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Abstract

Due to its low storage cost and fast query speed, hashing
has been recognized to accomplish similarity search in large-
scale multimedia retrieval applications. Particularly, super-
vised hashing has recently received considerable research at-
tention by leveraging the label information to preserve the
pairwise similarities of data points in the Hamming space.
However, there still remain two crucial bottlenecks: 1) the
learning process of the full pairwise similarity preservation
is computationally unaffordable and unscalable to deal with
big data; 2) the available category information of data are
not well-explored to learn discriminative hash functions. To
overcome these challenges, we propose a unified Semantic-
Aware DIscrete Hashing (SADIH) framework, which aims
to directly embed the transformed semantic information into
the asymmetric similarity approximation and discriminative
hashing function learning. Specifically, a semantic-aware la-
tent embedding is introduced to asymmetrically preserve the
full pairwise similarities while skillfully handle the cum-
bersome n × n pairwise similarity matrix. Meanwhile, a
semantic-aware autoencoder is developed to jointly preserve
the data structures in the discriminative latent semantic space
and perform data reconstruction. Moreover, an efficient al-
ternating optimization algorithm is proposed to solve the re-
sulting discrete optimization problem. Extensive experimen-
tal results on multiple large-scale datasets demonstrate that
our SADIH can clearly outperform the state-of-the-art base-
lines with the additional benefit of lower computational costs.

Introduction
In the big data era, recent years have witnessed the ever-
growing volume of multimedia data with high dimensional-
ity. This is made possible by the emergence of large-scale
similarity measurement technique with high computational
efficiency. Different from the traditional indexing technique
(Lew et al. 2006), hashing yields a scalable similarity search
mechanism with acceptable accuracies in the fast Hamming
space (Wang et al. 2018). Technically, hashing generally
compresses the high-dimensional data instances into com-
pact binary codes (typically ≤ 128-dim), in which the simi-
larity and structural information are preserved from the orig-
inal data. In this paper, we will mainly focus on the learning-
based hashing methods that are formulated by the data-
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dependent hash encoding strategy, which has shown better
retrieval performance than data-independent (or learning-
free) hashing schemes, such as locality-sensitive hashing
(LSH) (Gionis et al. 1999) and its variants (Kulis and Grau-
man 2009; Jiang, Que, and Kulis 2015).

A common problem of learning-based hashing methods
is to construct similarity-preserving hash functions, which
generate similar binary codes for nearby data items. Many
such hashing learning methods have been proposed to enable
efficient similarity search and can be broadly grouped into
two categories: unsupervised and supervised hashing.

Unsupervised methods typically encode samples as bi-
nary codes by exploring data distribution without label or
relevances (Zhang et al. 2018b; 2018a). They learn hash
codes/functions based on the semantic gap principle (Smeul-
ders et al. 2000), i.e., the difference in structures formed
within the high- and low-level descriptors. Representative
unsupervised hashing methods include manifold learning
based hashing and quantization based hashing. Manifold
learning based hashing tries to discover the neighborhood
relationship of data points in the learned binary codes, such
as spectral hashing (SH) (Weiss, Torralba, and Fergus 2009),
multiple feature hashing (MFH) (Song et al. 2011), scal-
able graph hashing (SGH) (Jiang and Li 2015) and ordi-
nal constraint hashing (OCH) (Liu et al. 2018). Quantiza-
tion based hashing aims to achieve the minimal quantiza-
tion error, such as iterative quantization (ITQ) (Gong et al.
2013) and quantization-based hashing (Song et al. 2018).
Due to the absence of semantic label information, unsu-
pervised hashing is usually inferior to supervised hashing,
which can produce state-of-the-art retrieval results.

Supervised hashing generates discriminative and compact
hash codes/functions by leveraging the supervised semantic
information from data such as pairwise similarity or rele-
vant feedback. Many supervised hashing methods have been
proposed to enable efficient similarity search. Representa-
tive methods in this group include semi-supervised hash-
ing (SSH) (Wang, Kumar, and Chang 2012), latent factor
hashing (LFH) (Zhang, Zhang, and Li 2014), fast super-
vised hashing (FastH) (Lin et al. 2014), column sampling
based discrete supervised hashing (COSDISH) (Kang, Li,
and Zhou 2016), etc. It has been studied to construct en-
coding functions in a designed kernel space, such as binary
reconstructive embedding (BRE) (Kulis and Darrell 2009),
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kernel-based supervised hashing (KSH) (Liu et al. 2012),
the kernel variant of ITQ (Gong et al. 2013), supervised dis-
crete hashing (SDH) (Shen et al. 2015), SDH with relaxation
(SDHR) (Gui et al. 2016; Zhang et al. 2018c) and fast SDH
(FSDH) (Gui et al. 2018). The kernel based hashing methods
have been shown to achieve promising performance.

