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Abstract

Data features usually can be organized in a hierarchical struc-
ture to reflect the relations among them. Most of previous
studies that utilize the hierarchical structure to help improve
the performance of supervised learning tasks can only han-
dle the structure of a limited height such as 2. In this paper,
we propose a Deep Hierarchical Structure (DHS) method to
handle the hierarchical structure of an arbitrary height with a
convex objective function. The DHS method relies on the ex-
ponents of the edge weights in the hierarchical structure but
the exponents need to be given by users or set to be identi-
cal by default, which may be suboptimal. Based on the DHS
method, we propose a variant to learn the exponents from
data. Moreover, we consider a case where even the hierar-
chical structure is not available. Based on the DHS method,
we propose a Learning Deep Hierarchical Structure (LDHS)
method which can learn the hierarchical structure via a gen-
eralized fused-Lasso regularizer and a proposed sequential
constraint. All the optimization problems are solved by prox-
imal methods where each subproblem has an efficient solu-
tion. Experiments on synthetic and real-world datasets show
the effectiveness of the proposed methods.

Introduction
Most of previous studies to utilize the hierarchical struc-
ture among features, including the group Lasso (Yuan and
Lin 2006) and the Hierarchical Penalization (HP) method
(Szafranski, Grandvalet, and Morizet-Mahoudeaux 2007),
can only handle the hierarchical structure of a limited height
up to 2. In this paper, we aim to break this assumption by
utilizing the available hierarchical structure with an arbitrary
height to help learn an accurate model. Moreover, in some
case where the hierarchical structure is unavailable, we aim
to learn such hierarchical structure among features to im-
prove the interpretability of the resultant learner.

Specifically, given a hierarchical structure to describe re-
lations among features, we propose a Deep Hierarchical
Structure (DHS) method to utilize it. In the DHS method,
each model parameter corresponding to a data feature is pe-
nalized by the product of edge weights along the path from
the root to the leaf node for that feature. Interestingly, when
the exponents of the edge weights along the path from the
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root to each leaf node are summed to 1, the proposed ob-
jective function can be proved to be convex no matter what
the height of the hierarchical structure is. Moreover, when
all the exponents take the same value, we can show that
the proposed objective function is equivalent to a problem
with a hierarchical group lasso regularization term. In order
to optimize the objective function of the DHS method, we
adopt the FISTA algorithm (Beck and Teboulle 2009) each
of whose subproblems has an efficiently analytical solution.
Moreover, in the proposed DHS method, the exponents of
the edge weights need to be set based on a priori informa-
tion. When this information is not available, by default we
just set them to be identical. Usually this strategy works but
it may be suboptimal. In order to alleviate this problem, we
propose a variant of the DHS method to learn the exponents
from data.

Moreover, we consider a more general case where the hi-
erarchical structure is not available. A hierarchical structure
can give us more insight about the relations among features
but learning it from data is a difficult problem. To the best
of our knowledge, there is no work to directly learn the hier-
archical structure among features. Here we give the first try
based on the DHS method by proposing a Learning Deep
Hierarchical Structure (LDHS) method. Given the height of
the hierarchical structure, the LDHS method assumes that
each path from the root to a leaf node corresponding to a
data feature does not share any node between each other,
then uses a generalized fused-Lasso regularizer to enforce
nodes to fuse at each height, and finally designs a sequen-
tial constraint to make the learned structure form a hierar-
chical structure. For optimization, we use the GIST algo-
rithm (Gong et al. 2013) to solve the objective function of
the LDHS method. By comparing with several state-of-the-
art baseline methods, experiments on several synthetic and
real-world datasets show the effectiveness of the proposed
models.
Related Work The Composite Absolute Penalties (CAP)
method (Zhao, Rocha, and Yu 2009) learns from the hier-
archical structure but via the group sparsity and its objec-
tive function is different from those of the proposed meth-
ods. Moreover, the proposed LDHS method can learn the
hierarchical structure but the CAP method cannot. The tree-
guided group Lasso proposed in (Kim and Xing 2010) can
learn from the hierarchical structure for multi-output regres-
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sion, whose settings are different from ours. There are some
methods (Bondell and Reich 2007; Hallac, Leskovec, and
Boyd 2015; Figueiredo and Nowak 2016) which can learn
the group structure among features but fail to learn the hier-
archical structure, while the proposed LDHS method can do
that.
Notations A hierarchical structure is said to be balanced if
the paths from the root to every leaf node have the same
length. For unbalanced hierarchical structure, we can easily
convert it to a balanced one by adding some internal nodes
as shown in Figure 1. So in this paper, the hierarchical struc-
ture mentioned is always assumed to be balanced. For a hi-
erarchical structure of height m, the root is at height 0, the
children of the root are at height 1, and the leaf nodes are at
height m. The number of nodes at height i is denoted by si
and the nodes at height i are labeled by 1 to si from left to
right. A node denoted by N i

