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Abstract
The convergence speed of stochastic gradient descent (SGD)
can be improved by actively selecting mini-batches. We ex-
plore sampling schemes where similar data points are less
likely to be selected in the same mini-batch. In particular, we
prove that such repulsive sampling schemes lower the vari-
ance of the gradient estimator. This generalizes recent work
on using Determinantal Point Processes (DPPs) for mini-batch
diversification (Zhang et al., 2017) to the broader class of re-
pulsive point processes. We first show that the phenomenon
of variance reduction by diversified sampling generalizes in
particular to non-stationary point processes. We then show
that other point processes may be computationally much more
efficient than DPPs. In particular, we propose and investigate
Poisson Disk sampling—frequently encountered in the com-
puter graphics community—for this task. We show empirically
that our approach improves over standard SGD both in terms
of convergence speed as well as final model performance.

Introduction
Stochastic gradient descent (SGD) (Bottou 2010) is key to
modern scalable machine learning. Combined with back-
propagation, it forms the foundation to train deep neural net-
works (LeCun et al. 1998b). Applied to variational inference
(Hoffman et al. 2013; Zhang et al. 2017a), it enables the use
of probabilistic graphical models on massive data. SGD train-
ing has contributed to breakthroughs in many applications
(Krizhevsky et al. 2012; Mikolov et al. 2013).

A key limitation for the speed of convergence of SGD
algorithms is the stochastic gradient noise. Smaller gradient
noise allows for larger learning rates and therefore faster
convergence. For this reason, variance reduction for SGD is
an active research topic.

Several recent works have shown that the variance of
SGD can be reduced when diversifying the data points in
a mini-batch based on their features (Zhao and Zhang 2014;
Fu and Zhang 2017; Zhang et al. 2017b). When data points
are coming from similar regions in feature space, their gradi-
ent contributions are positively correlated. Diversifying data
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points by sampling from different regions in feature space
de-correlates their gradient contributions, which leads to a
better gradient estimation.

Another benefit of actively biasing the mini-batch sam-
pling procedure relates to better model performance (Chang
et al. 2017; Shrivastava et al. 2016; Zhang et al. 2017b).
Zhang et al. (2017b) biased the data towards a more uniform
distribution, upsampling data-points in scarce regions and
downsampling data points in dense regions, leading to a bet-
ter performance during test time. Chen and Gupta (2015)
showed that training on simple classification tasks first, and
later adding more difficult examples, leads to a clear perfor-
mance gain compared to training on all examples simultane-
ously. We refer to such schemes which modify the marginal
probabilities of each selected data point as active bias. The
above results suggest that utilizing an active bias in mini-
batch sampling can result in improved performance without
additional computational cost.

In this work, we present a framework for active mini-batch
sampling based on repulsive point processes. The idea is
simple: we specify a data selection mechanism that actively
selects a mini-batch based on features of the data. This mech-
anism introduces repulsion between the data points, meaning
that it suppresses data points with similar features to co-occur
in the same mini-batch. We use repulsive point processes for
this task. Finally, the chosen mini-batch is used to perform
a stochastic gradient step, and this scheme is repeated until
convergence.

Our framework generalizes the recently proposed mini-
batch diversification based on determinantal point processes
(DPP) (Zhang et al. 2017b) to a much broader class of re-
pulsive processes, and allows users to encode any preferred
active bias with efficient mini-batch sampling algorithms. In
more detail, our contributions are as follows:

1. We propose to use point processes for active mini-batch
selection.
We provide a theoretical analysis which shows that mini-
batch selection with repulsive point processes may reduce
the variance of stochastic gradient descent. The proposed
approach can accommodate point processes with adaptive
densities and adaptive pair-wise correlations. Thus, we
can use it for data subsampling with an active bias.

2. Going beyond DPPs, we propose a group of more efficient
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repulsive point processes based on Poisson Disk Sampling
(PDS).
We propose PDS with dart throwing for mini-batch selec-
tion. Compared to DPPs, this improves the sampling costs
from Nk3 to merely k2, where N is the number of data
points and k is the mini-batch size.
We propose a dart-throwing method with an adaptive disk
size and adaptive densities to sample mini-batches with
an active bias.

3. We test our proposed method on several machine learning
applications from the domains of computer vision and
speech recognition. We find increased model performance
and faster convergence due to variance reduction.

