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Abstract
We study PMAC-learning of real-valued set functions with
limited complementarity. We prove, to our knowledge, the
first nontrivial learnability result for set functions exhibiting
complementarity, generalizing Balcan and Harvey’s result for
submodular functions. We prove a nearly matching informa-
tion theoretical lower bound on the number of samples re-
quired, complementing our learnability result. We conduct
numerical simulations to show that our algorithm is likely to
perform well in practice.

Introduction
A central problem in economics and algorithmic game the-
ory is to price items. Intuitively, a seller would like to set
the highest price such that the customer would still buy,
which requires decent understanding of the customer’s val-
uation. When there are multiple items which can be sold
in any combination, the valuation is usually modeled as a
set function with the items being the ground set. That is,
the valuation function of the customer maps each subset of
the items to her utility when she gets the subset. To be able
to better price the items for maximum profit, one need to
learn the customer’s valuation function. Set functions are
also used to model influence propogation in social networks
(Kempe, Kleinberg, and Tardos 2003), and for solving clus-
tering problems (Narasimhan and Bilmes 2007). In all these
scenarios, learning the corresponding set function plays an
essential part in solving the problem.

There is a rich body of research on learning of set func-
tions, e.g. (Balcan and Harvey 2011; Balcan et al. 2012;
Lin and Bilmes 2012; Bach and others 2013). All of these re-
sults focus on an important class of monotone set functions
— complement-free set functions. Such set functions model
the natural property of diminishing returns, and are gener-
ally considered much easier to tackle than general monotone
set functions. For example, various optimization problems
admit efficient constant factor approximations when the set
function involved is complement-free or submodular (which
is stronger than complement-free) (Nemhauser and Wolsey
1978; Vondrák 2008; Feige 2009), while for general mono-
tone functions the best possible approximation ratio can be
arbitrarily large.
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However, in real-world scenarios, it is common that a val-
uation function exhibits limited complementarity. For exam-
ple, a pen is useful only if accompanied by paper to write
on. Paper therefore complements pens. This complementar-
ity to pens is limited, in the sense that owning items other
than paper, like computers, is unlikely to make pens more
valuable. So in the above example, complementarity exists
only between pens and paper. One significant real-world
example of limited complementarity is the spectrum auc-
tions, where the rights to use specific bands in specific re-
gions are sold. The complementarity there lies in the fact
that a buyer would like the same band in neighboring re-
gions (say states). Since there are only 50 states, one would
naturally cosider the degree of complementarity limited.
More motivating everyday examples of limited complemen-
tarity can be found in (Feige et al. 2015; Eden et al. 2017;
Chen, Teng, and Zhang 2019).

In the past decade, there has been a growing interest in
studying set functions with limited complementarity, es-
pecially in the combinatorial optimization and algorith-
mic game theory communities. In particular, recent results
seem to suggest, that there exists smooth transitions from
complement-free to completely arbitrary monotone set func-
tions, parametrized by the degree of complementarity of
the function. The transitions support graceful degrading of
the approximation ratio for various combinatorial optimiza-
tion tasks (Feige and Izsak 2013; Feldman and Izsak 2014;
Feige et al. 2015; Chen, Teng, and Zhang 2019), and the
revenue and efficiency (measured by the Price of Anarchy)
of well-studied simple protocols for combinatorial auctions
(Feige et al. 2015; Feldman et al. 2016; Eden et al. 2017;
Chen, Teng, and Zhang 2019).

So one natural question arises:

Is there a way to generalize learnability of complement-
free set functions to those with limited complementarity,
without incurring too much penalty?

In this paper, based on understanding of the underly-
ing combinatorial and statistical structures, we give, to our
knowledge, the first nontrivial learnability result for mono-
tone set functions with limited complementarity:

Theorem 1 (Main Theorem (Informal)). Restricted to
product distributions, there is an efficient algorithm that
O(1/ log(ε))-approximately learns any monotone set func-
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tion with fixed degree of complementarity.

The above theorem generalizes a central result of (Balcan
and Harvey 2011) beyond complement-free functions. We
also complement our result by a nearly matching informa-
tion theoretical lower bound. We conduct numerical simula-
tions to show that our algorithm is likely to perform well in
practice.