j means that it is the jth node
at height i. The set of children of a node N i

j is denoted by
Cij and the number of children of a node N i

j is denoted by

d
(i)
j . For each leaf node Nm

i , we define d(m)
i ≡ 1 for the

ease of the notations. We define F ij ≡ k as the index of the
parent node ofN i

j , implying thatN i−1
k is the parent node of

N i
j . The edge from a node N i−1

j to one of its children N i
k

is denoted by E(i)j,k and the weight of this edge is denoted by

σ
(i)
j,k, where the superscript denotes the height in which the

child node lies and the subscript denotes the indices of the
parent and children nodes. The path from the root to the ith
leaf node Nm

i is denoted by a sequence of m + 1 integers
as Pi = {i0, . . . , im} where i0 = 1, im = i, and node N j

ij

is on the path for j = 0, . . . ,m, and we define Pji ≡ ij as
the index of the node at height j on the path Pi. In the bot-
tom figure of Figure 1, we have C01 = {1, 2, 3}, d(0)1 = 3,
C12 = {3, 4, 5}, d(1)2 = 3, F1

2 = 1, and F2
3 = 2. The path

from the root to a leaf node N 2
5 is P5 = {1, 2, 5} where

P0
5 = 1, P1

5 = 2, and P2
5 = 5.

Learning from Deep Hierarchical Structure

Most of the existing works such as the group Lasso
and the HP method (Szafranski, Grandvalet, and Morizet-
Mahoudeaux 2007) can only operate on a hierarchical struc-
ture of a limited height. However, in many applications, the
hierarchical structure is much more complex. To improve the
applicability, we present the proposed DHS method in this
section.

The Objective Function

Suppose the training dataset is denoted by D =
{(xi, yi)}ni=1 where xi ∈ Rd denotes the ith data instance
and yi is its label, and the linear learning function is denoted
by f(x) = wTx. Suppose that the features are organized in
a balanced hierarchical structure of height m where m ≥ 2.
Based on a loss function l(·, ·, ·), the objective function of

Figure 1: Illustration for the hierarchical structure. The top
figure denotes a hierarchical structure and the bottom figure
denotes the equivalently balanced structure.

the DHS method is formulated as

min
w,σ

1

n

n∑
i=1

l(xi, yi,w) +
λ1

2

d∑
i=1

w2
i∏m

j=1

(
σ
(j)

Pj−1
i ,Pji

)θ(j)
Pj−1
i ,Pji

+
λ2

2
‖w‖22

s.t.

si∑
j=1

d
(i)
j σ

(i)

Fij ,j
= 1 ∀i ∈ [m], σ

(i)

Fij ,j
≥ 0 ∀i, j, (1)

wherewi is the ith entry in w, an edge weight σ(j)
c,d is defined

in the previous section, ‖·‖2 denotes the `2 norm of a vector,
a/b for two scalars a and b is defined by continuation at zero
as a/0 =∞ if a 6= 0 and 0/0 = 0, [m] denotes an integer set
from 1 to m, and θ(j)

Pj−1
i ,Pji

, an exponent, can be viewed as

the importance for the edge weight σ(j)

Pj−1
i ,Pji

. The summand
in the second term of the objective function in problem (1)
penalizes each wi based on all the weights of edges on the
path from the root node to the ith leaf node as well as the ex-
ponents. Hence two coefficients wi and wj will tend to have
similar penalizations if they share many edges in the hierar-
chical structure. As we will see in Theorem 3, when expo-
nents are identical to each other, this term is related to the
group Lasso regularizer which enforces the group sparsity.
The equality constraint in problem (1) is to restrict the scale
of σ. To preserve the convexity of problem (1) as we will
see in the next section, it is required that θ(j)

Pj−1
i ,Pji

≥ 0 ∀i, j

and
∑m
j=1 θ

(j)

Pj−1
i ,Pji

= 1 ∀i, which means that the sum of the
nonnegative exponents of all the edges along a path from the
root to each leaf node equals 1.
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Properties
We first introduce a new family of convex functions with the
proof in the supplementary material.

Theorem 1 f(w, z) = w2∏m
i=1 z

θi
i

is jointly convex with re-

spect to w ∈ R and z = (z1, . . . , zm)T ∈ Rm, where
zi’s are required to be positive, given that θi ≥ 0 for
i = 1, . . . ,m and

∑m
i=1 θi = 1.

When m = 1, Theorem 1 asserts that f(w, z) = w2/z is
jointly convex with respect to w and z when z > 0, which
is a well-known result (pp. 72, (Boyd and Vandenberghe
2004)). Whenm = 2 and θ1 = θ2 = 1/2, Theorem 1 recov-
ers Proposition 1 in (Szafranski, Grandvalet, and Morizet-
Mahoudeaux 2007). Theorem 1 is more general since m can
be any positive integer and different θi’s can have different
values.