Related Work
In this section, we begin with reviewing the most relevant
work on diversified mini-batch sampling. Then, we discuss
the benefits of subsampling schemes with an active bias,
where data are either reweighed or re-ordered. Finally, we
review the relevant aspects of point processes.

Diversified Mini-Batch Sampling Prior research (Zhao
and Zhang 2014; Fu and Zhang 2017; Zhang et al. 2017b;
Yin et al. 2017) has shown that sampling diversified mini-
batches can reduce the variance of stochastic gradients. It is
also the key to overcome the problem of the saturation of
the convergence speed in the distributed setting (Yin et al.
2017). Diversifying the data is also computationally efficient
for large-scale learning problems (Zhao and Zhang 2014;
Fu and Zhang 2017; Zhang et al. 2017b). Buchholz et al.
(2018) used diversified sampling for optimizing Monte-Carlo
objectives in variational inference.

Zhang et al. (2017b) recently proposed to use DPPs for
diversified mini-batch sampling and drew the connection to
stratified sampling (Zhao and Zhang 2014) and clustering-
based preprocessing for SGD (Fu and Zhang 2017). A disad-
vantage of the DPP-approach is the computational overhead.
Besides presenting a more general theory, we provide more
efficient point processes in this work.

Active Bias Different types of active bias in subsampling
the data can improve the convergence and lead to improved
final performance in model training (Alain et al. 2015;
Gopal 2016; Chang et al. 2017; Chen and Gupta 2015;
Shrivastava et al. 2016). As summarized in Chang et al.
(2017), self-paced learning biases towards easy examples in
the early learning phase. Active-learning, on the other hand,
puts more emphasis on uncertain cases, and hard example
mining focuses on the difficult-to-classify examples.

Chang et al. (2017) investigate a supervised setup and
sample data points, which have high prediction variance,
more often. (Gopal 2016) (2017) maintain a desired class
distribution during mini-batch sampling. Diversified mini-
batch sampling with DPPs (Zhang et al. 2017b) re-weights
the data towards a more uniform distribution, which improves
the final performance when the data set is imbalanced.

The choice of a good active bias depends on the data set
and problem at hand. Our proposed method is compatible
with different active bias preferences.

Point Processes Point processes have a long history in
physics and mathematics, and are heavily used in computer
graphics (Macchi 1975; Ripley 1976; Illian et al. 2008;
Öztireli and Gross 2012; Lavancier et al. 2015). DPPs, as a
group of point processes, have been introduced and used in
the machine learning community in recent years (Kulesza et
al. 2012; Li et al. 2015; Kathuria et al. 2016).

Other types of point processes have been less explored
and used in machine learning. There are many different re-
pulsive point processes, such as PDS, or Gibbs processes,
with properties similar to DPPs, but with significantly higher
sampling efficiency (Illian et al. 2008). Additionally, more
flexible point processes with adaptive densities and interac-
tions are well studied in computer graphics (Li et al. 2010;
Roveri et al. 2017; Kita and Miyata 2016), but not explored
much in the machine learning community. Our proposed
framework is based on generic point processes. As one of the
most efficient repulsive point processes, we advocate Poisson
disk sampling in this paper.

Repulsive Point Processes
for Variance Reduction

In this section, we first briefly introduce our main idea of
using point processes for mini-batch sampling in the con-
text of the problem setting and revisit point processes. We
prove that any repulsive point process can lead to reduced
gradient variance in SGD, and discuss the implications of
this result. The theoretical analysis in this section leads to
multiple practical algorithms.

Problem Setting
Consider a loss function `(x, θ), where θ are the model pa-
rameters, and x indicates the data. In this paper, we consider
a modified empirical risk minimization problem (Zhang et al.
2017b):

Ĵ(θ) = Ex̂∼P [`(x̂, θ)]. (1)

P indicates a point process defining a distribution over sub-
sets x̂ of the data, which will be specified below. Note that
this leads to a potentially biased version of the standard em-
pirical risk (Bottou 2010). Debiasing the objective is possible.
It requires re-weighting the loss for each data point inverse
proportional to its marginal probability to be sampled (Zhang
et al. 2017b).

We optimize Eq. 1 via stochastic gradient descent, which
leads to the updates

θt+1 = θt − ρtĜ = θt − ρt 1
|B|

∑
i∈B
∇`(xi, θ), B ∼ P.

