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Abstract

Semantic feature learning for natural language and program-
ming language is a preliminary step in addressing many soft-
ware mining tasks. Many existing methods leverage informa-
tion in lexicon and syntax to learn features for textual data.
However, such information is inadequate to represent the en-
tire semantics in either text sentence or code snippet. This
motivates us to propose a new approach to learn semantic
features for both languages, through extracting three levels of
information, namely global, local and sequential information,
from textual data. For tasks involving both modalities, we
project the data of both types into a uniform feature space so
that the complementary knowledge in between can be utilized
in their representation. In this paper, we build a novel and
general-purpose feature learning framework called UniEm-
bed, to uniformly learn comprehensive semantic representa-
tion for both natural language and programming language.
Experimental results on three real-world software mining
tasks show that UniEmbed outperforms state-of-the-art mod-
els in feature learning and prove the capacity and effective-
ness of our model.

Introduction
In recent years, semantic representation learning (Bengio,
Courville, and Vincent 2013) for languages has gained much
attention and been widely applied to many software mining
tasks. Among those tasks, natural language and program-
ming language are two common data types, which require
feature extraction as a preliminary step so that their rep-
resentation can be processed by specific models. The ex-
tracted features have been used to address tasks such as bug
localization (Huo, Li, and Zhou 2016; Huo and Li 2017;
Hoang et al. 2018), code clone detection (White et al. 2016;
Wei and Li 2017; 2018), code summarization (Allamanis,
Peng, and Sutton 2016), etc. However, one main factor that
determines the capacity of representation lies in the infor-
mation exploited from data, since partial semantic informa-
tion can result in features of poor quality, and thus prevent
models from elevating performance. Therefore, figuring out
a way to learn comprehensive semantic features for natu-
ral language and programming language has become a vital
problem we need to resolve.
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public static int array_top1(int[] array) {
Array.sort(array);
return array[array.length - 1];

}
public static int find_zero(int[] array) {

int index = array.length - 1;
while(index >= 0 && array[index] != 0) {

index --;
}
return index;

}

public static int[][] loop1(int[][] array, int col) {
for(int row=0; row<10; ++row) {

array[row][col] = row*10 + col;

}
return array;

}
public static int[][] loop2(int[][] array, int col) {

for(int row=0; row<10; ++row) {
array[row][col] = col*10 + row;

}
return array;

}

public static int sort1(int[] array) {
array[4] *= 10;
Array.sort(array);
return array;

}
public static int sort2(int[] array) {

Array.sort(array)
array[4] *= 10;
return array;

}

Figure 1: Examples of Java code snippet pairs differing in
each level of information

As we observe, natural language and programming lan-
guage, in spite of different modalities, uniformly share three
levels of semantic information, namely global, local and se-
quential information. The three levels of information depict
semantic meaning of textual contents from different aspects.
In order to give a clean explanation below, we provide de-
tailed instances and discussions to separately illustrate those
semantic information in both languages.

In natural language, global information refers to the ag-
gregation of every term’s meaning within the sentence glob-
ally. All terms contribute to the sentence’s semantics, while
replacing any term can probably cause global informa-
tion shift. For example, sentences as “write a program in
Python” and “debug the Java program” are discussing dis-
parate things because of different lexicons in the two sen-
tences. Local information is implied in a local small group of
words standing together as a conceptual unit, like the phrase
“Depth First Search”. Only by considering those terms as
an integrity rather than separate words can we understand
it. Sequential information is included in the logic order of
terms forming the sentence. For instance, changing the or-
der of terms in “apply quick sort to the array” to “quick to
apply array the sort” will alter the semantic meaning and
make the sentence not understandable.
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Similar to natural language, programming language also
contains three levels of information. Its semantics re-
lates to the functionality of the code snippets. As the ex-
amples shown in Figure 1, function array top 1 and
find zero are manifestly different in the variables and
terms within their bodies. This causes disparity in their
global information and meanwhile leads to functionality dif-
ference. In the local information example, function loop2
changes the substructures in the for-loop in loop1 while
it remains all the terms and the organization of statements
(global and sequential information) unshifted. Nevertheless,
the behaviors of the two functions differ due to the nuance
in local information. In the sequential information example,
two statements have reversed positions in sort2 comparing
with sort1. As a result, the dependencies between state-
ments (sequential information) are changed and the func-
tionality is mutated, despite the fact that the terms and sub-
structures (global and local information) are nearly the same
in two functions.