Based on Theorem 1, we can prove the convexity of prob-
lem (1) in the following theorem.

Theorem 2 Given that the loss function l(x, y,w) is convex
with w, problem (1) is jointly convex with respect to w and
σ.

To see the effect of the regularizer in the second term
of problem (1), we investigate two special cases, where
m equals 2 or 3. When m = 2, problem (1) degen-
erates to the HP method (Szafranski, Grandvalet, and
Morizet-Mahoudeaux 2007), which shows that when all the
θ
(j)

Pj−1
i ,Pji

’s equal 1
2 , problem (1) is equivalent to the ` 4

3 ,1
-

regularized group Lasso. When m = 3, we can derive an
equivalent formulation of problem (1) as follows.

Theorem 3 When m = 3 and all the θ(j)
Pj−1
i ,Pji

’s equal 1
3 ,

problem (1) is equivalent to this problem:

min
w

λ1

2


s1∑
i=1

(d
(1)
i )

1
6

∑
j∈C1i

(d
(2)
j )

1
5

∑
k∈C2j

|wk|
3
2


4
5


5
6


2

+
1

n

n∑
i=1

l(xi, yi,w) +
λ2

2
‖w‖22. (2)

According to Theorem 3, we can see the second term in
the objective function of problem (1) can be converted to the
first one of problem (2), which places the ` 3

2
norm on model

parameters corresponding to the leaf nodes which share the
same parent node, then places the weighted ` 6

5
norm on the

internal nodes at height 2 which have the same parent node,
and finally computes the squared weighted sum on the in-
ternal nodes at height 1. This regularizer can be viewed as a
hierarchical group Lasso where at each height, the weights
corresponding to nodes sharing the same parent node will be
combined together via some norm. In general, for any posi-
tive integer m, when all the exponents of different σij,k have
the same value (i.e., 1/m), we can always find the explicit
form of the second term in the objective function of problem
(1) in a similar way to the proof of Theorem 3.

Optimization
Since problem (1) is convex, we use the FISTA method
(Beck and Teboulle 2009) to solve it. We use a variable φ
to denote the concatenation of w and σ. We define

f(φ) =

n∑
i=1

l(xi, yi,w)

n
+

d∑
i=1

λ1w2
i

2
∏m
j=1

(
σ
(j)

Pj−1
i ,Pji

)θ(j)
Pj−1
i ,Pji

and g(φ) = λ2

2 ‖w‖
2
2. We define the set of constraints on φ

as

Sφ = {φ|
si∑
j=1

d
(i)
j σ

(i)

Fij ,j
= 1 ∀i ∈ [m], σ

(i)

Fij ,j
≥ 0 ∀i, j}.

In the FISTA algorithm, it does not minimize the original
composite objective function F (φ) = f(φ) + g(φ), but in-
stead solves a surrogate function:

qr(φ̂) = arg min
φ∈Sφ

Qr(φ, φ̂),

where Qr(φ, φ̂) = g(φ) + f(φ̂) + (φ − φ̂)T 5φ f(φ̂) +
r
2‖φ−φ̂‖

2
2 and5φf(φ̂) denotes the derivative of f(φ) with

respect to φ at φ = φ̂. Hence, in the FISTA algorithm, we
just need to minimize Qr(φ, φ̂) with respect to φ ∈ Sφ.
Specifically, we need to solve the following problem:

min
w,σ

λ2
2
‖w‖22 +

r

2
‖w − w̃‖22 +

r

2
‖σ − σ̃‖22

s.t.

si∑
j=1

d
(i)
j σ

(i)

Fij ,j
= 1 ∀i ∈ [m], σ

(i)

Fij ,j
≥ 0 ∀i, j, (3)

where r is a step size which can be determined by the FISTA
algorithm, w̃ = ŵ− 1

r 5w f(ŵ), and σ̃ = σ̂− 1
r 5σ f(σ̂).

It is easy to see that the solution for w in problem (3) is
w = r

λ2+r
w̃. For σ in problem (3), we can find that the

corresponding problem can be decomposed into m− 1 sub-
problems with each one solving a problem with respect to
{σ(i)

Fij ,j
}sij=1 and these subproblems have the same formula-

tion as

min
ρ
‖ρ− ρ̂‖22 s.t. ρ ≥ 0, aTρ = 1, (4)

where 0 denotes a zero vector with appropriate size, ≥ de-
notes the elementwise inequalities between two vectors, and
a is a constant vector with all entries positive. Problem (4)
is a quadratic programming (QP) problem and we can use
some off-the-shelf QP solver to solve it. To accelerate the
optimization of problem (4), we propose a more efficient
solution for problem (4) by solving its dual form and the
detailed procedure is put in the supplementary material.