To further improve the retrieval performance, many deep
hashing models (Erin Liong et al. 2015; Shen et al. 2018;
Li, Wang, and Kang 2016; Lai et al. 2015; Lin et al. 2015)
have been introduced over the past few years, where the non-
linear feature embeddings learned by deep neural networks
were typically shown to achieve higher performance than
hand-crafted descriptors. As we know, semantic hashing
(Salakhutdinov and Hinton 2009) is the pioneering work of
using deep machine for hashing. However, these deep hash-
ing models are complicated and need pre-training, which
is inefficient in real applications. Moreover, there might be
concern about the encoding time of the training and test data.

Although achieving progress, current supervised
similarity-preserving hashing methods are still facing severe
challenges. First, to avoid using the full n × n pairwise
similarity matrix, these methods employ sampling strategies
in the training phase to reduce the large computation and
memory overhead. In such a case, they fail to capture the
full structures residing on the entire data, which inevitably
results in information loss and unsatisfactory performance.
Their objectives would be suboptimal for realistic search
tasks, and such methods become inappropriate for large-
scale retrieval tasks. Second, only preserving the pairwise
similarities transformed from labels clearly excludes the
category information of data from the training step. In
this way, these methods can not transfer the discriminative
information from labels into the learned binary codes,
resulting in inferior performance. Third, since the discrete
optimization introduced by binary constraint leads to an
NP-hard mixed integer programming problem, most of
them usually solve it by relaxing the binary variables into
continuous ones, followed by thresholding or quantization.
However, such relaxation strategy can amplify the quantiza-
tion errors, which may greatly influence the quality of the
learned binary codes and degrade the performance.

To address the aforementioned problems, we propose
a novel discriminative binary code learning framework,
dubbed Semantic-Aware DIscrete Hashing (SADIH), for
fast scalable supervised hashing. Specifically, we intro-
duce an asymmetric similarity-preserving strategy that can
preserve the discrete constraint and reduce the accumu-
lated quantization error between binary code matrix and the
well-designed latent semantic-aware embedding. During the
learning step, such trick can skillfully handle the huge n×n
pairwise similarity matrix, and preserve the discriminative
category information into the learned binary codes. Mean-
while, we also develop a novel semantic-aware encoder-
decoder paradigm to guarantee the high-quality latent em-
bedding. In particular, an encoder projects the visual fea-
tures of an image into a latent semantic space, and in turn
consider the latent semantic-aware embedding as an input
to a decoder which reconstructs the original visual repre-
sentation. As such, our learning framework not only can ef-

fectively preserve the discriminative semantic information
into the learned binary codes and hashing functions, but ef-
ficiently approximates the full pairwise similarities without
information loss. Furthermore, an alternating algorithm is
developed to solve the resulting problem, where each sub-
problem can be optimized efficiently, yielding satisfactory
solutions.To sum up, the main contributions of this work are:

(1) A novel semantic-aware discrete hashing framework is
proposed to simultaneously consider the full pairwise simi-
larities (n × n) and the category information into the joint
learning objective. SADIH aims to generate discriminative
binary codes which can successfully capture the entire pair-
wise similarities as well as the intrinsic correlations between
visual features and semantics from different categories.

(2) We introduce a latent semantic embedding space
which can reconcile the structural difference between the vi-
sual and semantic spaces, meanwhile preserve the discrimi-
native structures in the learned binary codes.

(3) An asymmetric similarity approximation loss is devel-
oped to reduce the accumulated quantization error between
the learned binary codes and the latent semantic-aware em-
beddings. Meanwhile, a supervised semantic-aware autoen-
coder is constructed to jointly perform the data structural
preservation and data reconstruction. The well-designed al-
ternating optimization algorithm with guaranteed conver-
gence is applied to produce the high-quality hash codes.

Semantic-Aware Discrete Hashing
Basic Formulation
This work mainly focuses on supervised hashing to enable
efficient semantic similarity search by Hamming ranking
of compact hash codes. Suppose we have n d-dimensional
data points, denoted as X = [x1, · · · ,xn] ∈ <d×n, and
their associated semantic labels are Y = [y1, · · · ,yn] ∈
{0, 1}c×n, where c is the number of classes. The i-th col-
umn of matrix Y , i.e. yi = [0, · · · 1, · · · , 0]T ∈ <c, is the
label vector of the i-th sample, and yji = 1 indicates xi

belongs to the j-th class. Notably, supervised hashing also
contains a pairwise similarity matrix S ∈ {−1, 1}n×n ob-
tained from semantic correlations such as labels used in this
paper. Specifically, sij = 1 means that data items i and j
are semantically similar and share at least one label, while
sij = −1 indicates items i and j are semantically dissimilar.

