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Abstract

Scalable Bayesian sampling is playing an important role in
modern machine learning, especially in the fast-developed
unsupervised-(deep)-learning models. While tremendous
progresses have been achieved via scalable Bayesian sam-
pling such as stochastic gradient MCMC (SG-MCMC) and
Stein variational gradient descent (SVGD), the generated
samples are typically highly correlated. Moreover, their
sample-generation processes are often criticized to be ineffi-
cient. In this paper, we propose a novel self-adversarial learn-
ing framework that automatically learns a conditional gener-
ator to mimic the behavior of a Markov kernel (transition ker-
nel). High-quality samples can be efficiently generated by di-
rect forward passes though a learned generator. Most impor-
tantly, the learning process adopts a self-learning paradigm,
requiring no information on existing Markov kernels, e.g.,
knowledge of how to draw samples from them. Specifically,
our framework learns to use current samples, either from the
generator or pre-provided training data, to update the genera-
tor such that the generated samples progressively approach a
target distribution, thus it is called self-learning. Experiments
on both synthetic and real datasets verify advantages of our
framework, outperforming related methods in terms of both
sampling efficiency and sample quality.

1 Introduction
With the abundance of unlabeled data, Bayesian methods
have been increasingly popular in modern machine learning.
Various real-world applications have greatly benefited from
Bayesian modeling through uncertainty modeling (Blundell
et al. 2015; Zhang et al. 2018), deep generative models
(Feng, Wang, and Liu 2017; Chen et al. 2017) and deep re-
inforcement learning (Osband and Van Roy 2017; Haarnoja
et al. 2017; Liu et al. 2017). The core of Bayesian methods
is efficient Bayesian inference, among which Bayesian sam-
pling stands as one of the most effective tools.

In the setting of big data, recent research has facilitated
the development of scalable Bayesian sampling methods.
There are mainly two directions on developing these meth-
ods, Markov-chain (MC) based and particle-optimization
(PO) based methods. Stochastic gradient Markov chain
Monte Carlo (SG-MCMC) is a family of scalable MC-based
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Bayesian learning algorithms designed to efficiently sam-
ple from a target (posterior) distribution (Welling and Teh
2011; Chen, Fox, and Guestrin 2014; Ding et al. 2014;
Chen, Ding, and Carin 2015). Specifically, SG-MCMC gen-
erates samples from a Markov chain induced by an Itó dif-
fusion. Under a standard setting, samples from SG-MCMC
can approximate a target distribution arbitrarily well given
sufficient samples (Teh, Thiery, and Vollmer 2016; Chen,
Ding, and Carin 2015). By contrast, PO-based sampling
methods such as Stein variational gradient descent (SVGD)
(Liu and Wang 2016) initiate a set of particles (or samples)
from some simple distributions, and update them iteratively
and interactively to approximate a target distribution. Re-
cently, (Chen et al. 2018) proposed a unified Bayesian sam-
pling framework by combing SG-MCMC and SVGD from
a Wasserstein-gradient-flow (WGF) perspective, obtaining
improved performance compared to both SG-MCMC and
SVGD. Our proposed method is partly based on the WGF
theory presented in (Chen et al. 2018).

Though achieving encouraging results, we note two issues
in the aforementioned sampling methods: i) Slow sample
generation: though SG-MCMC and SVGD achieve scalable
sampling by adopting stochastic gradient information, sam-
ple generation is still not efficient enough under complicated
models such as a very deep neural network. The problem is
even more severe in SVGD as each particle needs to interact
with all other particles in the sample-generation process; ii)
Slow mixing: samples tend to be highly correlated, leading
to slow mixing. Actually, it has been shown that diffusion-
based methods such as SG-MCMC might need exponential
time to jump out of local modes (Raginsky, Rakhlin, and Tel-
garsky 2017; Zhang, Liang, and Charikar 2017). Thus more
sample-efficient algorithms are desperate to be designed.

In this paper, we reinterpret Bayesian sampling as learn-
ing a Markov kernel (or a transition kernel), a conditional
probability sequentially mapping an old state (sample) to
a new state. Leveraging advantages of scalable sampling
and recent developments on deep generative models, we
reformulate the sampling process based on the generative-
adversarial-net (GAN) framework (Goodfellow et al. 2014).
The formulation is based on the connection between den-
sity evolution in a Bayesian sampling algorithm and WGFs.
Specifically, a conditional generator which solves the cor-
responding WGF is trained to mimic the sample-generation
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process. In this way, both fast sample generation and fast
sample mixing are achieved.