According to the discussions above, we observe that (1)
both natural language and programming language contain
three levels of information, i.e. global, local and sequential
information, all of which are indispensable for understand-
ing the semantic meaning; (2) the three levels of informa-
tion are complementary rather than implicit to each other, as
changing one level of information while keeping the other
two can still cause semantic shift.

Many previous works focused on learning representation
for both languages in software mining tasks by extracting
semantic information. (Huo and Li 2017; Huo, Li, and Zhou
2016) model bug reports and source code by leveraging local
and sequential information in their representation to address
bug localization task, (Wei and Li 2017) learns hash code as
code snippet’s representation by exploiting global and se-
quential information, while (Allamanis, Peng, and Sutton
2016) generates features based only on local information to
encode code snippet. However, those existing models failed
to take all of the aforementioned three levels of informa-
tion into account, so that their learned representations would
cover only partial semantics.

In order to resolve this problem, we propose a novel fea-
ture learning framework UniEmbed to learn representations
for both natural language and programming language, by ex-
ploiting global, local and sequential information in the tex-
tual contents. In particular, for certain software mining tasks
involving both modalities, such as code annotation and bug
localization, where text sentence and code snippet of a pair
are semantically relevant, we project the representations of
those cross-modal data pairs into a uniform feature space.
Such approach assures that the complementary knowledge
in between can be leveraged during learning process, as
stated in (Kim et al. 2018), and alleviates semantic gap be-
tween modalities as well. Experimental results on three real-
world software mining tasks demonstrate the capacity and
effectiveness of UniEmbed, which significantly outperforms
state-of-the-art feature learning methods in those tasks.

The contributions of our work are twofold:
• We introduce a approach to extract three levels of se-

mantic information, namely global, local and sequential

information, in learning features for textual data. Those
learned representations can comprehensively cover the se-
mantics in both natural language and programming lan-
guage. To the best of our knowledge, no previous works
adopt similar strategy in their feature learning method or
achieve comparable performance as our framework.

• We propose a novel representation learning framework
UniEmbed, which can learn uniform features for natural
language and programming language when both modal-
ities are involved in the same task. Such representations
are capable and effective in helping address a set of real-
world software mining tasks.

Related Work
Most of existing research involving feature learning in soft-
ware mining tasks has focused on various methods to ex-
tract semantic information from textual data. (Lukins, Kraft,
and Etzkorn 2010) considers each word with certain prob-
abilities in bug reports and applies Latent Dirichlet Alloca-
tion (LDA) model for locating buggy files, (Gay et al. 2009)
represents bug reports and source code files as feature vec-
tors based on concept localization using Vector Space Model
(VSM). More recently, besides global information (lexi-
con), local information (structure) within textual content is
also taken into consideration. (Allamanis, Peng, and Sutton
2016) parses code token groups to extract local informa-
tion with Convolutional Attention Model, (White et al. 2016;
Wei and Li 2017) exploit both lexicons and syntax structures
in learning features for source code. (Huo and Li 2017) even
considers long-term dependencies in code snippet and thus
combines sequential information in representation. How-
ever, all these models leverage only one or two types among
global, local and sequential information, which may result
in incomplete semantics in learned features.

For software mining tasks involving both natural language
and programming language, such as bug localization and
code annotation, it is prevailing to treat both modalities dif-
ferently by learning representation in separate feature spaces
among previous works. (Huo, Li, and Zhou 2016) encodes
bug reports and source code through different structures and
only fuse their features right before classification. (Hoang
et al. 2018; Tantithamthavorn et al. 2018) directly calculate
similarity scores between bug reports and code snippets af-
ter separately encoding and include them as a component
of the data pair’s combined features. However, treating text
sentence and code snippet differently can neither well re-
solve the semantic gap between two modalities nor make use
of the complementary knowledge in between. Our proposed
model resolves this problem by projecting data of both types
into a uniform feature space.