Define the marginal of S given T , denoted by f(S|T ), to
be f(S|T ) := f(S∪T )−f(T ). Throughout the paper, when
we refer to a set function f , unless otherwise specified, we
always assume that:

• f has a ground set [n] = {1, 2, . . . , n}. That is, f maps
all subsets of [n], denoted by 2[n], to real numbers.

• f is (weakly) monotone. That is, for any S ⊆ T ⊆ [n],
f(S) ≤ f(T ).

• f is 1-Lipschitz. That is, for any S ⊆ [n] and v ∈ [n],
f(v|S) ≤ 1.

PMAC-Learning
To study learnability of real-valued functions, we use the
Probably Mostly Approximately Correct (PMAC) model
introduced by Balcan and Harvey in (Balcan and Harvey
2011).

Definition 1 (PMAC-Learning (Balcan and Harvey 2011)).
LetF be a family of functions with domain 2[n]. We say that
an algorithm A PMAC-learns F with approximation factor
α, if for any distributionD over 2[n], target function f∗ ∈ F ,
and for any sufficiently small ε ≥ 0, δ ≥ 0, A takes as input
a set of samples {(Si, f∗(Si)}i∈[`] where each Si is drawn
independently from D, and outputs a function f : 2[n] → R
in F that satisfies

Pr
S1,...,S`∼D

[
Pr
S∼D

[f(S) ≤ f∗(S) ≤ α · f(S)] ≥ 1− ε
]

≥ 1− δ,

where the number of samples ` and the running time of A
are both poly(n, 1/ε, 1/δ).

In words, the definition says the algorithm succeeds with
probability 1− δ, upon which it outputs an approximation f
of f∗ such that with probability 1 − ε, f∗(S) is within fac-
tor α of f(S). Note that restricted to Boolean-valued func-
tions and letting α = 1, PMAC-learning becomes exactly
the classic PAC-learning.

Classes of Set Functions
Numerous classes of complement-free set functions have
been proposed and studied, among which the following
classes are particularly natural and useful: submodular, frac-
tionally subadditive, and subadditive functions. Previous
work on learning set functions has been focusing on these
classes.

• Submodular. A set function f is submodular, if for any
v ∈ [n], S, T ⊆ [n], f(v|S∪T ) ≤ f(v|S). The class con-
tains essentially all functions with diminishing marginal
returns.

• Fractionally subadditive (or XOS). A set function f is
fractionally subadditive, if for any S ⊆ [n], k ∈ N,
T1, . . . , Tk ⊆ [n], 0 ≤ α1, . . . , αk ≤ 1, f(S) ≥∑
i∈[k] αif(Ti), as long as the following holds: for any

v ∈ S,
∑
i∈[k]:v∈Ti

αi ≥ 1. In other words, if {(Ti, αi)}i
form a fractional cover of S, then the weighted sum of
f(Ti)’s is no smaller than f(S).
• Subadditive (or complement-free). A set function f is sub-

additive, if for any S, T ⊆ [n], f(S) + f(T ) ≥ f(S ∪T ).
It can be shown that every submodular function is fraction-
ally subadditive, and every fractionally subadditive function
is subadditive.

Beyond complement-free functions, several measures of
complementarity have been proposed, and the ones particu-
larly helpful for our purposes are the supermodular degree
(SD) hierarchy and the supermodular width (SMW) hierar-
chy. They build on the concepts of positive dependency and
supermodular sets respectively.
Definition 2 (Positive Dependency (Feige and Izsak 2013)).
Given a set function f , an element u ∈ [n] depends pos-
itively on v ∈ [n], denoted by u →+ v, if there exists
S ⊆ [n] \ {u}, such that f(u|S) > f(u|S \ {v}).
Definition 3 (Supermodular Degree Hierarchy (Feige and
Izsak 2013)). The supermodular degree of a set function f ,
denoted by SD(f), is defined to be

SD(f) := max
u
|{v | u→+ v}|.

For any d ∈ {0, 1, . . . , n − 1}, a function f is in the first
d levels of the supermodular degree hierarchy, denoted by
f ∈ SD-d, if SD(f) ≤ d.