A Variant to Learn Exponents
In the DHS method, we need to manually set the expo-
nents {θ(j)

Pj−1
i ,Pji

}. By default, we usually assume that all

the θ(j)
Pj−1
i ,Pji

’s are equal to 1
m , which satisfies the require-

ment to guarantee the convexity of problem (1). However,
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this setting may be suboptimal. In this section, we propose
a DHSe method, a variant of the DHS method, to learn the
exponents from data directly.

The objective function of the DHSe method is formulated
as

min
w,σ,θ

1

n

n∑
i=1

l(xi, yi,w) +
λ1

2

d∑
i=1

w2
i∏m

j=1

(
σ
(j)

Pj−1
i ,Pji

)θ(j)
Pj−1
i ,Pji

+
λ2

2
‖w‖22

s.t.

si∑
j=1

d
(i)
j σ

(i)

Fij ,j
= 1 ∀i ∈ [m], σ

(i)

Fij ,j
≥ 0 ∀i, j

m∑
j=1

θ
(j)

Pj−1
i ,Pji

= 1 ∀i ∈ [d], θ
(j)

Pj−1
i ,Pji

≥ 0 ∀i, j. (5)

Different from problem (1) where all the θ(j)
Pj−1
i ,Pji

’s are

constants, all the θ(j)
Pj−1
i ,Pji

’s in problem (5) are variables
to be optimized. The equality and inequality constraints
with respect to θ in problem (5) satisfy the requirements
for the constant exponents in problem (1) and they form
an (m − 1)−dimensional simplex for each feature. Differ-
ent from problem (1) which is convex, problem (5) can be
proved to be non-convex with respect to all variables and
hence we use the GIST algorithm (Gong et al. 2013) to solve
it. Due to page limit, we put the detailed optimization pro-
cedure in the supplementary material.

Learning Deep Hierarchical Structure
In some applications, the hierarchical structure is not avail-
able. In this section, we propose the LDHS method to learn
both the hierarchical structure and the model parameters
from data directly.

We assume that the height of the hierarchical structure
to be learned is given as m. Here we use slightly dif-
ferent notations to define the hierarchical structure. The
weights of edges on the path from the root node to the ith
leaf node corresponding to the ith feature are denoted by
{ω(1)

i , . . . , ω
(m)
i }, where ω(j)

i denotes the weight of an edge
connecting the height j − 1 and j on the path from the root
node to the ith leaf node. At the beginning, we assume that
the paths from the root node to any two different leaf nodes
do not share any edge. When ω(i)

j equals ω(i)
k for some i, j

and k, we can view it as a sign for that the two paths from
the root node to the jth and kth leaf nodes become fused at
height i and then in order to keep the whole structure as a hi-
erarchical structure, it should be required that the subpaths
on the two paths above height i are always fused, implying
that ω(i′)

j will always equal ω(i′)
k when i′ ≤ i. So an al-

gorithm that can learn a valid hierarchical structure should
satisfy the following two requirements:
(1) It should have the ability to enforce ω(i)

j to be equal to

ω
(i)
k for some i, j and k;

(2) It should guarantee that when ω(i)
j equals ω(i)

k , for all

i′ < i, ω(i′)
j will equal ω(i′)

k .

Here we present the objective function of the LDHS
method which can satisfy those two requirements:

min
w,ω

1

n

n∑
i=1

l(xi, yi,w) +
λ1
2

d∑
i=1

w2
i∏m

j=1

(
ω
(j)
i

) 1
m

+
λ2
2
‖w‖22 +

m∑
i=1

ηi
∑
j<k

|ω(i)
k − ω

(i)
j |

s.t.

d∑
j=1

ω
(i)
j = 1 ∀i ∈ [m], ω

(i)
j ≥ 0 ∀i, j

|ω(1)
k − ω

(1)
j | ≤ . . . ≤ |ω

(m)
k − ω(m)

j | ∀j, k, (6)

where ω is a vector containing all ω(j)
i ’s. The last term

in the objective function of problem (6), a layer-wise gen-
eralized fused-Lasso regularizer (Tibshirani et al. 2005;
Hocking et al. 2011), can make ω(i)

j equal to ω(i)
k for some i,

j and k, and so this regularizer can satisfy the first require-
ment. The sequential inequality constraint in problem (6)
can satisfy the second requirement since when ω(i)

j equals

ω
(i)
k , we can get |ω(i′)

j − ω
(i′)
k | ≤ 0 for any 1 ≤ i′ < i,

implying that ω(i′)
j = ω

(i′)
k . Therefore, problem (6), which

satisfies the two requirements, can learn a hierarchical struc-
ture. The exponents of all the ω(j)

i ’s are set to be 1
m . We can

also set them to be other values or even learn them as the
DHSe method did and this will be left as the future work.
The regularization parameter ηi controls the level of fusion
between {ω(i)

j }dj=1 at height i. A larger ηi will lead to more

identical values in {ω(i)
j }dj=1. Therefore, it is intuitive to de-

fine an increasing order for ηi’s from height m to height 0
to help construct the hierarchical structure. In practice, we
set ηi−1 = υηi for i ≥ 2 with some constant υ > 1.
When the hierarchical structure is available or equivalently
ω is given, problem (6) becomes problem (1) and hence the
LDHS method is a generalization of the DHS method to
learn the hierarchical structure.