We consider two settings in our framework to learn the
conditional generators, i.e., i) when samples from the un-
known target distribution are available, and ii) when only the
form of the target distribution is provided. The former case
can be learned by directly adopting standard GAN training
techniques, whereas the later case is much more challeng-
ing. To overcome the challenge, we propose a self-learning
paradigm that adjust samples from the generator itself to
approach the target distribution in a principled way, such
that the adjusted samples can be used as real samples to
train the generator. We call our proposed framework self-
adversarially learned Bayesian sampling. Extensive exper-
iments are performed on both synthetic and real datasets,
demonstrating the effectiveness and efficiency of the pro-
posed framework, relative to existing methods.

2 Preliminaries
This section reviews background of related Bayesian sam-
pling algorithms, e.g., SG-MCMC, SVGD and particle-
optimization Bayesian sampling (POS) (Chen et al. 2018).

2.1 Stochastic gradient MCMC

Given observations D = {d(i)}Ni=1, we aim at drawing
samples from a target posterior distribution p(x|D) with
model parameters x ∈ Rd. In Bayesian modeling, we write
p(x|D) ∝ exp(−U(x)), where U(x) , − log(p(x)) −∑N
i=1 log p(d(i) |x) is called the potential energy (nega-

tive log unnormalized posterior). SG-MCMC is a scalable
Bayesian sampling method, which takes stochastic gradient
information of the potential energy into consideration. Let
∇xŨ(x) , −∇x[(log(p(x)) + N

n

∑n
i=1 log p(dπi |x)] be a

stochastic version of ∇xU(x) with πi the i-th element of a
random permutation of [1, · · · , N ]. The stochastic gradient
Langevin dynamic (SGLD) stands as the first SG-MCMC
algorithm (Welling and Teh 2011), endowing the following
update rule (samples are indexed by `):

x`+1 = x`−ε`+1∇xŨ(x`) +
√

2ε`+1 ζ`+1, (1)

where {ε`} is a stepsize sequence, and ζ` ∼ N (0, Id).
Further development on SG-MCMC methods leads to sev-
eral variants of SGLD by introducing auxiliary variables
into the corresponding dynamics systems (Ding et al. 2014;
Chen, Fox, and Guestrin 2014). With samples {x`}Mi=1
from a sampler, one can approximate statistics of a func-
tion f(x), e.g., the posterior expectation is approximated as
Ex∼p(x |D)[f(x)] ≈ 1

M

∑M
i=1 f(x`).

2.2 Stein variational gradient descent

Different from SG-MCMC, SVGD is derived from a
particle-optimization perspective (Liu and Wang 2016).
It iteratively and interactively updates a set of particles
{x(i)

` }Mi=1 drawn from some initial distribution. The updat-

ing rule follows x(i)
`+1 = x

(i)
` + ε

M∆x
(i)
` with

∆x
(i)
` ,

M∑
j=1

[−∇
x
(j)
`

U(x
(j)
` )κ(x

(i)
` ,x

(j)
` )+

∇
x
(j)
`

κ(x
(i)
` ,x

(j)
` )],

(2)

where κ(·, ·) is a positive definite kernel, e.g., the RBF ker-
nel κ(x(i),x(j)) = exp(−‖x(i)−x(j) ‖22/h) with band-
width h, and ε is the step size. It is shown that (2) is equiv-
alent to minimizing the Kullback-Leibler (KL) divergence
KL(q(x)||p(x |D)), where q is the underlying density of
the particles. Consequently, SVGD drives the particles to
asymptotically distributed as the target distribution.

2.3 Particle-optimization sampling
Compared with SVGD, an instance of the POS framework
(Chen et al. 2018), samples from SG-MCMC are likely
highly correlated due to the property of Markovian chains.
The POS framework alleviate the issue by interpreting both
SG-MCMC and SVGD as WGFs on the space of prob-
ability measures P(Ω), and proposing a unified particle-
optimization framework for efficient Bayesian sampling.

