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Abstract

Code clone is common in software development, which usu-
ally leads to software defects or copyright infringement. Re-
searchers have paid significant attention to code clone detec-
tion, and many methods have been proposed. However, the
patterns for generating the code clones do not always remain
the same. In order to fool the clone detection systems, the
plagiarists, known as the clone creator, usually conduct a se-
ries of tricky modifications on the code fragments to make
the clone difficult to detect. The existing clone detection ap-
proaches, which neglects the dynamics of the “contest” be-
tween the plagiarist and the detectors, is doomed to be not
robust to adversarial revision of the code. In this paper, we
propose a novel clone detection approach, namely ACD, to
mimic the adversarial process between the plagiarist and the
detector, which enables us to not only build strong a clone
detector but also model the behavior of the plagiarists. Such
a plagiarist model may in turn help to understand the vulner-
ability of the current software clone detection tools. Experi-
ments show that the learned policy of plagiarist can help us
build stronger clone detector, which outperforms the existing
clone detection methods.

Introduction
Software clones are usually introduced when people reuse
the code by copy-paste operations (Roy and Cordy 2007) to
shorten software development time. To avoid the infringe-
ment of copyright, they intend to camouflage the reused
code. Such code clones not only violate the intellectual prop-
erties of the software being cloned but also lead to the injec-
tion of software defects easily due to the lack of detailed
knowledge about the cloned code. Thus, software clone de-
tection, aiming to find those plagiarized code automatically
has attracted significant attention.

Many clone detection models have been proposed, most
of them hand-craft certain similarity between two code frag-
ments by exploiting either lexical information or syntac-
tical information of the code. For example, NICAD (Roy
and Cordy 2008) considers the similarity of code frag-
ments in lexical level, Deckard (Jiang et al. 2007) com-
putes the code syntax similarity based on Abstract Syntax
Tree. Recent studies suggest to learn semantic features from
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the code pairs for detecting software clones. For example,
CDLH (Wei and Li 2017) formalizes the clone detection as a
supervised learning to hash problem and learns deep features
for functional clone detection, CDPU (Wei and Li 2018) ad-
dresses the clone detection in a positive-unlabeled (PU) per-
spective to leverage the unlabeled data for functional feature
learning.

All of these approaches have shown their effectiveness
in software clone detection. However, the clone detection
is not a task in a closed and static environment. The pla-
giarists can easily acquire the techniques of clone detection
tools, and by studying the tools they can camouflage the
cloned code with particularly designed strategies. Therefore,
the software clone detectors may have to deal with new pat-
terns of code cloning. The current data for training the clone
detector is always insufficient to identify the new clone pat-
terns, and the clone detector is doomed to be not robust to
such adversarial revision of the code.

In fact, there exists a contest between the plagiarists and
the clone detectors, where the former will modify the cloned
code in order to fool the detectors, and the latter tries to learn
the patterns of the modifications made by the plagiarists.
Only if such contest is considered in learning the clone de-
tector, the model can be robust to adversarial code revisions
in real world.

In this paper, we propose a novel Adversarial Clone De-
tection approach, namely ACD, to mimic the adversarial
process between the plagiarist and the detector. The detec-
tor in ACD is an AST-based LSTM to learn the pattern
of the code clones. Unlike the existing clone detection ap-
proaches, ACD also models the plagiarist based on rein-
forcement learning, which tries to camouflage the cloned
code to make the code pairs appear to be dissimilar and dif-
ficult to be detected through a series modifications on the
original source code learned using policy gradient (Sutton
et al. 2000) and Monte-Carlo search. The plagiarist model
and detector model are trained adversarially (Goodfellow et
al. 2014), where the generated code clones are used to im-
prove the robustness of the detector while the detection re-
sults are used in turn to find better policy for fooling the
detector. ACD can not only build a strong clone detector but
also model the behavior of the plagiarists. Such a plagiarist
model may in turn help to understand the vulnerability of the
current software clone detection tools.
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Experiments on software clone detection benchmarks in-
dicates that our approach not only can improve the overall
detection performance by identifying the clone pairs with
some camouflage which are not easily detected by existing
clone detection approaches, but also provide some insight on
the behavior of the plagiarist, which may help to understand
the potential vulnerability of the current clone detectors.