Even though the objective function of problem (6) is con-
vex based on Theorem 1, the whole problem is non-convex
due to the sequential inequality constraint and we also use
the GIST method to solve it. We still use the variable φ to
denote the concatenation of w andω. We define a set of con-
straints on φ as Sφ = {φ|

∑d
j=1 ω

(i)
j = 1 ∀i ∈ [m], ω

(i)
j ≥

0 ∀i, j, |ω(1)
k − ω(1)

j | ≤ . . . ≤ |ω(m)
k − ω(m)

j | ∀j, k.}. We
define

g(φ) =

{
λ2‖w‖22

2
+
∑m
i=1 ηi

∑
j<k |ω

(i)
k − ω

(i)
j | if φ ∈ Sφ

+∞, otherwise

f(φ) =
1

n

n∑
i=1

l(xi, yi,w) +
λ1

2

d∑
i=1

w2
i∏m

j=1

(
ω
(j)
i

) 1
m

.

By omitting some constant terms, the proximal problem to
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be solved in the GIST algorithm can be formulated as

min
w,ω

r

2
‖w − w̃‖22 +

r

2
‖ω − ω̃‖22 +

λ2
2
‖w‖22

+

m∑
i=1

ηi
∑
j<k

|ω(i)
k − ω

(i)
j |

s.t.

d∑
j=1

ω
(i)
j = 1 ∀i ∈ [m], ω

(i)
j ≥ 0 ∀i, j

|ω(1)
k − ω

(1)
j | ≤ . . . ≤ |ω

(m)
k − ω(m)

j | ∀j, k, (7)

where ŵ and ω̂ are previous estimations for w and ω re-
spectively, w̃ = ŵ− 1

r5w f(ŵ), and ω̃ = ω̂− 1
r5ω f(ω̂).

It is easy to see that the solution for w in problem (7) is
w = r

λ2+r
w̃. For ω in problem (7), its problem can be sim-

plified as

min
ω

r

2
‖ω − ω̃‖22 +

m∑
i=1

ηi‖Bω(i)‖1 (8)

s.t. 1Tω(i) = 1, ω(i) ≥ 0, |Bω(1)| ≤ . . . ≤ |Bω(m)|,
where ‖ · ‖1 denotes the `1 norm of a vector, ω(i) =

(ω
(i)
1 , . . . , ω

(i)
d )T , 1 is a vector of all ones with an appro-

priate size, |a| for a vector a returns a vector with each entry
being the absolute value of the corresponding entry in a, ≥
denotes the elementwise “no smaller than” relation between
two vectors, and B is a d(d−1)

2 × d matrix with each of its
rows containing only two non-zero entries 1 and−1 at corre-
sponding locations. Problem (8) seems complicated and we
reformulate it as

min
ω,µ,τ

r

2
‖ω − ω̃‖22 +

m∑
i=1

ηi‖τ (i)‖1

s.t. 1Tω(i) = 1,ω(i) ≥ 0,µ(i) = ω(i), τ (i) = Bµ(i)

|τ (1)| ≤ . . . ≤ |τ (m)|. (9)
Due to the existent of linear equality constraints, we use the
ADMM to solve problem (9). We define the augmented La-
grangian function as

L(ω,µ, τ )

=

m∑
i=1

(ρ
2
‖τ (i) −Bµ(i)‖22 + qTi (τ

(i) −Bµ(i))
)

+

m∑
i=1

(
pTi (µ

(i) − ω(i)) +
ρ

2
‖µ(i) − ω(i)‖22

)
+
r

2
‖ω − ω̃‖22 +

m∑
i=1

ηi‖τ (i)‖1,

where {pi}mi=1 and {qi}mi=1 act as Lagrangian multipliers,
and ρ is a penalty parameter. Then we need to solve the fol-
lowing problem as

min
ω,µ,τ

L(ω,µ, τ )

s.t. 1Tω(i) = 1, ω(i) ≥ 0 ∀i ∈ [m]

|τ (1)| ≤ . . . ≤ |τ (m)|. (10)

In the ADMM algorithm, problem (10) can be solved alter-
natively with respect to ω, µ and τ .

With fixed µ and τ , we need to solve the following sub-
problem with respect to ω as:

min
ω

m∑
i=1

‖ω(i) − b(i)‖22 s.t. 1Tω(i) = 1, ω(i) ≥ 0 ∀i,

where b(i) = 1
r+ρ

(
rω̃(i) + pi + ρµ(i)

)
. This problem can

be decomposed into m subproblems where the ith subprob-
lem with respect to ω(i) has the same formulation as prob-
lem (4), which has an efficient solution.