Specifically, the POS framework translates Bayesian sam-
pling to solving a partial differential equation defined on
P(Ω) with Ω ⊂ Rd, defined as:

∂tµt +∇ · (vt µt) = 0 . (3)

Here µt is an absolutely continuous curve on P(Ω) and vt
is a vector field describing the direction of sample evolu-
tions. In WGFs, vt is related to what is known as energy
functional E(µ), mapping a probability measure µ to a real
value, i.e. E : Rd → R, via the equation (Ambrosio, Gigli,
and Savaré 2005): vt = −∇ δE

δµt
(µt), where δE

δµt
is called

the first variation of E at µt, with evolved directions con-
strained on the tangent space of the probability manifold.
Consequently, gradient flows on P(Ω) can be written as

∂tµt = −∇ · (vt µt) = ∇ ·
(
µt∇(

δE

δµt
(µt))

)
. (4)

Solving by discrete gradient flows An exact solution to
the WGF formula (4) is generally infeasible. A typical so-
lution is to approximate the continuous-time solution of
(4) with discrete-time flows, called discrete gradient flows
(DGFs). Denote Ps(Rd) to be the space of probability mea-
sures with finite 2nd-order moments, and define the follow-
ing optimization problem with a step size ε:

Jh(µ) , arg min
ν∈Ps(Rd)

{
1

2ε
W 2

2 (µ, ν) + E(ν)

}
, (5)

where W 2
2 (µ, ν) denotes the Wasserstein distance between

µ and ν. Here E(ν) is such that p , arg minν E(ν) cor-
responds to the target distribution. The idea of DGFs is to
approximate the continuous-time solution µt from (4) via a
composition of a sequence of T/ε discrete solutions (µ̃`)

T/ε
`=1

of (5), i.e.,
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µ̃` , Jh(µ̃`−1) = Jh(Jh(· · ·µ0)) ≈ µt . (6)

The DGF method is the gradient-descent analogy on Eu-
clidean space for ν. One can show that when ε → 0, the
solution from DGFs (6) converges to the true flow (4) for all
` (Craig 2014).

3 Self-Adversarially Learned Bayesian
Sampling

In this section, we develop a GAN-based framework to ef-
ficiently solve the DGF problem (6), avoiding the compu-
tational complexity of the original particle-approximation-
based methods (Chen et al. 2018). Based on this, more
powerful and flexible approximations with a self-adversarial
learning scheme are developed.

3.1 Reformulating POS as conditional GANs
We first specify the functional energyE(ν) in (5). For popu-
lar sampling methods such as SG-MCMC and SVGD, E(ν)
has been shown to be the KL-divergence between ν(x)
and the target distribution p(x |D)1. In this case, the DGF
method described above becomes the well-known Jordan-
Kinderlehrer-Otto scheme (JKO) (Jordan, Kinderlehrer, and
Otto 1998). For convenience, we instead define the func-
tional energy as the Jensen-Shannon divergence (JSD) be-
tween ν(x) and p(x |D). Note the JSD also endows the con-
vexity property, rendering a unique optimal solution as for
the KL-divergence. Consequently, the DGF (5) becomes

Jh(µ) ≈ arg min
ν∈Ps(Rd)

{ α
2ε
W 2

2 (µ, ν) + JSD(ν‖p)
}
, (7)

where α is a tunable parameter.
Now solving the WGF (4) is equivalent to composing re-

sults from a sequence of optimizations defined in (7) via (6).
As a result, ν is optimized sequentially, each time condition-
ing on its previous value. In addition, the JSD is well-known
to be the objective function of GAN. Consequently, the op-
timization problem (7) can be reformulated as a conditional
GAN, where ν is defined as an implicit distribution induced
by a conditional generator G. Specifically, G is designed to
take an old sample and random noise as input, and outputs
the updated sample. The W2 term in (7) regularizes the out-
puts such that they are not too far away from their input sam-
ples. According to the GAN theory (Goodfellow et al. 2014),
(7) is equivalent to the following objective:

L = min
G

max
D

Ex∼pd(x) [logD(x)] (8)

+Ez∼pz(z) [log(1−D(G(x̃, z)))] +
α

2ε
W 2

2 (pG(x̃), p(x̃))

where pd(·) denotes the true data distribution, x̃ is the previ-
ous sample from the generatorGwhose implicit distribution
is denoted as p(x̃); pG(x̃) denotes the implicit distribution
of the outputG(x̃, z); andD(·) is a discriminator network to

1Though the metric for SVGD is defined as a variant of the
Wasserstein distance calledH-Wasserstein distance (Liu 2017).

distinguish an input to be real or fake. A conditional genera-
tor is required because the output is correlated with the input
via the W2 term. The objective (8) is illustrated in Figure 1
(left).