The definitions essentially say, that u depends positively
on v if adding v to some set makes the marginal of u given
that set strictly larger, and the supermodular degree of f
is then the maximum number of elements on which some
particular element positively depends. The degree then nat-
urally categorizes functions into hierarchies.
Definition 4 (Supermodular Set (Chen, Teng, and Zhang
2019)). A set T ⊆ [n] is a supermodular set w.r.t. f , if there
exists v ∈ [n] and S ⊆ [n], such that for all T ′ ( T ,

f(v|S ∪ T ) > f(v|S ∪ T ′).
Definition 5 (Supermodular Width Hierarchy (Chen, Teng,
and Zhang 2019)). The supermodular width of a set function
f , denoted by SMW(f), is defined to be

SMW(f) := max{|T | | T is a supermodular set}.
For any d ∈ {0, 1, . . . , n − 1}, a function f is in the first
d levels of the supermodular width hierarchy, denoted by
f ∈ SMW-d, if SMW(f) ≤ d.

That is to say, T is a supermodular set, if given “environ-
ment” S, v has a larger marginal given T than given any
proper subset of T , and the supermodular width of f is the
size of the largest supermodular set.

One can show that the lowest levels of the two hierarchies,
SD-0 and SMW-0, coincide. In fact, they are exactly the
family of submodular functions. And the highest levels of
the two hierarchies, SD-(n− 1) and SMW-(n− 1), contain
all monotone set functions. It can also be shown that:
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Proposition 1 ((Chen, Teng, and Zhang 2019)). For any set
function f , SMW(f) ≤ SD(f). Or equivalently, for any
d ∈ {0, 1, . . . , n− 1}, SD-d ⊆ SMW-d.

So the SMW hierarchy is a refinement of the SD hierar-
chy. Our results will be established with respect to the SMW
hierarchy, and then immediately apply to the SD hierarchy.

Our Results and Techniques
We study PMAC-learning the class of monotone, nonnega-
tive, 1-Lipschitz set functions with minimum nonzero value
1 in SMW-d ⊇ SD-d. Parameter d here controls the de-
gree of complementarity in these set functions. In particular,
when d = 0, we recover the learnability result for submod-
ular functions (Balcan and Harvey 2011).

We restrict our investigation of learnability to product dis-
tributions for the following reason: under arbitrary distri-
butions, every algorithm for PMAC-learning monotone,
submodular functions must have approximation factor
Ω̃(n1/3) 1, even if the functions are 1-Lipschitz (Balcan
and Harvey 2011). Note that the maximum possible value
of a normalized monotone 1-Lipschitz function is n. In other
words, there is no hope for learnability with a decent approx-
imation factor when the underlying distribution is arbitrary.
While product distributions may appear not entirely satisfac-
tory in modeling the real world, we argue that the assump-
tion is still to some extent realistic: for example, pawn shops
buy items brought to them by different people independently
at random, but may sell items in combinations. In general,
the assumption holds for any entity that acquires items inde-
pendently and bundles them for selling.

Breaking the task down. As observed by Balcan and Har-
vey (Balcan and Harvey 2011), the task of learning submod-
ular set functions can be divided into two parts: learning 0’s
of the function, and learning the distribution of positive val-
ues. We observe a similar phenomenon for functions with
complementarity d. We therefore break the task down into
two parts, with the first subtask being intrinsically combina-
torial, and the second subtask statistical. The plan is to estab-
lish learnability for both subtasks respectively, and combine
them into learnability of monotone, nonnegative functions
with complementarity d.

The combinatorial subtask. In the combinatorial sub-
task, the goal is to PAC-learn monotone Boolean-valued
functions in SMW-d ⊇ SD-d. By observing the combina-
torial structure of a Boolean-valued SMW-d function, we
show that all information of the function is encoded in sets
of size not exceeding d + 1. This observation immediately
leads to an algorithm that PAC-learns these functions using
O(nd+1 log(n/δ)/ε) samples.

Hardness of learning Boolean-valued functions. We
show that, somewhat surprisingly, the combinatorial sub-
task is the hardcore of learning nonnegative set functions

1Ω̃ hides a polylog factor.

with complementarity d. Specifically, we prove that any al-
gorithm that PAC-learns these functions requires Ω̃(nd+1)

samples, where Ω̃ hides a polylog factor. Our proof proceeds
by constructing a random function f , where the values of f
at sets of size smaller than d+ 1 are 0, and the values at sets
of size exactly d + 1 are i.i.d., drawn uniformly at random
from {0, 1}. We further fix the product distribution, such that
each element i ∈ [n] appears with probability (d+1)/n. We
show, that it is hard to learn the values at sets of size d + 1
without enough samples. Then, since with constant proba-
bility a sample is of size exactly d + 1, the algorithm must
output a wrong value with constant probability.

