested to explore whether f -
SPL can also be effectively applied to transfer learning, with
a small set of labeled data from the target domain.
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