G

D!"

#

real samples
G

D!"

#

self
learning

Figure 1: Graphs of the proposed framework with real sam-
ples (left) and a self-learning component (right). “G” rep-
resents generator, “D” represents discriminator, and “W2”
corresponds to the Wasserstein regularizer in (8). Dash lines
indicates gradients not flowing back in backpropagation.

We note two differences between our formulation (8) and
the standard GAN: i) Performing stochastic gradient de-
scend (SGD) for learning is challenging due to the existence
of the W2 regularization term; and ii) The real sample x
might not be available in training. In the following, we ad-
dress the first problem by deriving an approximate form for
W2 in Section 3.2, by assuming the availability of real/true
data x. We then proceed to solve the second problem by
proposing a self-adversarial-learning component to automat-
ically adjust samples from the generator such that they ap-
proach real samples in Section 3.3.

3.2 Adversarially-learning Bayesian sampling
Approximating the Wasserstein regularizer Following
(Chen et al. 2018), we use particle approximation to
deal with the Wasserstein term in (8). Let (x̃

(i)
− )Mi=1 be

a minibatch of input samples from the generator (sam-
ples from last step), and (x̃(i))Mi=1 be the output sam-
ples. Using samples/particles to approximate the W2 in (8),
W 2

2 (pG(x̃), p(x̃)) is approximated as

W 2
2 (pG(x̃), p(x̃)) ≈ inf

pij

∑
i,j

pijc(x̃
(i), x̃

(j)
− ) (9)

s.t.
∑
j

pij =
1

M
,
∑
i

pij =
1

M
,

where c(x̃(i), x̃
(j)
− ) , ‖x̃(i) − x̃

(j)
− ‖22 , cij . Now the goal

is turned into solving for the optimal {pij}. Introducing La-
grangian multipliers {αi, βi} to deal with the constraints,
and adding an entropy regularized term for {pij}, the dual
problem can be written as

L({pij}, {αi}, {βi}) = λ
∑
i,j

pij log pij + pijcij

+
∑
i

αi(
∑
j

pij −
1

M
) +

∑
j

βj(
∑
i

pij −
1

M
)

(10)
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Solving for (10), the optimal pij endows a forms of p∗ij =

uie
−cij/λvj , where ui , e−

1
2−

αi
λ , vj = e−

1
2−

βj
λ . Now sub-

stituting the optimal p∗ij back to (9), the Wasserstein distance
can be approximated as:

W 2
2 (pG(x̃), p(x̃)) ≈ γ

∑
i,j

cije
−cij/λ , (11)

where the original ui and vj have been merged into the con-
stant γ for simplicity.

Adversarially-learned Bayesian sampling Given the ap-
proximation (11) for W2 and real training data x, gradi-
ents of the generator parameters can be readily calculated
by backpropagation, making generator update with SGD
readily available. We call this version of our framework
Adversarially-learned Markovian chain (AL-MC), with de-
tailed algorithm given in the Supplementary Material (SM)
on our homepage.

3.3 Self-adversarially learned Bayesian sampling
A more challenging setting in practice is that real samples
are not readily available, e.g., in posterior sampling where
only an (unnormalized) posterior distribution is provided.
This section addresses the problem of how to learn a genera-
tor to generate effective samples only with such information.

Our basic idea is to add a self-learning module that can
automatically adjust the current samples from the genera-
tor to approach a target distribution. These adjusted sam-
ples are then used as real data to update both the generator
and discriminator gradually. This idea is illustrated in Fig-
ure 1 (right). Based on an unnormalized target distribution,
we consider two settings:

Real data generation with approximate Bayesian sam-
pling In this case, one is assume to be able to directly
draw approximate samples from a target distribution, based
on the previous outputs of the generator. This procedure can
be done by adopting existing effective approximate samplers
such as SG-MCMC and SVGD. Specifically, let the previous
outputs from the generator be {x̃(i)

t }Mi=1, the real samples for
next generator update are then approximated as

{x(i)
t+1}mi=1 = SG-MCMC({x̃(i)

t }mi=1) or

SVGD({x̃(i)
t }mi=1) ,

where SG-MCMC(·) or SVGD(·) means running one or
several SG-MCMC/SVGD updates on the input samples to-
ward the target distribution. Based on these approximate real
samples, the generator update then proceeds as what AL-MC
does described in the last section.