The Proposed Framework: UniEmbed
In this section, we describe the details of our proposed
model. We first give some notations which will be used in
the following sections. Given a data triple (e, p, n), we con-
sider e, p, n ∈ T ∪ C, where T and C stand for the sets
of raw text sentences and code snippets (We use text sen-
tences and code snippets to represent natural language and
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Figure 2: The Overall Structure of UniEmbed

programming language respectively). We define (e, p) as a
similar data pair where e and p have similar semantic mean-
ings, and (e, n) as a dissimilar data pair where e and n are
semantically irrelevant. Note that e and p, e and n can come
from different modalities, while p and n should belong to
the same modality. We define R(e) as the learned feature
vector of e. The feature space where we project our data
is a cosine distance-based space. Given a data pair (e1, e2),
where e1, e2 ∈ T ∪ C, we measure the similarity between
e1 and e2 based on the cosine distance between their feature
vectors R(e1) and R(e2) in the feature space. We note the
cosine distance between two vectors as Dc(·, ·), which can
be formalized as follows:

Dc(e1, e2) =1− cos〈R(e1), R(e2)〉

=1− e1 · e2
‖e1‖ ‖e2‖

(1)

General Framework
The structure of UniEmbed is shown in Figure 2. The whole
framework is composed of two separate pipelines with sim-
ilar structures. One is used to extract semantic features for
text sentence while another one is for code snippet. We name
them as Textnet and Codenet. Each pipeline contains four
parts: encoding layer, multi-info layer, fusion layer, and at-
tention layer. At the end of the framework, an output gate
connects both pipelines and transforms the feature vectors
learned in Textnet and Codenet to the cosine distance used
for further similarity measurement.

UniEmbed takes raw text sentence and code snippet as in-
put to corresponding pipeline. In the encoding layer, each
term in text sentence or code snippet is encoded with the
standard GloVe vectors (Pennington, Socher, and Manning
2014) into 300-dimensional representation. Then three lev-
els of semantic information, namely global, local and se-

quential information, are extracted in multi-info layer with
different architectures. We fuse the three levels of features
into a multi-information representation by concatenating
them in the order of [global, local, sequential] in the fusion
layer. Finally, the attention layer learns different importance
weights for each level of features and outputs the final rep-
resentation, which is the projection of raw data in the fea-
ture space. Note that the structure of Textnet and Codenet is
slightly different due to the discrepancy between text sen-
tence and code snippet in their characteristics, which will be
elaborated later.

Multi-information extraction
Multi-info layer consists of three differently structured
network branches, which are used for exploiting global,
local and sequential features accordingly. We name the
three branches as global-info branch, local-info branch and
sequential-info branch.

Global-info branch Since understanding the semantic
meaning of text sentence or code snippet depends on the
information conveyed in every term, we follow the philos-
ophy of fastText model (Joulin et al. 2016) to summarize the
global information by averaging each term’s representation.

We feed each term into the same fully-connected neu-
ral network to exploit its semantic feature vector separately.
Then we average all terms’ feature vectors by calculating
their mean vector. The mean vector contains summarized
information of every term and constructs the global feature
vector of text sentence or code snippet. We note the global
feature vector of the input e as G(e), the ith term in e as
termi, and the fully-connected neural network as FC(·),
the whole process can be formalized as:

G(e) =

∑
i FC(termi)

#terms
(2)
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Local-info branch Local information is usually covered
in a small specific region of the textual content, for instance,
a phrase in text sentence or a for-loop substructure in code
snippet. In order to extract local information from the orga-
nized group of terms, we need to consider those terms as
an integrity instead of understanding their meanings term-
by-term. Regarding the properties above, we employ CNN-
based neural network to extract local information. As each
convolutional operation only looks into a small region and
generates corresponding local features at a time, it perfectly
coordinates the characteristics of local information.

Using CNN to extract features for natural language has
been widely studied (Johnson and Zhang 2014), thus we fol-
low the standard approach to process text sentence in Textnet
pipeline. However, programming language differs from nat-
ural language in two aspects, which are the atomicity of
statements in semantics and the ”structured” organization of
statements groups (Huo, Li, and Zhou 2016). So we should
follow the nature of program structure defined by program-
ming language when selecting CNN configurations to ex-
tract local features from code snippet in Codenet pipeline.