With fixed ω and τ , the subproblem with respect to µ is
a QP problem. By setting the derivative of L(ω,µ, τ ) with
respect to µ(i) to zero, we can obtain the analytical solution
for µ(i) as

µ(i) =
(
I+BTB

)−1
(
BT τ (i) +

1

ρ
BTqi + ω

(i) −
1

ρ
pi

)
.

Note that (I + BTB)−1 is a constant matrix. So it can
be computed and stored before solving the whole problem,
leading to a more efficient implementation.

With fixed ω and µ, the subproblem with respect to τ can
be decomposed into 1

2d(d−1) subproblems with the jth one
formulated as

min
τ (i)

m∑
i=1

(
ρ

2

(
τ
(i)
j − ν

(i)
j

)2
+ ηi|τ (i)j |

)
s.t. |τ (1)j | ≤ . . . ≤ |τ

(m)
j |, (11)

where ν(i) = Bµ(i) − 1
ρqi and τ (i)j , ν(i)j are the jth entries

of τ (i) and ν(i), respectively. The optimal τ (i)j must have the

same sign as ν(i)j since otherwise we can flip the sign of τ (i)j
to achieve a lower value for the first term in the summand of
the objective function in problem (11) while keeping other
terms unchanged and also satisfying the constraints, which
leads to a lower objective value. Then by defining new vari-
ables {τ̂ (i)j } as τ̂ (i)j = sgn(ν

(i)
j )τ

(i)
j where sgn(·) gives the

sign of a scalar, τ̂ (i)j is always nonnegative and based on

problem (11), the problem with respect to {τ̂ (i)j } can be for-
mulated as

min
{τ̂(i)
j }

m∑
i=1

(
τ̂
(i)
j − ν̂

(i)
j

)2
s.t. 0 ≤ τ̂ (1)j ≤ . . . ≤ τ̂ (m)

j , (12)

where ν̂(i)j = |ν(i)j |− 1
ρηi. This problem is similar to problem

(17) in (Han and Zhang 2015b) except the requirement that
all τ̂ (i)j ’s are nonnegative. We first use the algorithm with
linear complexity in Section 3.2 of (Han and Zhang 2015b)
to solve this problem and then make negative ones in {τ̂ (i)j }
become zero to obtain the final solution.

Experiments
In this section, we conduct empirical evaluations on both
synthetic and real-world problems.
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We compare the proposed models (i.e., DHS, DHSe
and LDHS) with state-of-the-art structured feature learning
methods, including the Lasso, Group Lasso (GLasso) (Yuan
and Lin 2006), the CAP family with `4 and `∞ penalties de-
noted by CAP`4 and CAP`∞ (Zhao, Rocha, and Yu 2009),
and the HP method (Szafranski, Grandvalet, and Morizet-
Mahoudeaux 2007). Among these baseline methods, the
Lasso method does not take any group or hierarchical struc-
ture into consideration and the GLasso and HP models re-
quire a hierarchical structure of height 2, while the CAP,
DHS and DHSe methods need a hierarchical structure with
an arbitrary height. In order to provide a fair comparison,
in all the experiments we first generate a hierarchical struc-
ture on the features and then apply it to the GLasso, CAP,
HP, DHS and DHSe methods, where the group structure re-
quired by the GLasso and HP methods is obtained from the
two bottom-most layers of the hierarchical structure. For the
LDHS method, we set its height to be that of the given hier-
archical structure.

Experiments on Synthetic Data
We first experiment on synthetic data. We generate three
synthetic data by varying the height of the hierarchical struc-
ture as m = 3, 4 and 5, respectively. For simplicity, we
use full binary trees and the numbers of features d under
the three settings are equal to 23, 24 and 25, respectively.
The ground truth of the feature weights w∗ when m = 3 is
shown in Fig. 2(a) and those for other cases are put in the
supplementary material. Then, we generate data instances
from a normal distribution N (0, Id), where Id is a d × d
identity matrix. We assume a linear model between data in-
stances and labels, i.e., y = Xw∗ + ε with each entry εi in
ε (i = 1, · · · , n) following N (0, ξ2). In all the settings, we
generate n = 100 training samples and set ξ = 2.