The goal of supervised hashing aims to learn l hash-
ing functions to project the data X into a discriminative
Hamming space, and generate a binary code matrix B =
[b1, · · · , bn] ∈ {−1, 1}l×n. Moreover, the learned binary
codes should preserve the semantic similarities indicated in
S. The commonly-used objective function (Liu et al. 2012)
quantizes the approximation error between the Hamming
affinity and semantic similarity matrix using

min
B
‖rS −BTB‖2F s.t.B ∈ {−1, 1}l×n, (1)

where ‖ · ‖F is the Frobenius norm. In this model, the
inner product of any two binary codes reflects the oppo-
site of the Hamming distance, and can be used to approx-
imate the corresponding similarity labels. Due to its effec-
tiveness, this model has become a standard formulation for
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supervised hashing learning (Zhang, Zhang, and Li 2014;
Lin et al. 2014; Kang, Li, and Zhou 2016). However, there
are still several deficiencies. First, such a symmetric binary
affinity form is limited in matching the real-valued ground
truth. Importantly, the optimization on symmetric discrete
constraint is time-consuming, which makes it hard to adapt
for large-scale datasets (Neyshabur et al. 2013). Second, ow-
ing to its computation and memory prohibition, the full sim-
ilarity matrix S is usually avoided using in the training step.
An alternative strategy is to sample a small subset for train-
ing, which inevitably causes information loss and subopti-
mal results. Third, directly transforming labels into pair-
wise similarities loses the category information of training
data, which can not preserve the discriminative character-
istics into the learned binary codes. Finally, most methods
solve the discrete optimization problem by relaxing the dis-
crete constraint by omitting the sign function. However, the
approximate solution is obviously suboptimal and often gen-
erates low-quality hashing codes.

Therefore, we present an efficient Semantic-Aware DIs-
crete Hashing (SADIH) framework to alleviate the above
limitations. In the method, the asymmetric hamming affin-
ity approximation, latent semantic embedding and encoder-
decoder paradigm are simultaneously considered to guaran-
tee discriminative binary codes and hashing functions.

Objective Function
Asymmetric Similarity Approximation Loss To fully
explore the entire similarities on n available points, we intro-
duce a simple but effective semantic-aware constraint, i.e.,
V = W>Y where W ∈ <c×l, to asymmetrically approx-
imate the ground-truth affinity. Meanwhile, the label infor-
mation are embedded into the latent semantic embedding V .
Particularly, the matrix W> can be viewed as the category-
level basis matrix of the latent semantic features V , because
vi = W>yi, where each item in vi contains the category
partition factor. Moreover, using the real-valued embeddings
can produce more accurate approximation of similarity, and
reduce the accumulated quantization error (Dong, Charikar,
and Li 2008; Luo, Wu, and Xu 2018). Based on the asym-
metric hashing learning (Shrivastava and Li 2014), we re-
place one of the binary codes B in (1), and consider its ro-
bust model

min
B,W

‖lS − VTB‖21

s.t. V = W TY ,B ∈ {−1, 1}l×n, (2)

which ‖A‖21 =
∑n

i=1 ‖ai‖2 denotes the l21-norm of matrix
A and ai is the i-th row of matrix A. The l21-norm is robust
to noise or outliers based on the rotation-invariance property.
It is noteworthy that this simple constraint can enable the
model to effectively exploit all the n data points for training
(shown in optimization) without any sampling. Moreover, it
also can more precisely measure the quantization between
the given similarities S and the learned asymmetric affinity.

Semantic-Aware Autoencoder The discriminative binary
codes for training data can be learned based on model (2),
but there still remain two concerns. On one hand, the latent

semantic embedding only leverages the label information,
while the inherent characteristics embedded in the training
data are not well-explored to capture the instance-level fea-
tures. On the other hand, (2) can not be generalized to the
out-of-sample cases for efficient query generation. To this
end, we formulate the linear semantic-aware autoencoder
scheme, which optimizes against the following objective:

min
{Pi,ci}2i=1,V,W

‖X − (P2(P1X + c11
T ) + c21

T )‖2F

+ γR(P2,P1) s.t. V = W TY ,V = P1X + c11
T , (3)

where P1 ∈ <l×d and P2 ∈ <d×l are the encoding and de-
coding matrices, R(·) = ‖ · ‖2F is the regularization term
to avoid overfitting, c1 and c2 are the biased vectors, and
γ is a weighting parameter. It is clear that this model can
make use of semantic attributes in V as an intermediate
level clue to associate low-level visual features with high-
level semantic information. However, when we project the
visual d-dim features into the lower l-dim (typically l � d)
semantic space, this may encounter the imbalanced projec-
tion problem, i.e. the variances of the projected dimensions
vary severely (Wang, Kumar, and Chang 2012). To this end,
inspired by ITQ (Gong et al. 2013), we may change the co-
ordinates of the whole feature space through an adjustment
rotation. For eliminating the bias variables, we reformulate
the above problem into a relaxed optimization with an or-
thogonal transformation:

min
P1,P2,V,W

‖X − P2V‖2F + β‖V − P1X‖2F + γR(P2)

s.t. V = W TY ,P T
1 P1 = I. (4)

From Eqn. (4), we can see that the preferred latent attributes
satisfy V = P1X with minimum reconstruction error X =
P2V . Given the orthogonal transformation, the overall vari-
ance can be effectively diffused into all the learned dimen-
sions through the adjustment rotation, and the underlying
characteristics hidden in data X are uncovered and trans-
ferred into the semantic embeddings. Importantly, the en-
coder can be used as a linear hash function for new queries.