We design our local-info branch for code snippet using
two-level convolutional neural networks, namely term-level
and statement-level CNN. The network structure is demon-
strated in Figure 3. Term-level CNN and its pooling layer
learns the semantics of a single statement based on the
terms it contains, while statement-level CNN and its pool-
ing layer extracts local information from the interaction be-
tween statements with respect to program structure. At the
end of local-info branch, a fully-connected neural network
is applied to refine the learned features and maintain the di-
mensions. We note the local feature vector of the input e as
L(e).

Encoded code snippet

Max pooling

Max pooling

Conv 1D

Encoded text sentence

ReLU

Max pooling

Local feature vector

Local feature vector

Term-level

Statement-level

Local-info branch for code snippets Local-info branch for text sentences
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FC

Conv 1D

Conv 1D

ReLU

ReLU

Figure 3: The structure of local-info branch

Sequential-info branch Sequential information lies in the
logic order of the components organized in data, for exam-
ple, the order of terms in text sentence or the sequential
dependencies between statements in code snippet. In order

to extract sequential information from the data, we employ
GRU-based (Chung et al. 2014) models to learn such fea-
tures.

The structure of sequential-info branch is shown in Fig-
ure 4. With similar consideration of the discrepancy between
characteristics of natural language and programming lan-
guage, we apply standard GRU for text sentence, but term-
level GRU and statement-level GRU for code snippet to
learn sequential information first from the order of terms
in single statement, and then from the interaction between
statements based on program structure. We note the sequen-
tial feature vector with respect to the input e as S(e).

Encoded code snippet Encoded text sentence

Sequential feature vector

Term-level

Statement-level

Sequential-info branch for code snippet Sequential-info branch for text sentences

GRU

GRU

GRU

……

GRU
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Figure 4: The structure of sequential-info branch

Feature fusion After extracting global, local and sequen-
tial information with global-info branch, local-info branch
and sequential-info branch, we concatenate the three learned
feature vectors in the order of [global, local, sequential] in
the fusion layer to construct multi-information features of
text sentence or code snippet.

Attention mechanism

Although all three levels of information are necessary in
conveying semantic meaning, the portion of contribution of
each information can differ. However, the multi-information
features learned in previous layers treat global, local and se-
quential information equally, which may not be the gold rep-
resentation.

To address this problem, we apply attention mechanism
to learn different importance weights for each level of fea-
tures. Due to different characteristics of text sentence and
code snippet, the importance of each information may also
differ between the two modalities. Thus we use separate at-
tention layers to learn feature weights in Textnet and Co-
denet accordingly.

We note the kth feature vector in multi-information fea-
tures as Fk(e), where Fk(e) ∈ {G(e), L(e), S(e)} with re-
spect to the input e. WFk(e) stands for the weighted Fk(e)
learned by attention layer, and NWFk(e) stands for normal-
ized WFk(e). Wk is the learnable weights for each informa-
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tion. The attention mechanism can be formalized as follows:

WFk(e) =Wk ∗ Fk(e)

NWFk(e) =
exp(WFk(e))∑3
i=1 exp(WFi(e))

(3)

After weighting each information with different impor-
tance, our final representation of input e can be specified as:

R(e) = [NWF1(e),NWF2(e),NWF3(e)], (4)

Where NWF1(e), NWF2(e) and NWF3(e) refer to the nor-
malized weighted features with respect to G(e), L(e) and
S(e).

Similarity measurement
We attempt to learn semantic features for text sentence
and code snippet in a mutual cosine distance-based feature
space, where we measure the similarity between two repre-
sentation vectors according to their cosine distance. Smaller
cosine distance means higher similarity between a data pair.

Subsequently, we design a vanilla linear classifier and se-
lect the cosine distance, which is a scalar, as the only classifi-
cation feature to predict whether a data pair is similar or not.
We apply Cross-entropy loss to optimize the classifier. Give
a data pair (e1, e2), the prediction process can be specified
as:

prediction = sigmoid(a ∗DC(e1, e2) + b) (5)

Where a, b are learnable parameters.
Since our classifier is extremely simple, the performance

of prediction heavily depends on how distinguishing the co-
sine distances between similar data pairs and dissimilar data
pairs are. In return, high performance can empirically prove
the capacity and effectiveness of UniEmbed in learning se-
mantic features for text sentence and code snippet.