One can easily see that the effectiveness of this learning
scheme highly depends on the approximate sampling algo-
rithms, e.g., SG-MCMC or SVGD. Empirically, we usually
observe samples from the generator collapsed to one mode
on a multi-mode target distribution. The reason is that when
modes are too far away from each other, making samples
jump from one mode to another with SG-MCMC or SVGD

typically takes a long time, and sometimes they even fail to
move. This misleads the generator to be trained to gener-
ate samples only on one mode of the target distribution. In
the following, we propose a novel self-adversarial learning
module to overcome this issue, which does not even need
samples from an approximate sampler.

Real-data generation with self learning Developed on
ideas from (Han and Liu 2018), we propose a self-learning
scheme which can automatically adjust samples from a gen-
erator by only relying on gradient information from the cur-
rent sample density, instead of on the true gradient informa-
tion of the target distribution. Specifically, let the current in-
duced distribution from the generator be ν (an implicit distri-
bution without an explicit form) with corresponding samples
{x(1), · · · ,x(M)}. The output of the self-learning module in
Figure 1 (right) is defined as:

x(i) ← x(i) +
ε

Z

M∑
j=1

ωj

[
∇x(j) log ν(x(j))κ(x(i),x(j))

+∇x(j)κ(x(i),x(j))
]
, (12)

where ωj = ν(x(j))/p(x(j) |D), and Z ,
∑
j ωj . Accord-

ing to (Han and Liu 2018), the distribution of {x(i)} is guar-
anteed to asymptotically converge to p(x |D).

Note the issue in the above update is that there are no ex-
plicit forms for both ν(x) and ∇x log ν(x) as ν is an im-
plicit distribution. Therefore, we adopt density estimation
techniques for approximation. For ν(x), we use the popu-
lar kernel density estimator (Guidoum 2015), i.e.,

ν(x) ≈ 1

M

M∑
i=1

κ∗(x,x(i)), (13)

where κ∗ is a positive kernel in our paper. For ∇x log ν(x),
we apply the recently developed Stein gradient estimator (Li
and Turner 2018), defined as

∇x log ν(x) ≈ − (κ+ η I)
−1

M∑
i=1

∇x(i)κ∗(x,x(i)) (14)

where κ is a kernel matrix with Kij = κ∗(x(i),x(j)). The
Stein gradient estimator has been shown to significantly out-
perform existing gradient estimator methods (Li and Turner
2018). Note we use two forms of RBF kernels κ∗(x(i),x(j))
with bandwidth h∗ and κ(x(i),x(j)) with bandwidth h to
allow flexibility. κ is used in SVGD, and κ∗ is used to ap-
proximate the density and the log-posterior gradient. Poste-
rior sampling with (12) is an instance of the SVGD-without-
gradient framework (Han and Liu 2018). We denote the up-
date (12) as approximate gradient SVGD (AG-SVGD), and
will show impressive performances compared to standard
SG-MCMC or SVGD in the experiments.

Taking AG-SVGD as the self-learning module in Figure 1
(right), we obtain what is called self-adversarially-learning
Markov chain (SAL-MC) sampler, described below.
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The SAL-MC sampler The training procedure is given
in the first part of Algorithm 1, where AG-SVGD is used
to generate approximate real samples from a target distri-
bution. This procedure would gradually guide the genera-
tor to generate real samples as the stationary distribution of
AG-SVGD is the target distribution. In addition, this self-
adjusted behavior makes samples jump out of local modes
easier, leading to much better performance compared to the
one using SG-MCMC or SVGD to generate real samples, as
will be shown in the experiments. We also find that multi-
ple updates of the discriminator per generator update can in-
crease effective sample size (ESS). After training, only the

Algorithm 1: SAL-MC training and sampling

Input : x̃0 ∼ N (0, I), ξ ∼ N (0, σ2 I), m and S = ∅
Output: Transition operator G and samples set S
1. SAL-MC training;
for t=1, 2 · · · do

// Adjust particles:
xt ← AG-SVGD(x̃t−1)
// Adversarial training between xt and G(x̃t−1, ξ):
for i=1, 2 · · ·m do

train the discriminator with the objective (8)
end
train the generator with the objective (8)
// Update adversarially-learned particles:
x̃t ← G(x̃t−1, ξ)
for i=1, 2 · · ·m do

x̃t ← G(x̃t, ξ)
end

end
2. SAL-MC sampling;
for l=1, 2 · · · do

x̃l ← G(x̃l−1, ξ)
no MH step and directly add x̃l to S

end

conditional generatorG is adopted to generate a sequence of
samples via the following generative process:

x̃t+1 = G(x̃t, ξ) , (15)

where ξ is a random noise drawn from a simple distribution
such as an isotropy multivariate GaussianN (0, σ2 I). In this
way, G is taken as a transition operator of a Markov chain.