The statistical subtask. In the statistical subtask, the
goal is to PMAC-learn monotone positive functions in
SMW-d ⊇ SD-d. We show that, unlike Boolean-valued
functions, learning positive functions with constant comple-
mentarity with approximation factor O(1/ε) requires only
O(n2 log(1/δ)) samples. This bound matches the result for
submodular functions up to a constant factor (d + 1)2. The
proof proceeds essentially by leveraging the strong con-
centration properties we establish. Generalizing Balcan and
Harvey’s result for submodular functions (Balcan and Har-
vey 2011), we show, that under product distributions, the
value of the function converges sharply around the median
value, and the mean cannot be too far away from the median.
It follows that with high probability, with enough samples,
the empirical mean is a good approximation of the value at
a random set.

Putting it together. With algorithms for Boolean-valued
and positive functions at hand, it is natural to put them to-
gether, in the hope that the combination takes care of both
subtasks. We show that this is indeed what happens — with
approximation factor O(log(1/ε)), the combination of the
two algorithms PMAC-learns nonnegative functions with
complementarity d using

O(n2 log(1/δ) + nd+1 log(n/δ)/ε)

samples, where the first term is for positive values, and the
second is for 0’s. While it may seem weird that samples for
learning 0’s dominate the total number of samples, we note
that the lower bound for learning Boolean-valued functions
also applies for nonnegative functions, since the latter sub-
sume the former as a subclass. It follows that the dependency
in n in our upper bound is almost tight. We further show,
that when the empirical mean is large enough, the number
of samples needed becomes significantly smaller. This is be-
cause we no longer need to learn the 0’s, since concentration
bounds guarantee that the probability of a 0 is negligible.

Additional Related Work
Du et al. (Du et al. 2014) and
Narasimhan et al. (Narasimhan, Parkes, and Singer
2015) study learning in social networks where the
influence function is submodular. Another closely re-
lated line of research is on finding succinct approxi-
mations for (a.k.a. sketching) complement-free func-
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tions (Badanidiyuru et al. 2012; Devanur et al. 2013;
Cohavi and Dobzinski 2017). There are a number of results
on testing submodularity (Seshadhri and Vondrák 2014;
Blais and Bommireddi 2017).

Beside the SD and the SMW hierarchies, there are sev-
eral other measures of complementarity, among which two
most useful ones are Maximum-over-Positive-Hypergraphs
(MPH) (Feige et al. 2015) and its variant, Maximum-over-
Positive-Supermodular (MPS) (Feldman et al. 2016).

The Combinatorial Subtask: Learning
Boolean-Valued Functions

In this section we consider PAC-learning of F∗d , the class of
monotone Boolean-valued functions in SMW-d ⊇ SD-d. d
can be viewed as a constant measuring the degree of com-
plementarity. As we will see, PAC-learning F∗d is the infor-
mation theoretical hard core of PMAC-learning set functions
with limited complementarity.

First we characterize the structure of 0’s of a set function
in F∗d . We say S ⊆ [n] is a zero set (w.r.t. f ) if f(S) = 0.
Unlike submodular functions, whose system of zero sets is
closed downward and under union, a function in F∗d may
have zero sets with notably more complicated structure. In
particular, even if f(S) = f(T ) = 0, it is not necessarily
true that f(S ∪ T ) = 0. To efficiently learn F∗d , we leverage
the following succinct representation of its members’ zero
sets:

Lemma 1 (Structure of Zero Sets). For a monotone set func-
tion f ∈ SMW-d, f(S) = 0 iff for all T ⊆ S where
|T | ≤ d+ 1, f(T ) = 0.

In other words, all information about f ’s zero sets is en-
coded in values of f at sets with size no larger than d+1. As
a result, to distinguish 0’s of f , we only need to keep track
of its zero sets of constant size. This characterization leads
directly to Algorithm 1.