B ⊂ {1, . . . , N}, a set of data indices that define the mini-
batch. Ĝ is the gradient estimated from a mini-batch. The
data points chosen for each mini-batch are drawn from a
point process P , which defines probability measures over
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(a) Non-Repulsive (b) Stationary (c) Non-Stationary

Figure 1: Examples of sampling a subset of data points. We sampled different subsets of 100 points (dark green) from a bigger
set of points (light blue), using three different point processes. Panel 1(a) shows a uniformly randomly sampled subset. Panel 1(b)
and panel 1(c) show two examples with different repulsive point processes.

different mini-batches. Therefore, our scheme generalizes
SGD in that the data points in the mini-batch B are selected
actively, rather than uniformly.

Figure 1 shows examples of subset selection using different
point processes. Drawing the data randomly without replace-
ment corresponds to a point process as well, thus standard
SGD trivially belongs to the class of algorithms considered
here. In this paper, we investigate different point processes
and analyze how they improve the performance of different
models on empirical data sets.

Background on Point Processes
Point processes are generative processes of collections of
points in some measure space (Møller and Waagepetersen
2004; Illian et al. 2008). They can be used to sample subsets
of data with various properties, either from continuous spaces
or from discrete sets, such as a finite dataset. In this paper,
we explore different point processes to sample mini-batches
with different statistical properties.

More formally, a point process P in Rd can be defined by
considering the joint probabilities of finding points generated
by this process in infinitesimal volumes. One way to express
these probabilities is via product densities. Let xi denote
some arbitrary points in Rd, and Bi infinitesimal spheres
centered at these points with volumes dxi = |Bi|. Then the
nth order product density %(n) is defined by

p(x1, · · · ,xn) = %(n)(x1, · · · ,xn)dx1 · · · dxn,
where p(x1, · · · ,xn) is the joint probability of having a point
of the point process P in each of the infinitesimal spheres Bi.
We can useP to generate infinitely many point configurations,
each corresponding to e.g. a mini-batch.

For example, DPP defines this probability of sampling
a subset as being proportional to the determinant of a
kernel matrix. It is thus described by the nth order prod-
uct density (Lavancier et al. 2012): %(n)(x1, · · · ,xn) =
det[C](x1, · · · ,xn), where det[C](x1, · · · ,xn) is the deter-
minant of the n× n sized sub-matrix of kernel matrix C with
entries specified by x1, · · · ,xn.

For our analysis, we will just need the first and second
order product density, which are commonly denoted by
λ(x) := %(1)(x), %(x,y) := %(2)(x,y). An important spe-
cial case of point processes is stationary processes. For such
processes, the point distributions generated are translation
invariant, where the intensity is a constant.

Point Processes for Active Mini-Batch Sampling
Recently, Zhang et al. (2017b) investigated how to utilize a
particular type of point process, DPP, for mini-batch diversifi-
cation. Here, we generalize the theoretical results to arbitrary
stochastic point processes, and elaborate on how the resulting
formulations can be utilized for SGD based algorithms. This
opens the door to exploiting a vast literature on the theory of
point processes, and efficient algorithms for sampling.

SGD-based algorithms utilize the estimator Ĝ(θ) =
1
|B|
∑
i∈B ∇`(xi, θ) for the gradient of the objective. Each

mini-batch, i.e. set of data points in this estimator, can be con-
sidered as an instance of an underlying point process P . Our
goal is to design sampling algorithms for improved learning
performance by altering the bias and variance of this gradient
estimator.

We first derive a closed form formula for the variance
varP(Ĝ) of the gradient estimator for general point pro-
cesses. We then show that, under mild regularity assumptions,
repulsive point processes generally imply variance reduction.
For what follows, let g(x, θ) = ∇`(x, θ) denote the gradient
of the loss function, and recall that k = |B|, the mini-batch
size.
Theorem 1. The variance varP(Ĝ) of the gradient estimate
Ĝ in SGD for a general stochastic point process P is given
by:

varP(Ĝ) =
1

k2

∫
V×V

λ(x)λ(y)g(x, θ)Tg(y, θ) (2)[
%(x,y)

λ(x)λ(y)
− 1

]
dxdy

+
1

k2

∫
V
‖g(x, θ)‖2λ(x)dx.

Proof. In Appendix.