The contribution of our paper lies in three folds:

• We are the first to highlight dynamic nature of software
clone detection and the importance of explicitly modeling
the contest between the plagiarist and the detector.

• We propose novel adversarial clone detection approach,
namely ACD, which is able to mimic the adversarial pro-
cess in software clone detection by simultaneously learn-
ing the a plagiarist model and a detector model.

• The proposed approach can not only build a strong soft-
ware clone detector which is capable to identify the pla-
giarized code fragments but also can provide some insight
on the vulnerability of the current software clone detec-
tion tools from the plagiarist model.

The rest of the paper is organized as follows. We first
present the ACD approach, and then we report the experi-
mental results. Finally, we discuss some related work and
conclude the paper.

Adversarial Clone Detection
Given n code fragments {C1, · · · , Cn} where Ci is the i-th
raw code fragment, and pairwise labels to indicate whether
two code fragments belong to a clone pair of not: yi,j = 1 if
(Ci, Cj) is a clone pair, yi,j = −1 if not, and yi,j = 0 if their
relation is unlabeled. Moreover, we use Ci∗ to indicate the
modified code after implementing a series of changes on Ci.
Our goal is to learn a plagiarist Pθ that can produce decep-
tive cloned code, and train a detector Dφ which maps any
pairs of code fragments to {−1, 1} to decide whether they
belong to a clone pair. Figure 1 summarizes the overall ar-
chitecture of ACD. The detectorDφ is trained by the mixing
data from original code ({C1, · · · , Cn}) and modified code
({Ci1∗ , · · · , Cim∗}). At the same time, the plagiarist Pθ is
updated by employing a policy gradient and MC search on
the basis of the expected end reward coming from the detec-
tor Dφ. As the detector works on the pairwise data, we use
fn to represent the true cloned code that is predicted as non-
cloned one which means the cloned code generated by our
plagiarist can fool the detector Dφ. The reward is estimated
by the false negative rate FNR, and the specific formulation
is given in the next subsection.

The Plagiarist Model
The purpose of plagiarist is to build a model that can act
like the real-world plagiarists to produce different cloned
code that implement the same functionality. To the best of
our knowledge, changing the structure of the code is likely
to fool the clone detection model (Mann and Frew 2006).
There are three operations to alter the structure of the code,
insertion, replacement and deletion, however deletion may
change the functionality when some meaningful lines are
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Figure 1: The architecture of ACD.

deleted, therefore, we choose insertion and replacement as
optional changes.
• Insertion: add redundant always-true if statement;
• Replacement: extract judging condition and assign it to

a new boolean variable, replace the judging condition by
this variable.

The specific operations are shown in Figure 2. Additionally,
to explore the effect of position where we modified the code,
we find eight potential positions to do the changes (as shown
in Table 1) via constructing ASTs of the dataset, these posi-
tions are very common in the structure of code. The combi-
nation of different changes and positions constitutes a mod-
ification spaceM which contains sixteen distinctive modi-
fications (as shown in Figure 3).

+: inserted line
- : deleted line

{ int i = 0;
int j = 1;

+ boolean if_flag = true;
+ if ( if_flag ) {
+ print( “hello world !” ); }

if ( i == 0 ) {
print( “ i == 0 ” ); }}

Insertion

{ int i = 0;
+ boolean logic_flag = i == 0;

int j = 1;
- if ( i == 0 ) {
+ if ( logic_flag ) {

print( “ i == 0 ” ); }}

{ int i = 0;
int j = 1;
if ( i == 0 ) {

print( “i == 0 ” ); }
}

Replacement

Figure 2: Two types of change: insertion and replacement.

Table 1: Positions to do changes in JAVA and C. Decl stands
for Declaration.