Proof of Lemma 1. By monotonicity, clearly if f(S) = 0
then for any T ⊆ S, f(T ) = 0. We now prove the other
direction. Suppose for all T ⊆ S where |T | ≤ d+1, f(T ) =
0. We assume f(S) > 0 and show a contradiction. Let S′ ⊆
S be a subset of S with the smallest cardinality such that
f(S′) > 0. Clearly |S′| ≥ d + 2, and for any T ( S′,
f(T ) = 0. Let v be any element in S′.

0 < f(S′) = f(v|S′ \ {v})
≤ max{f(v|T ) | T ⊆ S′ \ {v}, |T | ≤ d}
≤ max{f(T ) | T ⊆ S′, |T | ≤ d+ 1}
= 0.

Theorem 2 (PAC-Learnability of Boolean-Valued Func-
tions). Restricted to product distributions, for any suffi-
ciently small ε > 0 and δ > 0, Algorithm 1 PAC-learns
F∗d with parameters (ε, δ). The number of samples is ` =
10(d+ 1)nd+1 log(n/δ)/ε.

Algorithm 1: An algorithm that PAC-learns monotone
Boolean-valued functions with limited complementarity.

Input : ` samples {(Si, f∗(Si))}i∈[`] from a product
distribution D.

Output: with high probability, an approximately
correct estimation f of f∗.

Let L ← ∅.
for i ∈ [`] do

if f∗(Si) = 0, and there exists a subset T of Si with
|T | ≤ d+ 1, such that T /∈ L then

for Every subset U of Si with |U | ≤ d+ 1 do
Let L ← L ∪ {U}.

Output f , where f(S) = 0 iff for any subset T of S
with |T | ≤ d+ 1, T ∈ L.

Proof of Theorem 2. We prove a slightly stronger but essen-
tially similar claim, that with probability 1 − 1

2δ, the algo-
rithm succeeds, and the probability of not recognizing a 0 is
at most 1

2ε. First note that the family L contains only sets of
size no larger than d+ 1, so its cardinality cannot exceed∑

0≤i≤d+1

(
n

i

)
≤

∑
0≤i≤d+1

ni =
nd+2 − 1

n− 1
≤ 2nd+1.

Every time we fail to recognize a 0, the size of L grows
by at least 1. So this can happen at most 2nd+1 times. As
long as there is a 1

2ε probability that we fail to recognize a 0,
on average we encounter such a sample within 2

ε steps. And
in fact, in 8(d + 1) log(n/δ)/ε steps, the probability of no
update is (

1− 1

2
ε

)8(d+1) log(n/δ)/ε

<
δ

4nd+1
.

If after some update, the probability that we fail to recog-
nize a 0 drops below 1

2ε, the conditions of the theorem are
already met. Otherwise, after all updates to L, there is still
a 1

2 probability that we encounter a 0 that cannot be recog-
nized, and the algorithm fails.

We now bound the probability of such a global failure. A
union bound over each update immediately gives that after

` > 10(d+1)nd+1 log(n/δ)/ε > 8(d+1)nd+1 log(n/δ)/ε

steps, the probability that we have not finished the 2nd+1

updates is at most δ2 . This implies that after seeing all sam-
ples, with probability at least 1− δ

2 the algorithm succeeds,
in which case the probability that L fails to recognize a 0 of
f∗(X) is at most 1

2ε.

As shown by Balcan and Harvey, PAC-learning Boolean-
Valued submodular functions (i.e. F∗0 ) under product distri-
butions requires only O(n log(n/δ)/ε) samples. One may
question if the nd+1 factor forF∗d is necessary. We prove the
following lower bound, showing that such a factor is neces-
sary for any algorithm that PAC-learns F∗d .
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Theorem 3 (LearningF∗d Requires Many Samples). Fix any
δ > 0, d ∈ N, for large enough n and ε < 1

4

(
1
e

)d+1
, any al-

gorithm that PAC-learns F∗d with parameters (ε, δ) under a
product distribution over 2[n] requires Ω(nd+0.99) samples.
0.99 can be replaced by any number smaller than 1.

Proof sketch. Consider f∗ : 2[n] → {0, 1} drawn from the
following distribution:

• For S where |S| ≤ d, f∗(S) = 0.
• For S where |S| = d+ 1, f∗(S) = 0 w.p. 0.5. Otherwise
f(S) = 1.