Unlike SG-MCMC and SVGD, no gradient information
from the target distribution is needed, leading to fast sample
generation only through forward passes of a neural network.
In addition, the generator allows distant jumps between con-
secutive samples via the complex transformation in G, mak-
ing samples mix faster. In practice, we do not apply any
burn-in steps or thinning methods on the samples, while it
still shows a good convergence property with high ESS, as
will be demonstrated in the experiments.

4 Experiments
In this section, we first examine the effectiveness of AG-
SVGD with stochastic gradient estimations for direct sam-
pling, and compare it with standard SGLD and the recently

proposed Annealed-SVGD (A-SVGD) (Han and Liu 2018).
We then apply the proposed SAL-MC framework on a set of
multi-mode synthetic distributions, as well as on Bayesian
Logistic Regression (BLR) tasks. We compare SAL-MC
with the recently developed A-NICE-MC method (Song,
Zhao, and Ermon 2017), which is also based on adversarial
training. Finally, we apply our AL-MC algorithm for image
generation trained on real samples.

4.1 Verification of AG-SVGD
We conduct experiments on two multi-mode toy examples,
a 5D Gaussian Mixture Model (GMM) distributed in an ag-
gregation state and a challenging 2D-GMM distribution with
distant modes and varied variances. We use the same RBF
kernel and the median trick for AG-SVGD and A-SVGD.
As suggested by (Welling and Teh 2011), a polynomially-
decayed step size εt = a/(t+ 1)0.55 is used in SGLD for
a fair comparison. We use samples to approximate the mean
and variance of the distributions, measured by mean squared
errors (MSE) w.r.t.true values. The results are averaged over
20 random runs with 500 iterations in each run. To be consis-
tent with (Han and Liu 2018), we also use RBF kernels and
the median trick when calculating maximum mean discrep-
ancy (MMD) between the sample approximation and true
distribution for all the three methods.

The relatively simple 5D mixture distribution endows 10
modes. Figure 2 compares the convergence results of the
three methods by varying sample sizes. Different from A-
SVGD, our AG-SVGD does not need gradient informa-
tion from the target distribution. Surprisingly, however, AG-
SVGD is comparable to A-SVGD when the number of parti-
cles is big enough. Furthermore, AG-SVGD obtains the best
estimation of variance among the three algorithms. More-
over, AG-SVGD has a slightly better convergence property
when sample size is small. In contrast, SGLD performs the
worse due to the noisy updates and slow mixing samples.

Figure 2: Simulation results on Mog10

Figure 3: Samples on Mog4. From left to right: AG-SVGD,
A-SVGD and SGLD.
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Figure 4: SAL-MC on Mog6. Left: without MH; Middle:
with MH.

Figure 5: Convergence behavior of SAL-MC on Mog6. Ac-
ceptance rate in the third plot (without MH steps) denotes
the ratio of the proposed-sample probability to current-
sample probability, i.e., p(x̃t+1)/p(x̃t))

For the challenging 2D-GMM dataset Mog4, the samples
obtained are visualized in Figure 3. Again, we use the same
bandwidth of h = 0.01 ∗ median for AG-SVGD and A-
SVGD. Parameters of the gradient estimator are set among
h∗ = {0.5, 1, 2, 4, 8, 10} and η = {0.05, 0.1, 1, 5, 10, 15},
selected by a grid search. The initial particles are empiri-
cally drawn fromN (0, 2.5I). As can be seen, both A-SVGD
and SGLD somewhat fail to balance samples from different
modes, whereas our AG-SVGD is able to travel better be-
tween low and high density regions, leading to a more accu-
rate approximation. In the following, the well-validated AG-
SVGD is applied in SAL-MC samplers as the self-learning
module, which is tested on a number of datasets.