Joint Objective Function To preserve the interconnection
between the semantic-aware similarity approximation and
preferable latent semantic space construction, SADIH com-
bines the asymmetric similarity approximation loss given
in (2) and semantic-aware autoencoder scheme given in (4)
into one unified learning framework. Such a learning frame-
work can minimize the intractable full pairwise similarity-
preserving error, meanwhile interactively enhances the qual-
ities of the learned binary codes and discriminative latent
semantic-aware embeddings:

min
B,W ,P1,P2,V

‖lS − VTB‖21 + α‖X − P2V‖2F

+ β‖V − P1X‖2F + γR(P2)

s.t.B ∈ {−1, 1}l×n,V = W TY ,P T
1 P1 = I, (5)

where α is a weighting parameter. Furthermore, it is clear
that the first term makes sure the asymmetric correlations
between the discriminative binary codes B and latent se-
mantic representations V . Therefore, the encoding matrix
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P1 can capture the discriminative information embedded in
the latent semantic space, and the hashing codes for out-of-
sample xt can be directly generated by b = sgn(P1xt),
where sgn(·) denotes the element-wise sign function.

Optimization
The key of our optimization is to learn discriminative bi-
nary codes B and find a proper latent-embedding space V
with the data structural preservation P1 and data reconstruc-
tion P2. However, problem (5) is non-convex to all variables,
and involves a discrete constraint, which leads to an NP-hard
problem. Thus, we propose an alternating optimization algo-
rithm to obtain a local minima.

We first rewrite problem (5) as an equivalent form:

min
B,W ,P1,P2

‖lS−
(
W TY

)T
B‖21+α‖X−P2W

TY ‖2F

+ β‖W TY − P1X‖2F + γR(P2,W
TY )

s.t.B ∈ {−1, 1}l×n,P T
1 P1 = I. (6)

Next, we iteratively update each variable with an alternative
manner, i.e., updating one when fixing others.

B-Step: When fixing W , P1 and P2, we can update B
by using two discrete learning strategies. The first learning
scheme optimizes B with a constant-approximation solu-
tion, inspired by (Kang, Li, and Zhou 2016). Specifically,
we push the l21-norm loss to a more strict l1-norm loss, i.e.,

min
B
‖lS−

(
W TY

)T
B‖1 s.t.B ∈ {−1, 1}l×n. (7)

where ‖ · ‖1 denotes the l1-norm. Problem (7) reaches its
minimum when B = sgn(W TQ), where Q = lY S can
be calculated beforehand. We denote this as SADIH-L1.

Alternatively, we can directly optimize the l21-norm loss
with an equivalent transformation. We first define D ∈
<n×n as a diagonal matrix, the i-th diagonal element of
which is defined as dii = 1/2‖ui‖, where ui is the i-th row
of
(
lS − Y TWB

)
. In this way, we need to solve

min
B

Tr
((
lS − Y TWB

)T
D
(
lS − Y TWB

))
s.t.B ∈ {−1, 1}l×n, (8)

which can be equivalently rewritten as

min
B

Tr
(
RTBDBTR

)
− 2tr

(
BTM

)
s.t.B ∈ {−1, 1}l×n, (9)

where R = W TY , M = W TDQ, and Tr(·) is the trace
norm. For this binary quadratic program problem, we em-
ploy the discrete cyclic coordinate descent (DCC) method
(Shen et al. 2015) to sequentially learn each row of B while
fixing other rows. Let b> be the k-th row of B, k = 1, · · · , l,
and B̄ be the matrix of B excluding b. Similarly, let rT and
qT be the k-th row of R and M , respectively. R̄ and M̄ are
the matrix of R excluding r and the matrix of M excluding
q, respectively. Then, we have

Tr
(
R>BDB>R

)
= Tr

((
B̄>R̄+ br>

)
D
(
R̄>B̄ + rb>

))
(10)

= 2Tr
(
br>DR̄>B̄

)
+ Tr

(
br>Drb>

)
+ const.

Since Tr(br>Drb>) = Tr(r>Drb>b) = n
∑

i diir
>r,

this term is a constant w.r.t. b.

Similarly, tr
(
BTM

)
=

[
b>q b>M̄
B̄>q B̄>M̄

]
, and then

tr
(
BTM

)
= q>b+ const. (11)

Therefore, Eqn. (9) can be reformulated as

min
b
Tr
((
r>DR̄>B̄ − q>

)
b
)

s.t. b ∈ {−1, 1}l, (12)

which has a closed-form solution:

b = sgn
(
q − B̄>R̄Dr

)
. (13)

We can see that each bit b is calculated based on the pre-
learned (l-1) bits B̄. We iteratively update each bit until it
converges to a set of optimal codes B.
W -Step: When fixing B, P1 and P2, the objective func-

tion (6) w.r.t. W is degenerated to

min
W

Tr
((
lS − Y TWB

)T
D
(
lS − Y TWB

))
(14)

+α‖X−P2W
TY ‖2F + β‖W TY − P1X‖2F + γ‖W TY ‖2F .