• For S where |S| > d + 1, f∗(S) = 0 if for all T ⊆ S
where |T | = d+ 1, f∗(T ) = 0. Otherwise f∗(S) = 1.

It is easy to check that any such function is in SMW-d.
Consider a product distribution over 2[n], where each ele-

ment i ∈ [n] appears with probability (d + 1)/n. One may
show that under this distrbution, with constant probability a
random set has size precisely d + 1. Therefore, to learn f∗,
any algorithm must learn correctly the values of most sets of
size d+ 1. There are about nd+1 such sets in total.

On the other hand, standard concentration bounds guar-
antee that a sample set is almost always not too large. In
fact, with high probability, all the sample sets have cardinal-
ity at most O(d log n). As a result, only O((log n)d+1) sets
of size d+ 1 can be subsets of a sample set. Conditioned on
the event that all sample sets are not too large, since each
sample set can only reveal values of f∗ at the critical sets
it contains, with one sample, the algorithm learns at most
O((log n)d+1) values at critical sets. So with relatively few
samples, almost always the algorithm fails to learn the val-
ues at most critical sets, and therefore does not have enough
information about f∗. The lower bound follows.

The Statistical Subtask: Learning Positive
Functions

In this section we consider learning real-valued functions in
F+
d , the family of monotone, positive, 1-Lipschitz set func-

tions with minimum nonzero value 1 in SMW-d ⊇ SD-d.
we note that these are standard regularity assumptions for
PMAC-learning (Balcan and Harvey 2011).

Concentration with Limited Complementarity
Our most powerful tool for learning F+

d is a strong concen-
tration bound, generalizing Balcan and Harvey’s result for
submodular functions (Balcan and Harvey 2011).

Lemma 2. Let f ∈ SMW-d be a monotone, nonnegative,
1-Lipschitz set function with minimum nonzero value 1. Let
D be a product distribution over 2[n]. For any b, t ≥ 0,

Pr
X∼D

[
f(X) ≤ b− t

√
b
]
· Pr[f(X) ≥ b]

≤ exp(−t2/4(d+ 1)2).

The lemma immediately gives concentration around the
median. Let Med(Z) denote the median of real-valued ran-
dom variable Z. We have:

Corollary 1 (Concentration Around the Median). Let f ∈
SMW-d be a monotone, nonnegative, 1-Lipschitz set func-
tion with minimum nonzero value 1. Let D be a product dis-
tribution over 2[n]. For any t ≥ 0 and X ∼ D,

Pr
X∼D

[
f(X)−Med(f(X)) ≥ t

√
Med(f(X))

]
≤ 2 exp(−t2/4(d+ 1)2), (1)

and

Pr
X∼D

[
Med(f(X))− f(X) ≥ t

√
Med(f(X))

]
≤ 2 exp(−t2/4(d+ 1)2). (2)

Proof. Let b = Med(X) in Lemma 2. We get

Pr
[
f(X) ≤Med(f(X))− t

√
Med(f(X))

]
· Pr[f(X) ≥Med(f(X))]

≤ exp(−t2/4(d+ 1)2).

By definition of medians, we have

Pr[f(X) ≤Med(f(X))] ≥ 1/2.

So,

Pr
[
f(X) ≤Med(f(X))− t

√
Med(f(X))

]
≤ exp(−t2/4(d+ 1)2)/Pr[f(X) ≤Med(f(X))]

≤ 2 exp(−t2/4(d+ 1)2).

Similarly, letting b = Med(X) + t
√

Med(f(X)), we get

Pr
[
f(X) ≥Med(f(X)) + t

√
Med(f(X))

]
≤ 2 exp(−t2/4(d+ 1)2).

We further show that the above concentration bounds
around the median can be translated to concentration around
the mean, by arguing that the mean is always close to the
median:
Lemma 3. Let f ∈ SMW-d be a monotone, nonnegative,
1-Lipschitz set function with minimum nonzero value 1. Let
D be a product distribution over 2[n]. For X ∼ D,

E[f(X)] ≥ 1

2
Med(f(X)),

E[f(X)] ≤Med(f(X)) + 8(d+ 1)
√
Med(f(X)).

Intuitively, these bounds suggest that set functions with
limited complementarity, in spite of much weaker separabil-
ity conditions, have similar concentration behavior to con-
centration of additive set functions from Hoeffding style ar-
guments.