JAVA For Decl Do While Try Assignment Return If
C For Decl Do While Func Call Assignment Return If

In order to generate interpretable cloned code that can
be compiled correctly and keep the same functionality, we
define some rules to make modifications. First, when we
build statement trees from code, we mark the tree nodes by
whether it can be the position to do change or not. For ex-
ample, as shown in Figure 4, we cannot do modifications

5814



...
+ boolean flag = true;
+ if ( flag ) {
+ print( “hello world” ); }

for ( int i =0 ; i < 10 ; i++ ) {
... } ...

...
+ boolean flag = true;
+ if ( flag ) {
+ print( “hello world” ); }

int i =0 ; ...

...
+ boolean flag = true;
+ if ( flag ) {
+ print( “hello world” ); }

do {
... } while ( boolean )

...

...
+ boolean flag = true;
+ if ( flag ) {
+ print( “hello world” ); }

while ( boolean ) {
... } ...

...
+ boolean flag = true;
+ if ( flag ) {
+ print( “hello world” ); }

try { ...
} catch ( Exception e ) {

... } ...
(insertion, try)

...
int i = 0; …

+ boolean flag = true;
+ if ( flag ) {
+ print( “hello world” ); }

i = 1;
...

...
+ boolean flag = true;
+ if ( flag ) {
+ print( “hello world” ); }

return 0;
...

...
+ boolean flag = true;
+ if ( flag ) {
+ print( “hello world” ); }

if ( boolean ) {
...

} ...

...
+ boolean flag = logic_condition;

for ( int i =0 ; i < 10 ; i++ ) {
... } ...

- if ( logic_condition ) {
+ if ( flag ) {

...} …

(replacement, for)

...
+ boolean flag = logic_condition;

int i = 0;
...

- if ( logic_condition ) {
+ if ( flag ) {

... } …

...
+ boolean flag = logic_condition;

do {
... } while ( boolean ) ...

- if ( logic_condition ) {
+ if ( flag ) {

... } …

...
+ boolean flag = logic_condition;

while ( boolean ) {
... } ...

- if ( logic_condition ) {
+ if ( flag ) {

... } …

...
+ boolean flag = logic_condition;

try { ...
} catch ( Exception e ) { ... } ...

- if ( logic_condition ) {
+ if ( flag ) {

... } …

(replacement, try)

...
int i = 0; …

+ boolean flag = logic_condition;
i = 1; …

- if ( logic_condition ) {
+ if ( flag ) {

... } …

…
+ boolean flag = logic_condition;

return 0;
…

- if ( logic_condition ) {
+ if ( flag ) {

... } …

…
+ boolean flag = logic_condition;

if ( boolean ) {
... } …

- if ( logic_condition ) {
+ if ( flag ) {

... } …

(insertion, declaration ) (insertion, do )(insertion, for) (insertion, while )

(insertion, assignment) (insertion, return) (insertion, if )

(replacement, declaration) (replacement, do) (replacement, while)

(replacement, assignment) (replacement, return) (replacement, if)

Figure 3: The above figure shows the sixteen modifications combined by different types of change and positions in JAVA.

before the “else” statement, if we apply insertion at “else”
statement position, it will change the code meaning which is
contrary to our intention, and if we apply replacement at the
same position, it will cause compiling error directly. Hence,
these nodes will be marked as unchangeable when we build
the statement trees. Secondly, considering the judging condi-
tion statement may contain some variables, in order to keep
the functionality unchanged, we have to ensure that the dec-
laration of the new boolean variable which replaces the judg-
ing condition inserted into a position after the last assign-
ment of these variables. Besides, to avoid compiled error,
the new boolean variable should be inserted into a position
before the judging condition statement; After we determine
the interval where the new boolean variable can be inserted,
we just need to choose a position that allowed to place it.

In the process of generating cloned code, the original code
Ci is considered to be the initial state s0, and the modified
code after t step is referred to as state st. At each step, ACD
first builds a statement tree from current code (as shown in
Figure 5), then the plagiarist Pθ offers the probability of
which change to be chosen and where it is placed accord-
ing to the tree, once the modification has been chosen, we
apply it on the current code to acquire a new code Cti∗ . After
the T step, the completely modified cloned code CTi∗ will be
generated.