Table 1: The MSE’s in terms of ‘mean±std’ on synthetic
data.

m = 3 m = 4 m = 5
Lasso 0.2913±0.0399 0.8669±0.0499 1.8660±0.0549

GLasso 0.2945±0.0372 0.8597±0.0402 1.8877±0.0593
CAP`4 0.3069±0.0349 0.8597±0.0402 1.8885±0.0495
CAP`∞ 0.3069±0.0349 0.8597±0.0402 1.8886±0.0497

HP 0.2795±0.0439 0.8403±0.0314 1.5519±0.0550
DHS 0.2743±0.0337 0.8275±0.0336 1.4682± 0.0433
DHSe 0.2748±0.0305 0.8337±0.0324 1.5596±0.0474
LDHS 0.2370±0.0303 0.8283±0.0354 1.3894±0.0460

We randomly generate 100 samples for testing and use
another 100 random samples for validation to choose reg-
ularization parameters of all the methods. All of the regu-
larization parameters in different models are chosen from a
set {10−5, 10−4 · · · , 1}, except ηi’s in the proposed LDHS
method. As discussed before, we set ηi+1 = ηi/υ for i < m,
where we choose η1 and υ from {10−5, 10−4 · · · , 1} and
{1.1, 2, 10}, respectively. We use the Mean Square Error
(MSE) to evaluate different methods, where the MSE is de-
fined as 1

n (ŵ −w∗)>X>X(ŵ −w∗) for an estimation ŵ.
All the settings are repeated for 10 times to obtain the av-

erage results, which are reported in Table 1. From the results,

Figure 2: The true hierarchical structure and estimated pa-
rameters when m = 3.

we observe that the proposed models with deeper hierarchi-
cal structure, i.e., the DHS, DHSe and LDHS models, gen-
erally show better performance than Lasso, GLasso, CAP`4 ,
CAP`∞ and HP. This demonstrates that whenever features
can be organized into a deeper hierarchical structure, using
the correct (deeper) hierarchical structure will allow a lower
prediction error compared to models with shallow struc-
ture, e.g., groups or a hierarchical structure of height 2. The
GLasso, CAP`4 and CAP`∞ methods show comparable re-
sults since all of them belong to the CAP family and may ac-
quire similar information from the feature groups. The DHS
and DHSe methods show comparable performance, while
the LDHS method, which learns the hierarchical structure
automatically, achieves the lowest MSE in two of all the
three settings.

Moreover, in Fig. 2, we show the estimated parameter
σ in the DHS method and ω in the LDHS method when
m = 3. The estimated σ in DHSe is similar to that in DHS,
hence we omit its result here. In Fig. 2(b), the estimated σ
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Table 2: The MSE’s (in terms of ‘mean±std’) of different methods on the Traffic Volume data.
Task 1 Task 2 Task 3 Task 4 Task 5

Lasso 0.1066±0.0179 0.1366±0.0279 0.1155±0.0231 0.1215±0.0132 0.1632±0.0352
GLasso 0.1042±0.0190 0.1185±0.0201 0.1030±0.0228 0.0934±0.0122 0.1725±0.0264
CAP`4 0.0939±0.0173 0.1122±0.0164 0.0944±0.0180 0.0864±0.0109 0.1609±0.0251
CAP`∞ 0.0977±0.0172 0.1179±0.0222 0.1029±0.0193 0.0925±0.0136 0.1800±0.0223

HP 0.0869±0.0189 0.1087±0.0270 0.0963±0.0196 0.0915±0.0133 0.1403±0.0299
DHS 0.0839±0.0187 0.1049±0.0262 0.0929±0.0187 0.0884±0.0132 0.1374±0.0284
DHSe 0.0843±0.0189 0.1051±0.0262 0.0935±0.0189 0.0890±0.0128 0.1381±0.0290
LDHS 0.0838±0.0186 0.1048±0.0262 0.0928±0.0186 0.0882±0.0126 0.1373±0.0284

well matches the hierarchical structure. For example, the es-
timated σ along the path from the root to the last four fea-
tures are generally small. According to the formulation of
the DHS model, these σ’s will give heavier penalizations on
the corresponding feature weights and as a consequence, we
can obtain small feature weights, which match the true val-
ues of w∗. Similarly, for the LDHS model, the parameter ω
is an m × d matrix. We show the estimated ω in Fig. 2(c),
from which we can generally observe a hierarchical struc-
ture by comparing their values, and this hierarchical struc-
ture well matches the ground truth. This result demonstrates
that the LDHS method is able to recover the hierarchical
structure.

Experiments on Real-World Datasets
In this section, we experiment on three real-world datasets
including the traffic volume data (Han and Zhang 2015b),
the breast cancer data (Jacob, Obozinski, and Vert 2009) and
the Covtype data. In these datasets, the hierarchical structure
over the features is not available. By following (Kim and
Xing 2010), we use a simple hierarchical k-means cluster-
ing method to generate the hierarchical structure on the fea-
tures. Specifically, we perform k-means clustering to split
the features into two groups, and for each group we recur-
sively perform k-means clustering to obtain four sub-groups.
Therefore, the resultant hierarchical structure has a height of
m = 3 and hence in the LDHS method, the height of the
learned hierarchical structure is also set to 3. The following
experiments show that such a simple hierarchical structure
is sufficient to obtain good performance for the proposed
methods.