Optimization
It is possible that the importance weights for text sentence
and code snippet can differ, which may result in scale dif-
ference between their representation. Such discrepancy in
magnitude increases the difficulty to learn a unified absolute
distance distribution over their feature vectors. The scale gap
between the cosine distance of cross-modal data pair (text-
code pair) and of single-modal data pair (text-text pair or
code-code pair) can be hard to eliminate during learning pro-
cess.

With the consideration above, we propose to learn a uni-
form relative distance distribution using triplet loss (Schroff,
Kalenichenko, and Philbin 2015). By doing so we can op-
timize the cosine distance of single-modal and of cross-
modal data pairs without worrying about scale difference.
In triplet loss, we maximize the gap between cosine dis-
tance of similar pairs and of dissimilar pairs until it reaches a
specific margin α. Given a data triple (e, p, n), we optimize
our UniEmbed model by minimizing the following objective
function:

Loss(e, p, n) = max(Dc(e, p)−Dc(e, n) + α, 0) (6)

Training
With respect to different real-world software mining tasks,
we propose two training strategies: single training and joint
training.

Single training: It learns representation for single task.
This is a common case when we need to address a specific
software mining task. For tasks involving single modality,
such as code clone detection, we only train the correspond-
ing module. While for tasks involving cross-modal data, like
bug localization, we train both modules (Textnet and Co-
denet) synchronically.

Joint training: It learns uniform features for a set of rel-
evant tasks simultaneously. There are some cases in real
world when we need to resolve multiple related tasks at
the same time. For example, we want to address dupli-
cate programming question retrieval, code annotation and
code clone detection, where both modalities are involved in
data. Under such circumstances, we can apply joint train-
ing. Firstly we pre-train Textnet on duplicate question data
(single-modal). Then we tune down the learning rate for
Textnet while remain it unchanged for Codenet, and train
both modules on code annotation data (cross-modal). Finally
we tune down the learning rate to train Codenet on code
clone detection data (single-modal). We use triplet loss with
the same margin value to optimize our model in all tasks.
Rich knowledge in different tasks’ datasets is shared during
joint training process, which enables model to learn more in-
formative features and perform better on all these tasks than
under single training.

Experiment
Datasets
In this section, we evaluate our UniEmbed model on three
datasets, covering three relevant tasks, which are code clone
detection, code annotation, and duplicated programming
question retrieval.

All three datasets are collected from StackOverflow
website. The duplicated programming question dataset
(abridged as dup-question) consists of programming ques-
tion pairs labelled as duplicated by users. We extract the
code snippets within the best answer and label the respective
question as annotation to the code. Code snippet and its an-
notation are matched as a pair, and such pairs compose of the
code annotation dataset (abridged as code-anno). We regard
the best answers of duplicated questions as similar answers,
thus the code snippets extracted from such answer pairs are
considered as cloned code, which belongs to Type-4 clone
according to (Sridhara et al. 2010). The cloned code pairs
are included in the code clone detection dataset (abridged as
code-clone). Note that all code snippets are in Java program-
ming language. The original datasets are available on Stack
Exchange website1.

Since all the collected data are similar pairs, we gener-
ate the same amount of dissimilar pairs by randomly sam-
pling on text sentence set T (∼720k) and code snippet set C

1https://archive.org/details/stackexchange
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Table 1: Evaluation results on multiple software mining tasks

dup-question code-clone code-anno
Methods AUC F-measure AUC F-measure AUC F-measure

SourcererCC – – 53.21% 4.80% – –
CDLH – – 62.03% 59.89% – –

AP 72.23% 68.13% 57.20% 54.86% 62.18% 53.79%
MaLSTM 70.83% 58.67% 50.56% 55.08% 60.95% 50.29%

UniEmbed(ST) 92.64% 83.34% 70.50% 66.50% 75.15% 68.82%
UniEmbed(JT) 95.44% 87.70% 87.69% 80.31% 78.21% 71.85%

(∼340k) based on the collected data. Note that we delete the
generated pairs which are already labelled as similar in orig-
inal datasets. All the data in each dataset are organized in
triple format (e, p, n), where (e, p) is a similar data pair and
(e, n) is a dissimilar one. The statistics of all three datasets
are shown in Table 2.