Insertion

{ boolean flag = true;
int i = 0;
if ( flag ) { print( “ture” ); }

+ boolean if_flag = true;
+ if ( if_flag ) {
+ print( “hello world !” ); }

else { print( “false” ); }
if ( i == 0 ) {

print( “i = 0” ); }}

{ boolean flag = true;
int i = 0;
if ( flag ) {

println( “ture” ); }
+ boolean logic_flag = i == 0;

else {
print( “false” ); }

- if ( i == 0 ) {
+ if ( logic_flag ) {

print( “i = 0” ); }}

{ boolean flag = true;
int i = 0;
if ( flag ) {

print( “ture” ); }
else {

print( “false” ); }
if ( i == 0 ) {

print( “i=0” );}}

Replacement

Figure 4: Wrong position to do changes.

{ int count=0;
do {

int sum= 0;
for ( int j = 0 ; j < 10; j++ )

sum = sum+ j ;
count = count+1;

} while ( count < 10); }

original code statement tree
root

decl do

decl for assign

assign

Figure 5: Build statement tree from the original code.
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The Detector Model
In this paper, we reuse the AST-based LSTM in CDLH as
our discriminative model since it can learn the latent features
that characterizing the functionality of the code by simulta-
neously considering both the lexical information and syn-
tactical structure of code fragments. Specifically, the detec-
tor Dφ learns a non-linear representation mapping φ which
transforms code fragments {Ci}n to d-dimensional repre-
sentation {zi}n.

During the training process, we randomly pick a batch
of code fragments {Ci1, · · · , Cim}, where i1, · · · , im ∈
{1, 2, · · · , n} as the input of plagiarist, after that the corre-
sponding cloned code {Ci1∗ , · · · , Cim∗} are produced. The
cloned code will keep the relation that the original one has
(i.e. yi∗,j = yi,j , yi∗,j∗ = yi,j ), meanwhile the modified
and original code will be labeled as clone pair, set yi∗,i = 1
and the detector will be trained on the hybrid new dataset.

ACD via Policy Gradient
Since the detector only evaluate the entire generated cloned
code, we follow the (Sutton et al. 2000), when we can not
acquire an intermediate reward, the goal of plagiarist (pol-
icy) Pθ(mt|Ct−1i∗ ) is to generate a cloned code from the start
state s0 to maximize its expected end reward.

J(θ) = E[RT |s0, θ] =
∑

mT∈M
Pθ(mT |s0)·QPθDφ(s0,mT ),

(1)
where RT is the reward for a completely modified code
given by the detector Dφ. QPθDφ(s, a) is the action-value
function which is the expected accumulative reward. Ad-
ditionally, we use the REINFORCE algorithm (Williams
1992) to estimate the action-value function. As the detector
works on the pairwise data, we use FNR as the reward.

FNR =
fn

(tp+ fn)
, (2)

where fn represents the number of code Cj that is mis-
labeled as non-cloned with generated code by detector
Dφ(Ci∗ ,Cj), j ∈ {1, 2, · · · , n}, and tp stands for the number
of code that is labeled as cloned pair correctly. Naturally, we
have:

QPθDφ(a = mT , s = CT−1i∗ ) = FNR. (3)

As the detector can only provide a reward for a com-
pletely modified code, and we not only care about whether
the modification we applied at present is best, but also
should consider the future outcome it brings. Thus, we ap-
ply Monte Carlo search with a roll-out policy Pβ to sam-
ple the unknown last T − t modifications on the basis
of the current state. In our experiment, the roll-out pol-
icy is set the same as the plagiarist. After N-time Monte
Carlo search, we represent the N modified code of origi-
nal code Ci as {C1

i∗ , · · · , CNi∗ }, where Cni∗ is the code after
operating Mn

1:T = {mn
1 , · · · ,mn

T } modifications. Accord-
ingly, we represent the FNR of N modified code as follow:
{FNR1, · · · , FNRN}. We run the roll-out policy starting
from the current state till the end of the sequence for N times

to get a batch of output samples. Thus, we have:

QPθDφ(s = Ct−1i∗ , a = mt) =

 1
N

N∑
n=1

FNRn, t < T,

FNR, t = T.
(4)

where, we find that when there is no intermediate reward,
we will iteratively generate modifications starting from state
s′ = Ct−1i∗ and roll out to the end.