The closed-form solution of W is given by setting the
derivation of (14) to zero, i.e.,

W = L(QDB> + Y X>(αP2 + βP1))

(BDB> + αP2P
T
2 + (β + γ)I)−1, (15)

where L = (Y Y >)−1 can be calculated beforehand.
F -Step: When fixing B, W and P2, problem (6) w.r.t.

P1 becomes

min
P1

‖W TY − P1X‖2F s.t. P T
1 P1 = I, (16)

which can be solved by the following lemma.

Lemma 1. P1 = UV T is the optimal solution to the prob-
lem in Eqn. (16), where U and V are the left and right sin-
gular matrices of the compact Singular Value Decomposi-
tion (SVD) on (XY >W ).

P -Step: Similarly, when fixing other variables, problem
(6) w.r.t. P2 can be re-written as:

min
P2

α‖X−P2W
TY ‖2F + γ‖P2‖2F . (17)

The minimal P2 can be obtained by setting the partial
derivative of Eqn. (17) to zero, and we have

P2 = TXY TW , (18)

where T = (αXX>+γI)−1 can be computed beforehand.
The proposed optimization iteratively updates four vari-

ables until satisfying the convergence criteria. The conver-
gence of the proposed optimization algorithm is guaranteed
by the following theorem.

Theorem 1. The alternating optimization steps of our
method will monotonously decrease the value of the objec-
tive function until it converges to a local optima.
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Table 1: The averaged retrieval result comparison (MAP score and precision of top 100 samples) and computation time ef-
ficiency (in seconds) on CIFAR-10 using 512-dimensional GIST features, and both SUN397 and ImageNet datasets using
4096-dim deep CNN features from VGG19 fc7. The best performances have been displayed in boldface.

Methods CIFAR-10
MAP Score Precision@top100 Computation Time (in second)

# bits 8-bits 16-bits 32-bits 64-bits 96-bits 128-bits 8-bits 16-bits 32-bits 64-bits 96-bits 128-bits 8-bits 16-bits 32-bits 64-bits 96-bits 128-bits
ITQ 0.1528 0.1552 0.1642 0.1700 0.1719 0.1757 0.2012 0.2341 0.2798 0.3035 0.3146 0.3295 0.98 1.40 2.49 4.35 7.01 10.07
SGH 0.1411 0.1522 0.1643 0.1711 0.1759 0.1781 0.1995 0.2487 0.2866 0.3085 0.3280 0.3329 4.47 6.27 8.30 14.62 18.71 25.16
CBE 0.1134 0.1168 0.1335 0.1454 0.1552 0.1564 0.1370 0.1545 0.1927 0.2449 0.2706 0.2791 29.80 29.92 29.90 29.30 29.53 29.53
DSH 0.1441 0.1437 0.1548 0.1589 0.1622 0.1651 0.1649 0.1986 0.2358 0.2498 0.2680 0.2738 0.35 0.39 0.49 0.81 1.03 1.36
MFH 0.1428 0.1483 0.1543 0.1605 0.1649 0.1638 0.1908 0.2410 0.2645 0.2944 0.3146 0.3124 25.33 26.44 35.30 37.94 49.19 55.42
OCH 0.0744 0.1395 0.2299 0.3048 0.3459 0.3720 0.1530 0.3276 0.4895 0.5994 0.6489 0.6765 9.29 9.25 8.97 13.94 14.53 9.76

ITQ-CCA 0.2736 0.3157 0.3361 0.3519 0.3588 0.3552 0.3815 0.4205 0.4417 0.4574 0.4650 0.4634 1.17 2.14 3.36 6.88 11.25 16.62
KSH 0.2477 0.2786 0.3044 0.3202 0.3330 0.3349 0.2511 0.2849 0.3068 0.3164 0.3283 0.3298 38.25 77.04 171.54 354.14 501.57 729.75
LFH 0.2845 0.3849 0.5013 0.5891 0.6144 0.6109 0.2163 0.2889 0.4126 0.5039 0.5353 0.5279 4.13 7.22 12.07 18.25 29.53 40.03

COSDISH 0.4990 0.5573 0.6263 0.6155 0.6399 0.6551 0.4347 0.4818 0.5483 0.5284 0.5591 0.5728 5.65 14.78 34.84 128.13 302.06 541.51
SDH 0.2855 0.3956 0.4478 0.4610 0.4735 0.4789 0.3633 0.4920 0.5298 0.5419 0.5527 0.5543 29.40 70.30 142.73 278.70 537.74 874.45

SDHR 0.2547 0.3782 0.4422 0.4583 0.4727 0.4782 0.3221 0.4783 0.5306 0.5478 0.5503 0.5561 37.08 41.69 54.94 115.12 240.87 278.52
FSDH 0.3211 0.4196 0.4285 0.4629 0.4703 0.4708 0.4170 0.5046 0.5231 0.5399 0.5433 0.5449 7.58 11.45 11.75 8.28 14.00 15.85
FastH 0.2965 0.3679 0.4358 0.4715 0.4917 0.5018 0.3582 0.4414 0.5107 0.5528 0.5751 0.5875 95.51 219.51 302.46 596.94 1013.51 834.36