Remark 1. This formula applies to general point processes
and hence sampling strategies for mini-batches. It proves that
variance only depends on first and second order correlations
captured by λ(x) and %(x,y), respectively. This provides
a simple and convenient tool for analyzing properties of
sampling strategies with respect to dataset characteristics
for variance control, once only these lower order sampling
characteristics are known or estimated by simulation.

5743



Remark 2. For standard SGD, we have %(x,y) =
λ(x)λ(y). This is due to the nature of random sampling,
where sampling a point is independent of already sampled
points. Note that this applies also to adaptive sampling with
non-constant λ(x). Hence, the term [ %(x,y)

λ(x)λ(y) − 1] vanishes
in SGD. In contrast, we show next that this term may induce
a variance reduction for repulsive point processes.

Remark 3. Repulsive point processes may make the first
term in Eq. 2 negative, implying variance reduction. For re-
pulsive point processes, the probability of sampling points
that are close to each other is low. Consequently, if x and y

are close, %(x,y) < λ(x)λ(y), and the term [ %(x,y)
λ(x)λ(y) − 1]

is negative. This is due to points repelling each other (we
will elaborate more on this in the next section). Furthermore,
assuming that the loss function is sufficiently smooth in its
data argument, the gradients are aligned for close points
i.e g(x, θ)Tg(y, θ) > 0. This combined implies that close
points provide negative contributions to the first integral in
Eq. 2. The contributions of points farther apart average out
and become negligible due to gradients not being correlated
with %(x,y), which is the case for all current sampling al-
gorithms and the ones we propose in the next section. The
negative first term in Eq. 2 leads to variance reduction, for
repulsive point processes.

Implications. This proposed theory allows us to use any
point process for mini-batch sampling, such as DPP, finite
Gibbs processes, Poisson disk sampling (PDS), and many
more (Illian et al. 2008). It thus offers many new directions
of possible improvement. Foremost, we can choose point
processes with a different degree of repulsion (Biscio et al.
2016), and computational efficiency. Furthermore, in this
general theory, we are able to adapt the density and alter the
pair-wise interactions to encode our preference. In the next
section, we propose several practical algorithms utilizing
these benefits.

Poisson Disk Sampling
for Active Mini-batch Sampling

We adapt efficient dart throwing algorithms for fast repul-
sive and adaptive mini-batch sampling. We further extend
the algorithm with an adaptive disk size and density. For su-
pervised setups, we shrink the disc size towards the decision
boundary, using mingling indices (Illian et al. 2008). This
biases towards hard examples and improves classification
accuracy.

Stationary Poisson Disk Sampling
PDS is one type of repulsive point process. It demonstrates
stronger local repulsion compared to DPP (Biscio et al. 2016).
Typically, it is implemented with the efficient dart throwing
algorithm (Lagae and Dutré 2008), and provides similar point
arrangements to DPP, albeit much more efficiently.

This process dictates that the smallest distance between
each pair of sample points should be at least r with respect to
some distance measure D. The second order product density

Figure 2: Demonstration of PDS. The black circles of a cer-
tain radius r mark regions claimed by the collected points
(red). For the next iteration, if the newly sampled point falls
in any of the circles (points colored in gray), this point will
be rejected.

%(x, y) for PDS is zero when the distance between two points
are smaller than the disk radius ||x− y|| ≤ r, and converges
to %(x, y) = λ(x)λ(y) when the two points are far (Öztireli
and Gross 2012). Thus,

[
%(x,y)
λ(x)λ(y) − 1

]
= −1 < 0 when the

points are within distance r, and 0 when they are far.
As demonstrated in Figure 2, the basic dart throwing algo-

rithm for PDS works as follows in each iteration: 1) randomly
sample a data point; 2) if it is within a distance r of any al-
ready accepted data point, reject; otherwise, accept the new
point. We can also specify the maximum sampling size k.
This means that we terminate the algorithm when k points
have been accepted. The computational complexity of PDS
with dart throwing2 is O(k2). This is much lower than the
complexity O(Nk3) for k-DPP, where N is the number of
data points in the dataset. In the rest of the paper, we refer to
this version of PDS as “Vanilla PDS”.

Poisson Disk Sampling with Adaptive Density
To further utilize the potential benefit of our framework, we
propose several variations of PDS. In particular, we use min-
gling index based marked processes. We then propose three
variants as explained below: Easy PDS, where only the points
far from decision boundaries repulse each other, as well as
Dense PDS and Anneal PDS, where we can impose prefer-
ences on point densities.