It is beneficial to use the FNR from detector as a reward,
because when detector is updated dynamically, the FNR
will reflect the update and it can further improve the plagia-
rist iteratively. Once we generate a set of cloned code (size
is m), we will add it to the original training dataset (size is n)
and retrain the detector model as follows (Wei and Li 2017):

min
φ

m+n∑
i=1

m+n∑
j=1

|yi,j |[yi,j −
1

d
φ(Ci)φ(Cj)]

2. (5)

We update the plagiarist once acquiring a new detector.
The long-term reward can be maximized directly via op-
timizing the parametrized policy. Following (Sutton et al.
2000), the gradient of the objective function J(θ) w.r.t the
plagiarist’s parameters θ can be derived as

∇θJ(θ) =
T∑
t=1

EM1:t−1∼Pθ [
∑

mt∈M
∇θPθ(mt|Ct−1i∗ )

·QPθDφ(C
t−1
i∗ ,mt)].

(6)

Using likelihood ratios (Glynn 1990; Sutton et al. 2000; Yu
et al. 2017), we build an unbiased estimation for Eq. (6):

∇θJ(θ) '
T∑
t=1

∑
mt∈M

∇θPθ(mt|Ct−1i∗ ) ·QPθDφ(C
t−1
i∗ ,mt)

=

T∑
t=1

Emt∼Pθ(mt|Ct−1
i∗ )[∇θ logPθ(mt|Ct−1i∗ )

·QPθDφ(C
t−1
i∗ ,mt)]

(7)

whereM1:t−1 = {m1, · · · ,mt−1} is the modifications have
been applied on code Ci, and the Ct−1i∗ is observed cloned
code after these modifications. Given the knowledge that the
expectation E[·] can be approximated by sampling methods,
we can update the plagiarist’s parameters as:

θ ← θ + αh∇θJ(θ), (8)

where αh ∈ R+ represents the h-th step’s learning rate.
In summary, Algorithm 1 shows full details of the pro-

posed ACD. The plagiarist and the detector are trained in
turns. We use detector to guide the plagiarist to produce
more deceptive cloned code, and in order to keep pace with
the progress of plagiarist, the detector needs to be trained
with training dataset mixed with new generated cloned code.
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Algorithm 1 Adversarial Clone Detection

Require: Pθ: the plagiarist model; Pβ : the roll-out policy;
Dφ: the detector model

1: Initialize Pθ, Dφ with random weights θ, φ.
2: β ← θ
3: Pre-train Dφ

4: repeat
5: for p-steps do
6: Generate a sequence of modifications M1:T =

(m1, · · · ,mT ) ∼ Pθ
7: for t in 1 : T do
8: Compute Q(a = mt, s = Ct−1i∗ ) by Eq.(4)
9: end for

10: Update the plagiarist’s parameters via policy
gradient Eq.(8)

11: end for
12: for d-steps do
13: Select m code fragments from dataset and feed

them into the plagiarist, mix the generated cloned code
with the dataset.

14: Train detector Dφ for k epochs by Eq.(5)
15: end for
16: β ← θ
17: until ACD converges

Experiment
In this section, we conduct experiments on real-world
datasets to certify the effectiveness of ACD. We compare
ACD with the state-of-the-art clone detection approaches
together with self-training model to show the improvement
that the ACD can bring. Besides, we design experiments to
explore which kind of clone the detector is vulnerable to,
finally, we study the performance variations with different
parameter settings.