Table 2: Statistics of datasets

Dataset #Instances #Train #Valid #Test
dup-question 535,254 495,254 20,000 20,000

code-anno 693,026 653,026 20,000 20,000
code-clone 33,690 27,690 3,000 3,000

Baseline models
For fair comparison, we re-implement or directly use the ex-
isting baseline models as follows:
• AP: (Santos et al. 2016): It is a representation learning

model based on two-way attention mechanism and LSTM
for pair-wise text classification task.

• MaLSTM (Mueller and Thyagarajan 2016): A siamese
adaptation of LSTM relying on Manhattan metric to learn
semantic features for text sentences.

• SourcererCC (Sajnani et al. 2016): It is an unsupervised
lexical-based clone detection model for code snippets.

• CDLH (Wei and Li 2017): An AST-based LSTM code
clone detection model. It efficiently leverages lexical and
syntactical information to learn hash codes as representa-
tion for code snippet.

Experiment settings
In experiments, we evaluate our UniEmbed model with
two different training strategies. UniEmbed (ST) repre-
sents training our model on single task using corresponding
dataset. For example, we train our model merely on code-
clone dataset and evaluate on code clone detection task.
While UniEmbed (JT) stands for jointly training our model
on all three datasets and evaluate on each task. We compare
the performance of our model trained under the above two
strategies with the aforementioned baseline models on AUC
and F-measure metrics.

We use pre-trained 300-dimensional GloVe vectors (Pen-
nington, Socher, and Manning 2014) to encode the text sen-
tence and code snippet in initialization. For the terms not

found in the pre-trained vectors, we set their encoding ran-
domly according to standard normal distribution. We apply
Adam (Kingma and Ba 2014) to optimize our model with
the learning rate set to 0.001. The margin in triplet loss is
set as 1.0. We train all the models (including our model and
baselines) on 4 Titan X Pascal GPUs for 20 epochs, with
batch size set to 64.

Evaluation results
We evaluate our UniEmbed model and baselines on three
real-world software mining tasks: duplicated programming
question retrieval, code clone detection, code annotation.
Since CDLH and SourcererCC are specially designed for
processing code snippet, we test them only on code clone
detection task. For the other baselines, we extend their orig-
inal framework to fit all three tasks.

As shown in Table 1, we observe general facts that: (1) our
proposed model trained under both strategies clearly outper-
forms all state-of-the-art baseline models on three chosen
tasks, which confirms the capacity of our model in learning
representation for both text sentence and code snippet; (2)
all jointly trained models achieve better results than singly
trained ones, which empirically proves that rich knowledge
between tasks is shared during joint training, helping model
learn more powerful features than under single training.

Duplicated question retrieval & Code annotation On
duplicated programming question retrieval task, our UniEm-
bed models exceed both AP and MaLSTM by more than
20% on AUC and 15% on F-measure; on code annotation
task, our models exceed both AP and MaLSTM by more
than 13% on AUC and 15% on F-measure. It’s reason-
able for UniEmbed to outperform the two strong baseline
models because UniEmbed extracts three levels of infor-
mation (global, local and sequential information) from text
sentence and code snippet to construct the final represen-
tation, while MaLSTM considers only sequential informa-
tion and AP considers global and sequential information.
We also find that joint training strategy didn’t bring much
improvement on these two tasks. One possible reason is that
dup-question and code-anno datasets are large enough for
UniEmbed to learn high-quality representation, while the
knowledge shared between tasks has only small effects com-
pared to the knowledge learned in the enormous datasets.

Code clone detection UniEmbed achieves even more
dominant performance in code clone detection task, espe-
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Table 3: Ablation studies on the validation set (∗ means loss does not converge)

dup-question code-clone code-anno
Methods AUC F-measure AUC F-measure AUC F-measure

w/o glb-info 60.75% 50.05% 50.00%∗ 33.33%∗ 50.02%∗ 33.35%∗

w/o loc-info 64.81% 51.25% 50.00%∗ 33.33%∗ 51.15% 47.54%
w/o seq-info 69.74% 63.88% 50.00%∗ 33.33%∗ 49.95% 48.89%
w/o attention 82.66% 81.29% 76.48% 74.40% 65.59% 65.55%