Mingling Index The mingling index M̄K(xi) is defined as
(Illian et al. 2008):

M̄K(xi) =
1

K

K∑
j=1

1
(
m(xi) 6= m(xj)

)
, (3)

where m(xi) indicates the mark of the point xi. In case of
a classification task, the mark is the class label. M̄K(xi) is
the ratio of points with different marks than xi among its K
nearest neighbors.

Depending on the mingling index, there are three different
situations. Firstly, if M̄K(xi) = 0, the region around xi only

2In practice, the number of accepted points can be smaller than
the number of considered points in the dataset, as some of them will
be eliminated by not satisfying the distance criteria.
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Algorithm 1 Draw throwing for Dense PDS
Input: data x, mini-batch size S, mingling indexM for all
data, the parameter for categorical distribution to sample
mingling index π, disk radius r0
repeat

sample a mingling index m ∼ Cat(π)
randomly sample a point i with mingling index m
if xi is not in disk of any samples then

insert xi to B
end if

until S points have been accepted for the mini-batch

includes points from the same class. This makes xi a rela-
tively easy point to classify. This type of points is preferred
to be sampled in the early iterations for self-paced learning.
Secondly, if M̄K(xi) > 0, this point may be close to a de-
cision boundary. For variance reduction, we do not need to
repulse this type of points. Additionally, sampling this type
of points more often may help the model to refine the deci-
sion boundaries. Finally, if M̄K(xi) is very high, the point
is more likely to be a hard negative. In this case, the point is
mostly surrounded by points from other classes. On a side
note, points with high mingling indices can be interpreted as
support vectors (Cortes and Vapnik 1995).

Adaptive Variants of Poisson Disk Sampling Gradients
may change drastically when points are close to decision
boundaries. Points in this region, thus, violate the assumption
in Remark 3. Because of this, our first simple extension,
which we call “Easy PDS”, sets the disk radius to r0 when
the point has a mingling indexMxi

= 0, and to 0 ifMxi
> 0.

This means that only easy points (with Mxi
= 0) repulse.

On average, “Easy PDS” is expected to sample more of the
difficult points compared with “Vanilla PDS”.

For many tasks, when the data is highly structured, there
are only few data points that are close to the decision bound-
ary. To refine the decision boundary, inspired by hard ex-
ample mining, we can sample points with a high mingling
index more often. We thus propose the “Dense PDS” method
summarized in Algorithm 1. Instead of drawing darts ran-
domly, we draw darts based on different mingling indices.
The mingling indices can assume K + 1 values, where K
is the number of nearest neighbors. We thus can specify a
parameter π for a categorical distribution to sample mingling
indices first. Then we randomly sample a dart which has
the given mingling index. In this way, we can encode our
preferred density with respect to the mingling index.

It is straightforward to introduce an annealing mechanism
in “Dense PDS” by using a different πn at each iteration n.
Inspired by self-paced learning, we can give higher density
to points with low mingling index in the early iterations,
and slowly increase the density of points with high mingling
index. We refer this method as “Anneal PDS”.

Note that all our proposed sampling methods only rely
on the properties of the given data instead of any model
parameters. Thus, they can be easily used as a pre-processing
step, prior to the training procedure of the specific model.

Experiments
We evaluate the performance of the proposed method in vari-
ous application scenarios. Our methods show clear improve-
ments compared to baseline methods in each case. We first
demonstrate the behavior of different varieties of our method
using a synthetic dataset. Secondly, we compare Vanilla PDS
with DPP as in (Zhang et al. 2017b) on the Oxford flower
classification task. Finally, we evaluate our proposed methods
with two different tasks with very different properties: image
classification with MNIST, and speech command recognition.

Synthetic Data We evaluate our methods on two-
dimensional synthetic datasets to illustrate the behavior of
different sampling strategies. Figure 3 shows two classes
(green and red dots) separated by a wave-shaped (sine curve)
decision boundary (yellow line). Intuitively, it should be fa-
vorable to sample diverse subsets and even more beneficial to
give more weight to the data points at the decision boundary,
i.e., sampling them more often. We sample one mini-batch
with batch size 30 using different sampling methods. For
each method, we train a neural network classifier with one
hidden layer of five units, using a single mini-batch. This
model, albeit simple, is sufficient to handle the non-linear
decision boundary in the example.