Experimental Setting
We conduct our experiments on two real-world datasets cov-
ering different programming languages: BigCloneBench, a
widely used benchmark dataset for clone detection (Sva-
jlenko et al. 2014) (with JAVA code fragments) and OJClone
from a pedagogical programming open judge (OJ) system 1

(with C code fragments).
BigCloneBench contains projects coming from 25,000

systems, covers 10 functionalities including 6,000,000 clone
pairs and 260,000 non-clone pairs. All labeled clone types
are given by domain experts. We discard code fragments
without any tagged true or false clone pairs and use the re-
maining 9,134 code fragments.

OJClone (Mou et al. 2016) is consisted of various kinds
of source code submitted by students for 104 programming
problems. Since we do not have experts to label the data in
OJClone, we consider two different source code as a clone
pair when they solve the same programming problem be-
cause they implement the same functionality. In the experi-
ment, we select the first 15 programming problems and for

1http://programming.grids.cn

Table 2: Overall information of datasets

Datasets Language code fragments AVG
length

% data la-
beled

BigCloneBench JAVA 9,134 28.60 0.021
OJClone C 7,500 35.25 0.026

each problem there are 500 source code files.
For BigCloneBench, a code fragment is a method, and for

OJClone a code fragment is a file. We use javalang 2 to parse
JAVA code to ASTs, and apply pycparser 3 to parsing C files
to ASTs. Besides, to obtain word embeddings for tokens of
code fragments, we use word2vec 4 to generate word embed-
ding of length 100 for both datasets. The overall information
for dataset is shown in Table 2. We use precision (P), recall
(R), F1 values as performance measurement.

Performance of Clone Detection
In this section, we compare our proposed ACD with follow-
ing the state-of-the-art clone detection approaches and self-
training model to verify its effectiveness as a clone detection
tool.

• Deckard (Jiang et al. 2007) clone detection model based
on syntax

• SourcererCC (Sajnani et al. 2016) a popular lexical based
clone detection

• CDLH (Wei and Li 2017) a supervised clone detection
model which learns deep features in an end-to-end way

The overall precision, recall and F1 are displayed in Table
3. It is easy to find that ACD outperforms the other clone
detection methods in terms of F1. We can see that ACD
improves the recall a lot, considering that the data in Big-
CloneBench is labeled by experts, they just report the clone
pairs that they happen to discover, when the clone pair does
not appear or is not labeled as clone by experts, the other
approaches are not capable to recognize them while ACD
trained by the plagiarist can. As for dataset OJClone, it con-
sists of code submitted by students who used to reuse the
same code snippet with slight modifications like classical
algorithm bubble sort and so on. These diverse lexical or
syntactical modifications make the clone code hard to be de-
tected by other approaches. However, with the help of the
plagiarist, our clone detection model can cover more clone
types, accordingly, the recall will improve a lot. Among the
compared clone detection methods, the CDLH use almost
the same deep learning model to detect clone pairs with
ACD, we can observe that it beats other clone detection
model, but its F1 value is still not as good as ACD’s, mean-
ing that the plagiarist can really help to build a strong clone
detection model.

Apart from the state-of-the-art clone detection models,
we compare the ACD with Self-training approach. In Self-
training model, we still use the same detector as ACD, but at

2https://github.com/c2nes/javalang
3https://pypi.python.org/pypi/pycparser/
4http://radimrehurek.com/gensim/models/word2vec.html
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each epoch, we randomly pick a batch of unlabeled pairs and
use the detector to mark them, then we retrain the detector
on the new training set and repeat the above operations. The
performance of Self-training is shown in Table 3. In Big-
CloneBench, its precision is very close to 1, we can assume
that the label it predicted is correct, but its F1 still cannot
compare with ACD, which means the improvement brought
by ACD not only thanks to the increase in the amount of la-
beled data, the more important reason lies in the benefit from
the adversarial training.