First we experiment on the traffic volume data. This
dataset collects the traffic volumes from 136 entries (treated
as features) and the traffic volumes through some exits
(treated as response) in a highway traffic network. We
choose 5 exits with the highest volumes in the network to
form 5 learning tasks, each of which is to use the volumes
from entries to predict the volume through a specific exit.
There are totally 384 data samples. These tasks are regres-
sion problems and we use the square loss for all the meth-
ods. We randomly select 80% and 20% samples for train-
ing and testing, respectively. The regularization parameters
are chosen from the same candidate set as used in the syn-
thetic setting via 5-fold cross-validation. We use the MSE,
i.e., 1

n‖y− ŷ‖22, to measure the performance of all the meth-
ods. The results on the 5 tasks are given in Table 2. From the

results, we observe that in 4 out of the 5 tasks, the proposed
DHS, DHSe and LDHS methods outperform the baseline
methods and the LDHS method achieves the lowest MSE.
This demonstrates again that a deeper tree structure can pro-
vide a better feature structure in this data and our proposed
methods can take advantage of this structure.

Table 3: Results on the Breast Cancer (top) and Covtype
(bottom) datasets.

ACC (%) SEN (%) SPE (%)
Lasso 76.81±3.54 91.48±4.25 71.99±6.22

GLasso 80.69±3.08 94.42±3.67 76.24±4.77
CAP`4 81.53±3.08 95.47±3.25 76.96±4.97
CAP`∞ 80.97±3.33 95.47±3.25 76.23±5.04

HP 79.68±3.94 92.22±3.44 75.48±6.46
DHS 82.54±3.78 91.59±5.30 79.56±4.96
DHSe 83.49±3.48 92.84±5.53 80.41±4.32
LDHS 82.38±3.71 91.59±7.16 79.36±3.75

ACC (%) SEN (%) SPE (%)
Lasso 74.61±0.28 67.03±1.24 72.58±0.73

GLasso 74.97±0.28 70.91±1.06 79.24±0.56
CAP`4 74.81±0.11 70.33±0.19 79.51±0.13
CAP`∞ 74.80±0.10 70.30±0.18 79.52±0.14

HP 75.39±0.08 74.31±0.18 76.54±0.10
DHS 75.58±0.07 73.86±0.14 77.39±0.09
DHSe 75.37±0.07 71.12±0.32 79.84±0.30
LDHS 75.60±0.08 74.04±0.15 77.24±0.10

Next, we conduct experiments on the breast cancer
and Covtype datasets which have been studied in (Ja-
cob, Obozinski, and Vert 2009; Han and Zhang 2015a).
The breast cancer dataset contains genes in 295 tumors,
among which 78 of them are metastatic while 217 are non-
metastatic. Hence, the tasks here are binary classification
problems. We use the square loss for all methods. It has been
shown that in this dataset, some latent hierarchical struc-
ture exists. Similar to (Jacob, Obozinski, and Vert 2009;
Han and Zhang 2015a), we select 300 most correlated genes
to the outputs as the feature representation, and alleviate the
class imbalance problem by duplicating the positive sam-
ples twice. The Covtype dataset aims to predict the forest
cover type from collected cartographic variables. The prob-
lem is originally a multi-class classification problem and it is
transformed into a binary classification problem in (Chang
and Lin 2011). There are n = 581, 012 examples and the
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feature dimensionality is d = 54. We evaluate all the meth-
ods on these two datasets based on three mesuares, i.e., the
accuracy (ACC), sensitivity (SEN), and specificity (SPE),
similar to (Yang et al. 2012; Han and Zhang 2015a). By
following (Yang et al. 2012; Han and Zhang 2015a), 50%,
30% and 20% of the data are randomly chosen for train-
ing, validation, and testing, respectively. The regularization
parameters are selected from the same candidate sets as de-
scribed in the previous experiments. The top table in Table
3 shows the average results over 10 repetitions on the breast
cancer data. According to the results, hierarchical methods
with deep tree structure generally show more accurate pre-
dictions. The DHSe method achieves the best performance
in this case. The CAP`4 and CAP`∞ have better sensitivities
than the proposed methods, implying that they can recover
more true positive examples, while their SPE is lower. Ac-
cording to results reported in the bottom table of Table 3,
we can see that the HP, DHS, DHSe, and LDHS generally
outperform the Lasso and GLasso methods on the Covtype
data. Again, the LDHS method, which learns the tree struc-
ture, obtains the best accuracy.

Conclusions
In this paper, we study the problem of learning (from) deep
hierarchical structure step by step. In the first step, we pro-
pose the convex DHS method to learn from hierarchical
structure with an arbitrary height. Secondly, we propose the
DHSe method, a variant of the DHS method, to learn the ex-
ponents from data. Finally, we propose the LDHS method to
learn the hierarchical structure since it may be unavailable
in some applications.

In our future work, we will learn the exponents of the
LDHS method in a way similar to the DHSe method.
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