Figure 3 shows the decision boundaries by repeating the ex-
periment 30 times. In order to illustrate the sampling schemes,
we also show one example of sampled mini-batch using blue
dots. In the random sampling case (Figure 3(a)), we can see
that the mini-batch is not a good representation of the original
dataset as some random regions are more densely or sparsely
sampled. Consequently, the learned decision boundary is very
different from the ground truth. Figures 3(b) shows Vanilla
PDS. Because of the repulsive effect, the sampled points
cover the data space more uniformly and the decision bound-
ary is improved compared to Figure 3(a). In Figure 3(c), we
used Easy PDS, where the disk radius adapts with the min-
gling index of the points. We can see that points close to
the decision boundary do not repel each other. This leads to
a potentially more refined decision boundary as compared
to Figure 3(b). Finally, Dense PDS, shown in Figure 3(d),
chooses more samples close to the boundary and leads to the
most precise decision boundary with a single mini-batch.

Moreover, to demonstrate the scalibilty of PDS, we gener-
ate synthetic datasets with different dataset sizes and sample
mini-batches using PDS. We report the sampling time in Ta-
ble 1. We can see that the sampling time for a mini-batch
using PDS is stable across different dataset sizes N and only
differs with respect to mini-batch size k. More experiments
on variance reduction are shown in the appendix.

Oxford Flower Classification We compare our proposed
PDS with DPP for mini-batch sampling on the fine-grained
classification task as in (Zhang et al. 2017b) with the same
experimental setting. We use Vanilla PDS (with fixed disk ra-
dius) for fair comparison with DPP. Figure 4 shows the test ac-
curacy at the end of each training epoch. We see that sampling
with either DPP or PDS leads to accelerated convergence as
compared to traditional SGD. With similar performance as
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(a) Random (b) Vanilla PDS (c) Easy PDS (d) Dense PDS

Figure 3: Comparison of performance using one mini-batch sample distribution on synthetic data. Each experiment is repeated
30 times. The resulting decision boundaries are drawn as transparent black lines and the ground truth decision boundary is shown
in yellow. As an example, the points from one of the sampled mini-batches are shown in blue.

N: 4096 N: 8192 N: 16384 N: 32768 N: 65536 N: 131072 N: 262144 N: 524288 N: 1048576

k=50 0.0066 0.0064 0.0064 0.0061 0.0062 0.0069 0.0063 0.0060 0.0061
k=100 0.0239 0.0237 0.0235 0.0234 0.0227 0.0225 0.0228 0.0239 0.0262

Table 1: Average CPU time (sec) to sample each mini-batch using PDS. N is the number of data and k is the mini-batch size.
The table confirms that the computational complexity of PDS is O(k2), which does not depend on the dataset size N , as opposed
to O(Nk3) for k-DPP. Thus, PDS is able to scale to massive datasets with large mini-batches. Note that, vanilla PDS is used
here, however, other variants of PDS have the same computational complexity for sampling but may have some pre-processing
overhead such as computation of mingling index.
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Figure 4: Oxford Flower Classification with Softmax. PDS
has similar performance as DPP for sampling mini-batches.
However PDS is more efficient as Table 2 shows. Both meth-
ods converges faster than traditional SGD (Baseline).

using DPP, PDS demonstrates significant improvement on
sampling efficiency as shown in Table 2. More experimental
results with different settings are presented in the appendix.

MNIST We further show results for hand-written digit clas-
sification on the MNIST dataset (LeCun et al. 1998a). We
compare different variations of our method with two base-
lines: the traditional SGD and ActiveBias (Chang et al. 2017).
We use half of the training data and the full test data. As
detailed in the appendix, with MNIST, data are well clustered
and most data points have mingling index 0 (easy to classify).
A standard multi-layer convolutional neural network (CNN)

k 50 80 150
k-DPP 7.1680 29.687 189.0303

Fast k-DPP 0.1032 0.3312 1.8745
PDS 0.0461 0.0795 0.1657

Table 2: CPU time (sec) to sample one mini-batch. The disk
radius r is set to half of the median value of the distance
measure D for PDS.

from Tensorflow3 is used in this experiment with standard
experimental settings (details in appendix).