SADIH 0.4647 0.6992 0.7263 0.7271 0.7367 0.7319 0.4204 0.6404 0.6682 0.6609 0.6703 0.6666 1.37 4.16 19.88 65.30 158.48 315.40
SADIH-L1 0.6131 0.6994 0.7277 0.7298 0.7289 0.7348 0.5487 0.6472 0.6647 0.6673 0.6621 0.6697 0.36 0.41 0.47 0.70 0.79 0.97

Methods SUN397
MAP Score Precision@top100 Computation Time (in second)

# bits 8-bits 16-bits 32-bits 64-bits 96-bits 128-bits 8-bits 16-bits 32-bits 64-bits 96-bits 128-bits 8-bits 16-bits 32-bits 64-bits 96-bits 128-bits
ITQ 0.0138 0.0449 0.1139 0.2304 0.3166 0.3803 0.0177 0.0579 0.1199 0.1955 0.2377 0.2658 6.26 7.04 9.34 13.65 18.32 23.94
SGH 0.0149 0.0516 0.1229 0.2379 0.3164 0.3830 0.0197 0.0726 0.1408 0.2159 0.2619 0.2903 15.23 17.46 21.83 30.41 38.61 46.81
DSH 0.0069 0.0216 0.0480 0.0878 0.1231 0.1612 0.0090 0.0358 0.0667 0.1081 0.1368 0.1615 1.43 1.62 2.16 3.14 4.33 5.51
CBE 0.0035 0.0094 0.0266 0.0814 0.1480 0.2054 0.0058 0.0183 0.0468 0.1063 0.1597 0.1971 116.35 112.35 113.56 113.35 112.76 112.84
MFH 0.0136 0.0464 0.1135 0.2255 0.3116 0.3804 0.0199 0.0664 0.1317 0.2093 0.2556 0.2874 181.95 178.09 175.22 202.37 227.33 246.25
OCH 0.0519 0.1770 0.2302 0.3291 0.3869 0.3655 0.0418 0.1481 0.1978 0.2960 0.3529 0.3233 58.72 50.17 55.71 57.07 57.58 60.73

ITQ-CCA 0.1426 0.2130 0.2725 0.3958 0.4201 0.4177 0.0659 0.1833 0.3092 0.4926 0.5498 0.5567 14.00 14.96 21.44 37.70 28.45 63.39
KSH 0.3400 0.4072 0.4361 0.4276 0.4497 0.4578 0.0605 0.0717 0.0759 0.0745 0.0776 0.0785 58.75 203.49 400.48 770.64 1159.23 1747.01
LFH 0.0530 0.1536 0.2814 0.3533 0.3674 0.4013 0.0454 0.1278 0.2553 0.3183 0.3312 0.3600 58.93 54.11 68.85 92.22 140.28 143.53

COSDISH 0.2135 0.3341 0.5143 0.6832 0.7160 0.7365 0.0796 0.2141 0.4081 0.6096 0.6527 0.6755 33.93 57.69 92.10 258.65 556.82 1026.28
SDH 0.1211 0.2379 0.3415 0.4225 0.4585 0.4867 0.1024 0.3531 0.5070 0.5990 0.6395 0.6672 188.58 191.78 450.55 1014.60 1839.20 1958.06

SDHR 0.1109 0.2249 0.3140 0.4152 0.4688 0.4842 0.0797 0.3212 0.4821 0.6049 0.6489 0.6614 933.43 958.68 1150.00 1692.07 1736.54 1863.96
FSDH 0.1064 0.2112 0.3365 0.4245 0.4604 0.4775 0.0615 0.3224 0.5020 0.6046 0.6451 0.6557 91.21 92.37 91.34 97.81 105.39 116.13
FastH 0.1061 0.2027 0.3070 0.3865 0.4195 0.4386 0.0890 0.2929 0.4676 0.5670 0.5935 0.6203 103.02 198.64 448.35 886.73 785.03 1667.14

SADIH 0.1588 0.5599 0.5909 0.6798 0.7332 0.7655 0.0972 0.5411 0.5578 0.6411 0.6911 0.7156 12.68 20.78 52.64 186.77 398.34 695.19
SADIH-L1 0.2938 0.5491 0.6597 0.7576 0.7762 0.8077 0.1467 0.4472 0.5956 0.7050 0.7250 0.7572 9.72 10.21 10.49 11.18 11.62 11.79

Methods ImageNet
MAP Score Precision@top100 Computation Time (in second)