We note that similar results can be obtained through con-
centration of self-bounding functions. See, e.g., (Boucheron,
Lugosi, and Bousquet 2004; Vondrák 2010). In particular,
one may show that every monotone 1-Lipschitz SMW-d
function is (d + 1, 0)-self-bounding. Concentration of self-
bounding functions then yields strong bounds similar to
those we present.
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Algorithm 2: An algorithm that PMAC-learns mono-
tone positive functions with limited complementarity.

Input : ` samples {(Si, f∗(Si))}i∈[`] from a product
distribution D.

Output: with high probability, a mostly approximately
correct estimation f of f∗.

Let µ← 1
`

∑
i∈[`] f

∗(Si).
if µ ≥ 1000(d+ 1)2 log(1/ε) then

Output f(S) = µ
10 .

else
Output f(S) = 1.

PMAC-Learning Algorithm for Positive Functions
Equipped with these strong concentration bounds, we are
ready to present the PMAC-learning algorithm for F+

d .

Theorem 4 (PMAC-Learnability of Positive Functions).
Restricted to product distributions, for any sufficiently small
ε > 0 and δ > 0, Algorithm 2 PMAC-learns F+

d with:

• parameters (ε, δ),
• approximation factor α = O((d+ 1)2 log(1/ε)), and
• number of samples ` = 10n2 log(1/δ).

When E[f∗(X)] ≥ c(d + 1)2 log(1/ε) for sufficiently large
c, the approximation factor improves to 20.

Proof sketch. According to Hoeffding’s inequality, with
high probability the empirical mean µ is an estimation of
E[f∗(X)] with constant additive error. We then proceed by
two cases:

1. µ is large enough. This means E[f∗(X)], and by
Lemma 3, Med(f∗(X)), are also large enough. So µ is
multiplicatively a good estimation of Med(f∗(X)), and
Corollary 1 therefore applies approximately around µ. It
is then sufficient to output a constant fraction of µ. The
approximation factor α in this case is a constant.

2. µ is relatively small. This means E[f∗(X)], and by
Lemma 3, Med(f∗(X)), are relatively small. It follows
from Corollary 1 that with high probability, f∗(X) is
close enough to 1. It is then sufficient to output 1, since
f∗ ∈ F+

d is positive. The approximation factor α in this
case is O((d+ 1)2 log(1/ε)).

Putting Everything Together: Learning
General Functions

Now we handle the general case: PMAC-learning Fd, the
family of monotone, nonnegative, 1-Lipschitz set functions
with minimum nonzero value 1 in SMW-d ⊇ SD-d. With
Theorems 2 and 4 at hand, it is natural to combine Algo-
rithms 1 and 2, in the hope of taking care of both the combi-
natorial and the statistical aspects of the problem simultane-
ously. We prove, not too surprisingly, that such a combina-
tion PMAC-learns Fd.

Algorithm 3: An algorithm that PMAC-learns mono-
tone nonnegative functions with limited complementar-
ity.

Input : ` samples {(Si, f∗(Si))}i∈[`] from a product
distribution D.

Output: with high probability, a mostly approximately
correct estimation f of f∗.

Let µ← 1
`

∑
i∈[`] f

∗(Si).
if µ ≥ 1000(d+ 1)2 log(1/ε) then

Output f(S) = µ
10 .

else
Let L ← ∅.
for i ∈ [`] do

if f∗(Si) = 0, and there exists a subset T of Si
with |T | ≤ d+ 1, such that T /∈ L then

for Every subset U of Si with |U | ≤ d+ 1
do

Let L ← L ∪ {U}.

Output f , where f(S) = 0 if for any subset T of S
with |T | ≤ d+ 1, T ∈ L, and f(S) = 1 otherwise.

Theorem 5 (PMAC-Learnability of General Functions).
Restricted to product distributions, for sufficiently small ε >
0 and δ > 0, Algorithm 3 PMAC-learns Fd with:

• parameters (ε, δ),
• approximation factor α = O((d+ 1)2 log(1/ε)), and
• number of samples ` = 10n2 log(1/δ) + 10(d +

1)nd+1 log(n/δ)/ε.

When E[f∗(X)] ≥ c(d + 1)2 log(1/ε) for sufficiently large
c, the approximation factor improves to 20, and the number
of samples improves to ` = 10n2 log(1/δ).