Table 3: Precision, recall and F1 comparison of all

Approaches BigCloneBench OJClone
P R F1 P R F1

CDLH 0.92 0.74 0.82 0.47 0.73 0.57
SourcererCC 0.85 0.02 0.03 0.1 0.75 0.18
Deckard 0.93 0.02 0.03 0.99 0.05 0.10
Self-training 0.96 0.62 0.76 0.17 0.20 0.19
ACD 0.98 0.88 0.92 0.73 0.73 0.73

The vulnerability of the current software clone
detection tools
In this section, we design experiments to show which kind
of clone may fool the detector. Firstly, we train a detection
model on original dataset and then apply it to the newly gen-
erated clone pairs. Figure 6 shows the generated code Ci∗ ,
and the code written in black is the original one Ci, we can
find that compared to the original one, the generated code
does not have many differences in lexical. But when we use
CDLH to detect clone pairs about Ci∗ , about 459 clone pairs
are labeled as non-clone incorrectly and they can be labeled
properly before changed, the total number of clone pairs of
this code is 1145. It is hard to explain from a lexical per-
spective, but when we build the AST of these two code, we
can find that they differ a lot which means the alteration of
structure is really helpful to camouflage clone code and this
kind of clone is hard to detect for current software detection
tools.

The Figure 7 displays a clone pair we find from the
original dataset, it contains the similar clone type that pro-
duced by the plagiarist. Compared to code 2, the code 1 has
two more insertions, we apply CDLH and ACD to detect
them respectively, CDLH mislabels them as a non-clone pair
while ACD marks it correctly, it also proves the traditional
detection model is vulnerable to such kind of clone, while
the ACD can handle it by understanding the behavior of the
plagiarists.

Table 4, 5 gives the probabilities that the plagiarist learned
to build deceptive clone code. We can see that the two
clone types have the comparable ability to fool the detec-
tor. However when it comes to positions, the probabilities
differ greatly. In JAVA, when we do modifications at con-
trol statements like “Do” and “While”, it most likely to de-
ceive the detector, whereas in C, the most deceptive posi-
tion is “FuncCall” and “Decl”. This consequence is inter-
pretable, in JAVA, the structures of control statements are
usually more complicated than others, so they are the most

{
+        boolean if_flag_add_by_prob1=true;
+       if(if_flag_add_by_prob1){
+      if_flag_add_by_prob1=!if_flag_add_by_prob1;
+      System.out.println("hello world-1");
+      }

try {
MessageDigest algorithm = MessageDigest.getInstance(this.algorithm);
algorithm.update(value.getBytes());
byte[] digest = algorithm.digest();
BigInteger hashing = new BigInteger(+1, digest);

+ boolean if_flag_add_by_logic0= lengthBits != digest.length * 8;
- if (lengthBits != digest.length * 8) {
+          if (if_flag_add_by_logic0) {

BigInteger length = new BigInteger("2");
length = length.pow(lengthBits);
hashing = hashing.mod(length); }

return hashing;
} catch (NoSuchAlgorithmException e) {

throw new IllegalArgumentException("Error with algorithm", e); 

insertion

replacement

Figure 6: Clone type produced by the plagiarist that is hard
to detect.

deceptive positions, while in C, by analyzing the code from
dataset, we find that the “Decl” usually appears along with
“FuncCall”, like “int a = func(0)”, and when we build the
ASTs of a C code file, the AST of the called function is set
as the children node of “FuncCall”, so modifying code at
these positions may bring pretty good effect.

Table 4: Probabilities of modifications to be chosen.

Language Insertion Replacement
JAVA 0.54 0.46

C 0.51 0.49

Table 5: Probabilities of position to be chosen. F, D, W, T, A,
R, I, FC stand for For, Declaration, While, Try, Assignment,
Return, If and Func Call statement.

F D Do W T/FC A R I
JAVA 0.1 0.12 0.19 0.27 0.07 0.09 0.06 0.1

C 0.11 0.24 0.08 0.1 0.2 0.12 0.06 0.09

Sensitivity to Hyper-Parameters
In previous experimental settings, we set the batch size of
generated cloned code added to training set 512, and the
number of changes applied is 8. Now, we explore how dif-
ferent batch size and number of changes affect on clone
detection performance, measured by F1. Figure 8, 9 show
the F1 values of ACD with regard to different batch size
and number of changes respectively. The batch size ranges
from 16 to 512 and the change number ranges from 1 to 8.
The Figure 8 shows that the overall performance of ACD is
not sensitive to the batch size of generated cloned code in
BigCloneBench, while the F1 goes upward generally in OJ-
Clone. Moreover, we can find that the performance doesn’t
change a lot in general over different numbers of applied
changes in this range from Figure 9.
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code 1 code 2