# bits 8-bits 16-bits 32-bits 64-bits 96-bits 128-bits 8-bits 16-bits 32-bits 64-bits 96-bits 128-bits 8-bits 16-bits 32-bits 64-bits 96-bits 128-bits
ITQ 0.0442 0.1379 0.2626 0.4194 0.4991 0.5531 0.0543 0.1665 0.2816 0.3817 0.4190 0.4475 38.73 40.45 42.87 50.23 59.28 68.59
SGH 0.0386 0.1246 0.2544 0.4158 0.4952 0.5569 0.0459 0.1509 0.2493 0.3381 0.3728 0.3957 38.28 45.24 49.80 57.90 67.90 86.43
DSH 0.0206 0.0504 0.1149 0.1854 0.2886 0.3295 0.0265 0.0755 0.1485 0.2062 0.2735 0.2966 4.65 5.83 6.91 9.59 13.15 18.02
CBE 0.0240 0.0311 0.0554 0.0821 0.1078 0.1573 0.0346 0.0744 0.1672 0.2441 0.3127 0.4098 287.12 254.74 251.37 243.71 245.01 270.34
MFH 0.0340 0.1118 0.2368 0.3937 0.4908 0.5570 0.0446 0.1347 0.2376 0.3274 0.3698 0.3958 616.86 750.02 799.93 808.44 882.59 900.17
OCH 0.1302 0.2720 0.4187 0.5248 0.5705 0.5969 0.2263 0.3728 0.4711 0.5665 0.6976 0.7141 33.27 35.07 36.89 36.12 36.96 37.01

ITQ-CCA 0.1616 0.2735 0.4090 0.6017 0.7278 0.7441 0.0959 0.2627 0.4428 0.6518 0.7671 0.7773 66.18 65.77 65.63 75.71 81.99 110.89
KSH 0.1549 0.2902 0.4115 0.4870 0.5141 0.5282 0.1478 0.2257 0.2757 0.3079 0.3201 0.3251 136.77 237.76 453.38 834.08 1328.50 1565.16
LFH 0.2512 0.4380 0.5576 0.6347 0.4972 0.6604 0.1638 0.5186 0.6519 0.7138 0.6044 0.7337 100.45 105.73 128.35 184.69 219.43 168.22

COSDISH 0.2392 0.5298 0.7304 0.7937 0.8038 0.8092 0.0996 0.4663 0.6943 0.7640 0.7670 0.7740 39.85 61.05 106.87 425.75 848.97 1271.77
SDH 0.2684 0.4631 0.5975 0.6488 0.3597 0.7040 0.1662 0.5377 0.6752 0.7235 0.4397 0.7550 182.21 187.85 210.91 614.88 936.21 1490.15

SDHR 0.2703 0.4637 0.5843 0.6749 0.6653 0.6827 0.1664 0.5417 0.6694 0.7373 0.7404 0.7494 249.32 258.10 281.94 705.89 1138.48 1645.44
FSDH 0.2818 0.4650 0.5987 0.6768 0.7063 0.7187 0.1879 0.5414 0.6775 0.7382 0.7582 0.7631 136.65 149.12 137.81 188.14 192.19 196.87
FastH 0.1613 0.2983 0.4145 0.4803 0.5119 0.5306 0.1502 0.2251 0.2776 0.3045 0.3176 0.3257 116.31 191.69 327.66 798.27 991.33 1369.75

SADIH 0.2587 0.5790 0.7303 0.7964 0.8112 0.8082 0.0817 0.5172 0.7014 0.7660 0.7770 0.7710 7.70 17.21 53.38 188.56 410.69 732.02
SADIH-L1 0.5169 0.7057 0.7767 0.8037 0.8100 0.8165 0.4254 0.6554 0.7360 0.7664 0.7745 0.7848 5.75 5.69 6.07 6.02 6.63 8.03

In experiments, we found that our algorithm usually can
efficiently converge within t = 5 − 8 iterations. The main
computational complexity of our algorithm comes from cal-
culating B of each iteration in O(lcn) for SADIH and
O(nc) for SADIH-L1. Additionally, during optimization,
the maximum complexity of other steps isO(ndc) due to the
property of matrix product and inversion, which is very effi-
cient in practice. In general, the computational complexities
of the proposed optimization algorithm on SADIH learning
is linear to the number of samples O(n).

Experiments
In this section, we conduct extensive evaluations of our dis-
criminative hashing methods on real-world datasets. All the
experiments were implemented on Matlab 2013a on a stan-
dard Window PC with 64 GB RAM.

Datasets: We evaluate the proposed SADIH and SADIH-

L1 on three publicly available benchmark databases:
CIFAR-10 (Krizhevsky and Hinton 2009), Sun397 (Xiao
et al. 2010), and ImageNet (Deng et al. 2009). Cifar-10 is a
labeled subset of 80M tiny images, containing 60, 000 tiny
color images in 10 classes of objects with 6, 000 images per
class. Each image with unique semantic label is represented
by 512-dim GIST features on the 32× 32 pixels. Moreover,
we employ the nonlinear anchor features to improve the in-
terpretation of features as in (Shen et al. 2015). SUN-397
includes around 108k images pictured under 397 different
scene conditions. Each category has at least 100 images.
Each image is represented by 4, 096-dim deep cnn features
from VGG19 fc7 (Simonyan and Zisserman 2014). Ima-
geNet from ILSVRC 2012 has more than 1.2 million images
from 1, 000 categories. In the experiments, we constructed
a retrieval image database including 128K images selected
from the first 100 largest classes from the given training data.
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Figure 1: Precision-Recall curves of different methods with different code lengths on CIFAR-10, SUN397 and ImageNet.