Figure 5(a) shows the test error rate evaluated after each
SGD training iteration for different mini-batch sampling
methods. All active sampling methods with PDS lead to
improved final performance compared to traditional SGD.
Vanilla PDS clearly outperforms the baseline method. Easy
PDS, performs very similarly to Vanilla PDS with slightly
faster convergence in the early iterations. Dense PDS leads
to better final performance at the cost of a slight decrease
in initial convergence speed. The decision boundary is re-
fined because we prefer non-trivial points during training.
Anneal PDS further improves Dense PDS with accelerated
convergence in the early iterations. Figure 5(b) shows the
performance of test accuracy for Anneal PDS compared with
baseline methods in a zoomed view.

We thus conclude that all different variations of PDS obtain
better final performance, or conversely, achieve the baseline

3https://www.tensorflow.org/versions/r0.12/tutorials/mnist/
pros/
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Figure 5: MNIST experiment (10 repetitions). The mean performance for each method is reported in Panel (a). We compared all
variations of our proposed methods with two baselines: Baseline SGD and ActiveBias (Chang et al. 2017). All our methods
perform better than the baselines. AnnealPDS performs best. For better visualization, Panel (b) shows the mean and standard
deviation of our proposed Anneal PDS comparing with two baselines closely.
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Figure 6: Speech experiment (10 repetitions). We compare
the performance over the validation set of different variations
of PDS with traditional SGD for every 50 iterations. Means
and standard deviations are shown.

performance with fewer iterations. With a proper annealing
schedule to resemble self-paced learning, we can obtain even
more improvement in the final performance.

Speech Command Recognition In this section, we evalu-
ate our method on a speech command classification task as
described in (Sainath and Parada 2015). The classification
task includes twelve classes: ten isolated command words,
silence, or unknown class.

The database consists of 64,727 one-second-long audio
recordings. As in Sainath and Parada (2015), for each record-
ing, 40 MFCC features (Davis and Mermelstein 1980) are
extracted at 10 msec time intervals resulting in 40× 98 fea-
tures. We use the TensorFlow implementation4 with standard
settings (see appendix). Differently from the MNIST dataset,
word classes are not clearly separated and data with different
mingling index values are well distributed (see appendix).

Figure 6 shows the accuracy on the validation set evaluated
every 50 training iterations. Using Vanilla PDS, the model
converges with fewer iterations compared to the traditional

4https://www.tensorflow.org/tutorials/audio recognition

random sampling of mini-batches. Easy PDS and Dense PDS
show similar improvement since few data have 0 mingling
indices in this dataset.

As compared to the MNIST experiment, the gain of Vanilla
PDS and Easy PDS is larger in this case since the dataset
is more challenging. On the other hand, encouraging more
difficult samples has a stronger impact on the MNIST dataset
than in the Speech experiment. In all different settings, our
mini-batch sampling methods are beneficial for both fast
convergence and final model performance.

Discussion

In this work, we propose the use of repulsive point processes
for active mini-batch sampling. We provide both theoretical
and experimental evidence that using repulsive stochastic
point processes can reduce the variance of stochastic gra-
dient estimates, which leads to faster convergence. Addi-
tionally, our general framework also allows adaptive density
and adaptive pair-wise interactions. This leads to further im-
provements in model performance thanks to balancing the
information provided by the input samples, or enhancing the
information around decision boundaries.

Our work is mainly focused on similarity measures in
input space, which makes the algorithms efficient without
additional run-time costs for learning. In future work, we
will explore the use of our framework in the gradient space
directly. This can potentially lead to even greater variance
reduction. we believe that our proposed method may show
even greater advantages in the two-stage framework such as
Faster-R-CNN (Ren et al. 2015). Here, point processes can
be used for region proposal sampling.

Finally, for sampling with adaptive density, we mainly
use the information from mingling index, which can only
be utilized for classification problems. In future work, we
would also like to explore other measures such as sequences
of annotations or graphs.
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Roveri, R.; Öztireli, A. C.; and Gross, M. 2017. General
point sampling with adaptive density and correlations. Euro-
graphics.
Sainath, T. N., and Parada, C. 2015. Convolutional neural net-
works for small-footprint keyword spotting. In Interspeech.
Shrivastava, A.; Gupta, A.; and Girshick, R. 2016. Train-
ing region-based object detectors with online hard example
mining. In CVPR.
Yin, D.; Pananjady, A.; Lam, M.; Papailiopoulos, D.; Ram-
chandran, K.; and Bartlett, P. 2017. Gradient diversity: a key
ingredient for scalable distributed learning. In NIPS WS.
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