{

final FileInputStream input = new FileInputStream(in);

try {

final FileOutputStream output = new FileOutputStream(out);

try {

final byte[] buf = new byte[4096];

int readBytes = 0;

while ((readBytes = input.read(buf)) != -1) {

output.write(buf, 0, readBytes);

}

} finally {

output.close();

}

} finally {

input.close();

}

}

{

if ( !isNewFile() ) { return; }

if ( !folder.exists() ) { folder.mkdir(); }

File dest = new File(folder, name);

try {

FileInputStream in = new FileInputStream(currentPath);

FileOutputStream out = new FileOutputStream(dest);

byte[] readBuf = new byte[1024 * 512];

int readLength;

long totalCopiedSize = 0;

boolean canceled = false;

while ((readLength = in.read(readBuf)) != -1) {

out.write(readBuf, 0, readLength); }

in.close();

out.close();

if (canceled) {

dest.delete();

} else {

currentPath = dest;

newFile = false; }

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace(); } }

insertion

insertion

Figure 7: A clone pair from dataset which have the similar clone type produced by the plagiarist.

Figure 8: The influence of batch size on ACD.

Figure 9: The influence of number of changes on ACD.

Related Work
Software Clone Detection
Copying code fragments and then reuse them by pasting
with or without little modifications are common activities
in software development and this behavior is called code
cloning (Roy, Cordy, and Koschke 2009). Since code clone
may easily lead to the injection of software defects or copy-
right infringement (Brixtel et al. 2010; Baker 1995), soft-
ware clone detection, aiming to identify similar code frag-

ments, has attracted significant attractions in recent years.
Many clone detection approaches have been studied to find
clones automatically so far. Deckard (Jiang et al. 2007) in-
troduces AST (Abstract Syntax Tree) to measure the struc-
ture similarity of two code fragments. CCFinderX (Kamiya,
Kusumoto, and Inoue 2002) and SourcererCC (Sajnani et al.
2016) treat source code as bags of tokens and compare sub-
sequences to detect clones. NICAD (Roy and Cordy 2008)
applies slight transformations to code and measures simi-
larity by comparing sequences of text. CDLH (Wei and Li
2017) formalizes the software clone detection as a super-
vised learning to hash problem and learns supervised deep
features in an end-to-end way for software functional clone
detection. Recently, CDPU (Wei and Li 2018) has been pro-
posed to formalize the clone detection task as a Positive-
Unlabeled (PU) learning problem and leverage the unlabeled
data to improve the detection performance.

Sequence Generative Model

Generative models have recently drawn significant attention,
and much effort has been made to generate a structured se-
quence. As pointed out by (Bachman and Precup 2015), the
sequence data generation can be formulated as a sequen-
tial decision making process which can be potentially solved
by reinforcement learning techniques. For most practical se-
quence generation tasks, e.g. machine translation (Sutskever,
Vinyals, and Le 2014), the reward signal is meaningful only
for the entire sequence, and in the game of Go (Silver et al.
2016), the reward signal is only set at the end of the Game. In
those cases, state-action evaluation methods such as Monte
Carlo (tree) search have been adopted (Browne et al. 2012).
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Conclusion
In this paper, we deal with the software clone detection prob-
lem by exploiting the contest between the plagiarist and the
detector, which enables us to not only build strong a clone
detector but also model the behavior of the plagiarists. Ac-
cording to human prior knowledge, the plagiarist is able
to construct interpretable cloned code without altering the
functionality, and such a plagiarist model may in turn help
to understand the vulnerability of the current software clone
detection tools. The contest with the plagiarist drives the de-
tector to achieve better performance. Experiments on soft-
ware clone detection benchmarks indicate that the learned
policy of plagiarist can help us build stronger clone detector,
which outperforms the existing clone detection methods.
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