Similarly, the 4, 096-diml deep CNN features from VGG19
fc7 were used for evaluation.

Experimental Settings: Following the previous experi-
mental configurations used in (Shen et al. 2015; Kang, Li,
and Zhou 2016), we randomly split the CIFAR-10 dataset
into a training set (59K images) and a test query set (1, 000
images), which has 100 images per category. In SUN-397,
we randomly sample 100 images from each of the first 18
largest scene categories to formulate 1, 800 query images.
For ImageNet, we randomly select 50 images for each cat-
egory from the validation image dataset to construct the
5, 000 query image dataset. The semantic similarities on
these datasets are measured whether two images share the
same semantic label. For all datasets, we conduct feature
normalization to make each dimension have zero-centered
mean and equal variance.

Baseline Methods and Implementation Details: In ex-
periments, we compare our SADIH and SADIH-L1 with 14
hashing methods including six unsupervised hashing meth-
ods, (i.e., ITQ, SGH, DSH (Jin et al. 2014), CBE, and
OCH) and eight supervised hashing methods (i.e., ITQ-CCA
(Gong et al. 2013), KSH, LFH, COSDISH, SDH, SDHR,
FSDH, FastH). All the compared algorithms were performed
five times with different random initializations, and the av-
eraged experimental results were reported. To make fair
comparison, all the compared methods were reimplemented
using the released source codes given by the correspond-
ing authors. Specifically, we searched the best parameters

carefully for each algorithm by five-folds cross-validation,
or directly employed the default parameters suggested by
the original papers. For graph based method such as KSH
and OCH, using the full semantic information for train-
ing is impossible due to the heavy computation complex-
ity, and 5, 000 samples were selected from the training data
for model construction. For our SSAH, the parameter γ was
empirically set to 0.001. For the parameters α and β, we
should tune it by cross-validation from the candidate set
{0.01, 0.1, 1.0, 5, 10}. The maximum iteration number twas
set to 5, which could assure the best performance.

Evaluation Measures: We adopted three frequently-used
performance metrics (Manning, Raghavan, and others 2008)
to evaluate different methods, i.e. mean average precision
(MAP), the precision-recall curves and mean precision rate
curves of top 1000 returned samples. Moreover, we also
compared the computation time to show efficiency.

Quantitative Results: Table 1 explicitly illustrates the re-
trieval results of different algorithms with MAP and Preci-
sion@top100 as well as the computation time on CIFAR-
10, SUN397 and ImageNet datasets. 1) Generally, super-
vised methods can achieve higher accuracies than unsuper-
vised methods, while OCH and ITQ can lead to competi-
tive performances. Importantly, the unsupervised methods
are unsuitable to deal with large-scale image searching with
large number of classes, such as SUN397 and ImageNet,
while they can handle datasets with fewer categories such as
CIFAR-10. 2) Our SADIH and SADIH-L1 in most cases can
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Figure 2: Precision curves of up to 1000 retrieved samples of different methods with different code lengths on CIFAR-10,
SUN397 and ImageNet. (Better to view in color)

achieve the highest MAP scores with different code lengths,
which demonstrate the efficacy of the proposed framework.
Our SADIH and SADIH-L1 always produce superior perfor-
mance to SDH, FSDH, FastH and SDHR, since our methods
simultaneously consider the category information and pair-
wise similarities, however, other mentioned methods neglect
the similarity preservation. Compared to KSH, LFH and
COSDISH, our methods can make use of the full similari-
ties and discriminative category-level information for learn-
ing effective binary codes, yielding superior performance.
3) SADIH-L1 has a tendency to outperform SADIH, since
l1-norm regularization can generate more accurate approxi-
mation measurement. Increasing the coding lengths can im-
prove the retrieval accuracies, but needs more training time.
4) Supervised methods seem to consume longer computation
time compared to unsupervised ones. However, our SADIH-
L1 is the fastest one in supervised methods, and SADIH can
provide good balance between performance and time.

We further show the precision-recall curves of the com-
pared methods with varying code lengths in Fig. 1. It can
be observed that our methods are consistently better than all
the competing methods, which indicates that our methods
can retrieve more similar samples for a query at any fixed
code length. Moreover, the precision variations w.r.t. differ-
ent number of retrieved samples are illustrated in Fig. 2. We
can observe that our methods are always superior to other
methods, and their precisions are relatively stable with vary-

ing number of returned samples.

Conclusion
In this paper, we proposed a novel joint discriminative hash-
ing framework, dubbed semantic-aware DIscrete Hashing
(SADIH), which could efficiently guarantee the full seman-
tic similarity preservation and discriminative semantic space
construction. SADIH leveraged the asymmetric similarity
approximation loss to preserve the full n× n similarities of
the complete dataset. Meanwhile, the supervised semantic-
aware autoencoder was designed to construct the discrim-
inative semantic embedding space with full data variation
preservation and good data reconstruction. The resulting
problem was efficiently solved by the proposed discrete op-
timization algorithm. Extensive experimental results demon-
strated the superiority of our methods on different large-
scale datasets in terms of different evaluation protocols.
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