Proof sketch. Again, consider the two cases:

1. µ is large enough. Lemma 3 and Corollary 1 establish
the same strong concentration around µ, so it is sufficient
to output a constant fraction of µ. In this case we do not
need samples in the next phase, so the number of samples
needed is 10n2 log(1/δ). And for similar reasons, the ap-
proximation factor is 20.

2. µ is relatively small. Because f∗ is now nonnegative, we
need to consider 0’s of f∗. When our estimation is wrong,
it can be either (1) f(S) = 1 and f∗(S) = 0, or (2)
f(S) = 1 and f∗(S) is too large. By adapting Theo-
rem 2 we can show that situation (1) happens with prob-
ability at most 1

2ε, and by Theorem 4, situation (2) hap-
pens with probability at most 1

2ε. The overall probability
of a wrong estimation is at most ε. In this case we need all
` = 10n2 log(1/δ)+10(d+1)nd+1 log(n/δ)/ε samples,
and the approximation factor is O((d+ 1)2 log(1/ε)).
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Figure 1: Distributions of f(X) when the degree of complementarity is 0, 1, 2, 5, 10, and 15.

Note that since Fd subsumes F∗d , Theorem 3 directly
implies the same information theoretical lower bound for
PMAC-learning Fd, complementing Theorem 5. Formally:

Corollary 2 (Learning Fd Requires Many Samples). Fix
any δ > 0, d ∈ N, for large enough n and ε < 1

4

(
1
e

)d+1
,

any algorithm that PAC-learns Fd with parameters (ε, δ)
under a product distribution over 2[n], with any approxi-
mation factor, requires ω(nd+0.99) samples. 0.99 can be re-
placed by any number smaller than 1.

We note again, that since the SMW hierarchy is strictly
more expressive than the SD hierarchy (Proposition 1), all
our learnability results for functions in F∗d , F+

d and Fd ap-
ply to functions with the same set of requirements but with
SMW-d replaced by SD-d.

Numerical Simulations
We conduct numerical simulations to investigate the empir-
ical concentration of set functions with limited complemen-
tarity. Unfortunately, there is no efficient way known to gen-
erate set functions in SMW-d or SD-d. Instead, we sample
functions from the Maximum-over-Positive-Hypergraphs
(MPH) hierarchy (Feige et al. 2015), which is another well-
known measure of complementarity. It has also been used
to study the equilibrium behavior of agents in certain auc-
tion protocols (Feige et al. 2015). In some sense, the exper-
imental results with MPH functions should be considered
a complement to our theoretic results, as it sheds light on
the statistical behavior of functions considered to have lim-
ited complementarity according to another commonly used
measure, even if Theorem 5 does not always provide strong
guarantees for them.

The MPH hierarchy builds on the concept of hypergraphs.
Roughly speaking, a hypergraph can be viewed as a set func-
tion, where the value of a set is the sum of the weights of hy-
peredges that the set contains. A function is in MPH-(d+1),
if there exists a finite number of hypergraphs containing only
positively weighted hyperedges of size at most (d+ 1), such
that the value of the function at any set is the maximum value
of the set in these hypergraphs. MPH-0 is exactly the class
of functions that are fractionally subadditive.

In our experiments, we fix the cardinality of the ground
set to be n = 1000 and the number of hypergraphs to be
10. In each hypergraph, we choose uniformly at random 100
disjoint sets of size chosen from {1, 2, . . . , d+1} uniformly
at random. For each degree of complementarity d, we sam-
ple a function f in MPH-d in the way described above, draw
1000 sample sets where each element appears with probabil-
ity 0.5, and plot the empirical distribution of f(X).

As can be seen from Figure 1, the degradation of con-
centration is remarkably smooth as d grows from 0 to 15.
Even when d = 15, most samples still lie between 6 and 14,
where the multiplicative gap is only about 2.33. The experi-
mental results suggest that set functions in the real world are
likely to exhibit decent concentration, since it is intuitively
unlikely that more than 15 items are involved, altogether as
complements to each other. With strong concentration like
this, anything close to the (empirical) mean of the function
value at a random set is a good approximation of the value
at any set. In such cases, it is reasonable to believe that our
learning algorithm works well with less samples and better
approximation ratios than what the theory guarantees.
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