full model 95.44% 87.70% 87.69% 80.31% 78.21% 71.85%

cially the one trained under joint training strategy. It exceeds
all baseline models by more than 25% on AUC and 20% on
F-measure. The results confirm that exploiting certain three
levels of information from code snippet do help model learn
effective semantic features. Even the state-of-the-art model
CDLH couldn’t achieve the same performance, because it
only leverages lexical and syntactical information. Another
possible reason is that CDLH can only process AST-parsable
code snippet, while not all data in our dataset satisfy this
condition. Thus CDLH’s performance is affected, whereas
our model doesn’t have such restriction. Moreover, note that
code-clone dataset has a much smaller size than the other
two datasets, this may explain why the baseline models and
even the singly trained UniEmbed perform poorly on this
task. Yet, jointly trained UniEmbed maintains high perfor-
mance, it indicates that the knowledge shared between re-
lated tasks can be helpful in representation learning when
training data is insufficient.

Model analysis
What is learned in representation As mentioned in for-
mer sections, we attempt to learn uniform features for both
text sentence and code snippet and we want the cosine dis-
tance between two feature vectors to directly reflect their
similarity. Evaluated on test set, we can observe from the re-
sults in Table 4 that for all types of data, the gaps between the
average cosine distance of similar data pair and of dissimi-
lar data pair are distinguishable, with values 0.4565, 0.4422,
0.2305 corresponding to text pair, code pair, and text-code
pair. The results verify the success of our attempt to learn
semantic representation, in which cosine distance between
two feature vectors reflects their semantic similarity. They
also explain why our model achieves high performance on
the chosen tasks.

Table 4: Cosine distance of learned representation

Dataset Dc(e, p) Dc(e, n) Gap
dup-question

(text pair) 0.5277 0.9842 0.4565

code-clone
(code snippet pair) 0.3366 0.7788 0.4422

code-anno
(text-code snippet pair) 0.7773 1.0078 0.2305

Effects of each information We conduct ablation study to
investigate the effects of each level of information. We dis-

able one level of information each time by setting the cor-
responding values in feature vector to all 0s. ”w/o glb-info”,
”w/o loc-info”, ”w/o seq-info” represent disabling global, lo-
cal, sequential information respectively. As shown in Table
3, on both AUC and F-measure metrics, full model outper-
forms all ablated models by more than 23% on dup-question
dataset, 37% on code-clone dataset and 24% on code-anno
dataset. It indicates that all three levels of information are
necessary in constructing the final representation, removing
any one component will make the model fail to learn capa-
ble semantic features, especially when training data is insuf-
ficient (such as code-clone dataset). The results can also be
explained from another aspect that since we use the simplest
linear classifier to measure similarity, the performance will
highly depend on the quality of the learned representation.
While ablated models extract features of worse quality than
full model.

Effects of attention mechanism To inspect whether at-
tention mechanism helps to construct better representation,
we conduct ablation study on disabling attention layer in
UniEmbed to see how it works. From Table 3, on both AUC
and F-measure metrics, we observe that UniEmbed without
attention mechanism performs worse than full model by 6%
on dup-question dataset, 5% on code-clone dataset and 6%
on code-anno dataset. One reasonable explanation is that at-
tention layer learns different importance for each level of in-
formation, so that more important information takes heavier
proportion in final representation to better reflect semantics.

Conclusion
In this paper, we propose a novel feature learning frame-
work UniEmbed to learn uniform representation for both
natural language and programming language. We develop
specific structures to extract three levels of semantic infor-
mation (global, local and sequential) from text sentence and
code snippet. When both modalities are involved in the task,
we project them into a uniform feature space so that the com-
plementary knowledge in between can be leveraged in their
representation. Ablation study proves the effectiveness of
each component in our model. Experimental results on three
real-world software mining tasks shows that UniEmbed out-
performs state-of-the-art methods and reflects the capacity
of our model in representation learning.

UniEmbed is a general-purpose representation learning
approach. Apart from the three chosen tasks mentioned in
this paper, UniEmbed is easily extended to other software
mining tasks involving single or both modalities, such as bug
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localization, code summarization, code search and program
translation, etc. Pre-trained UniEmbed can also be used to
transform raw textual contents into input semantic features
for other models so that improves their performance in cer-
tain software mining tasks.

Acknowledgments
This research was supported by National Key Research
and Development Program (2017YFB1001903) and NSFC
(61751306). The authors would like to thank Zheng Xie,
Hui-Hui Wei, Marina Romani for proof-reading this paper,
as well as Tencent Corporation for the necessary support.

References
Allamanis, M.; Peng, H.; and Sutton, C. 2016. A con-
volutional attention network for extreme summarization of
source code. In Proceedings of the 33rd International Con-
ference on Machine Learning, 2091–2100.
Bengio, Y.; Courville, A.; and Vincent, P. 2013. Repre-
sentation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence
35(8):1798–1828.
Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014.
Empirical evaluation of gated recurrent neural networks on
sequence modeling. In Proceedings of the 27th Interna-
tional Conference on Neural Information Processing Sys-
tems, Workshop on Deep Learning.
Gay, G.; Haiduc, S.; Marcus, A.; and Menzies, T. 2009. On
the use of relevance feedback in ir-based concept location.
In Proceedings of the 25th International Conference on Soft-
ware Maintenance, 351–360. IEEE.
Hoang, T. V.-D.; Oentaryo, R. J.; Le, T.-D. B.; and Lo,
D. 2018. Network-clustered multi-modal bug localization.
IEEE Transactions on Software Engineering.
Huo, X., and Li, M. 2017. Enhancing the unified features
to locate buggy files by exploiting the sequential nature of
source code. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, 1909–1915. AAAI
Press.
Huo, X.; Li, M.; and Zhou, Z.-H. 2016. Learning unified fea-
tures from natural and programming languages for locating
buggy source code. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence, 1606–1612.
Johnson, R., and Zhang, T. 2014. Effective use of word order
for text categorization with convolutional neural networks.
In Proceedings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, 103–112. Association
for Computational Linguistics.
Joulin, A.; Grave, E.; Bojanowski, P.; and Mikolov, T. 2016.
Bag of tricks for efficient text classification. In Proceed-
ings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short
Papers, 427–431.
Kim, J.; Koh, J.; Kim, Y.; Choi, J.; Hwang, Y.; and Choi,
J. W. 2018. Robust deep multi-modal learning based

on gated information fusion network. arXiv preprint
arXiv:1807.06233.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Lukins, S. K.; Kraft, N. A.; and Etzkorn, L. H. 2010. Source
code retrieval for bug localization using latent dirichlet al-
location. Information and Software Technology 52(9):972–
990.
Mueller, J., and Thyagarajan, A. 2016. Siamese recurrent
architectures for learning sentence similarity. In Proceed-
ings of the 30th AAAI Conference on Artificial Intelligence,
2786–2792.
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing, 1532–1543.
Sajnani, H.; Saini, V.; Svajlenko, J.; Roy, C. K.; and Lopes,
C. V. 2016. Sourcerercc: Scaling code clone detection to
big-code. In Proceedings of the 38th International Confer-
ence on Software Engineering, 1157–1168. IEEE.
Santos, C. d.; Tan, M.; Xiang, B.; and Zhou, B. 2016. At-
tentive pooling networks. arXiv preprint arXiv:1602.03609.
Schroff, F.; Kalenichenko, D.; and Philbin, J. 2015. Facenet:
A unified embedding for face recognition and clustering. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 815–823.
Sridhara, G.; Hill, E.; Muppaneni, D.; Pollock, L.; and
Vijay-Shanker, K. 2010. Towards automatically generat-
ing summary comments for java methods. In Proceedings of
the 25th IEEE/ACM international conference on Automated
software engineering, 43–52. ACM.
Tantithamthavorn, C.; Abebe, S. L.; Hassan, A. E.; Ihara, A.;
and Matsumoto, K. 2018. The impact of ir-based classifier
configuration on the performance and the effort of method-
level bug localization. Information and Software Technol-
ogy.
Wei, H., and Li, M. 2017. Supervised deep features for
software functional clone detection by exploiting lexical and
syntactical information in source code. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence, 3034–3040.
Wei, H., and Li, M. 2018. Positive and unlabeled learn-
ing for detecting software functional clones with adversarial
training. In Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence, 2840–2846.
White, M.; Tufano, M.; Vendome, C.; and Poshyvanyk, D.
2016. Deep learning code fragments for code clone de-
tection. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 87–
98. ACM.

5852