Table 1: ESS (2000 maximum) and ESS speed on synthetic
distributions of both methods

ESS / (ESS/s) Ring Mog2 Mog6 Ring5

SAL-MC - 1635/121138 1435/72691 1212/65287 -
MH 1561/25624 1172/17531 978/12235 414/16287

A-NICE-MC - N/A N/A N/A N/A
MH 2000/43887 951/17216 889/11745 335/6022

Figure 6: SAL sampler results of Ring under two settings

4.2 SAL-MC on synthetic datasets
Next we demonstrate the effectiveness of SAL-MC by com-
paring it with A-NICE-MC (Song, Zhao, and Ermon 2017).
We adopt the Ring, Mog2, Mog6 and Ring5 datasets used
in A-NICE-MC, and measure the efficiency of a MCMC
method in terms of ESS (2000 maximum) and ESS per sec-
ond. The smallest ESS among all dimensions is reported.
More details are provided in SM. The stochastic term ξ in
the algorithm is drawn from N (0, 5 I) for all experiments.
Since A-NICE-MC requires a Metropolis-Hastings (MH)
step to accept or reject a sample, we also test the MH step in
our algorithm.

The results are shown in Table 1, where SAL-MC con-
sistently outperforms A-NICE-MC. Interestingly, A-NICE-
MC collapses without MH steps, whereas SAL-MC works
similarly with or without a MH step. In addition, it is ob-
served that both POS and SGLD achieve a very low ESS
that is around 10. We also calculate the Gelman-Rubin con-
vergence statistic R̂ (Gelman et al. 1995; Brooks and Gel-
man 1998), a common convergence diagnostic using mul-
tiple chains to check for the convergence of an algorithm.
Typically, a values of R̂ close to one (e.g., less than 1.1) is a
good indicator of convergence. It is observed SAL-MC ob-
tains R̂ = 1.00 using 32 chains for all tasks.

We further illustrate samples drawn from the Mog6 ex-
ample in the first two scatter plots of Figure 4. As can be
seen, SAL-MC is able to learn the six modes reasonably
well, no matter if it is with or without the MH step. With-
out MH, SAL-MC tends to be able to generate more sam-
ples in low-density regions in between different modes. Note
appropriate injected noise ξ should be chosen because too
small noise makes distant jumps difficult, while too large
noise makes the convergence slower with fewer effective
samples. The rightmost plot of Figure 4 together with Fig-
ure 5 demonstrate the proposed SAL-MC endows nice con-
vergence properties in terms of rapid decay of MMD (ef-
ficiency and low bias), low autocorrelation (low variance),
and high acceptance rates.

We also compare the settings of single and multiple chains
in SAL-MC with equal number of samples. Specifically,
for the single-chain setting, a sample is initialized from
x0 ∼ N (0, I), followed by 200 updates from SAL-MC to
form 200 samples. For the multiple-chain setting, we initial-
ize 200 samples followed by a single-step update to form the
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Figure 7: Sampling results of digits for ξ ∼ N (0, 0.5I) (top) and ξ = 0 (bottom). Each row represents 50 consecutive samples
from the same chain. The sampler with ξ ∼ N (0, 0.5I) mixes well by generating samples from different modes easily.

final 200 samples. The results on Ring are visualized in Fig-
ure 6, from which we can see both settings perform similarly
with well approximate samples from the target distribution.

Figure 8: ESS and test accuracy with respect to training
epochs averaged by 10 different runs. (German dataset)

Figure 9: Sampling results of faces for ξ ∼ N (0, 0.5I) (top)
and ξ = 0 (bottom). Each row represents 24 consecutive
samples from the same chain.

4.3 SAL-MC for BLR
We further compare SAL-MC with A-NICE-MC on several
BLR tasks for scalable Bayesian posterior sampling. Three
datasets, Heart (532-13), Australian (690-14) and German
(1000-24), are used, where (a-b) means a dataset with a
samples and feature dimensionality b. The mini-batch size
for training is 64; and the injected noise ξ is drawn from
N (0, I) for all tasks.

The ESS and ESS speed are shown in Table 2, which are
calculated after 20K training epochs. With a MH step, SAL-
MC tends to generate relatively highly-correlated samples

with high rejection rates. Nerveless, it is still better than A-
NICE-MC, which, unfortunately, does not even work with-
out MH steps. We also evaluate BLR in terms of testing
accuracies, which are calculated by averaging over 10 runs
with 32 chains. The models are trained on a random 80% of
the datasets and tested on the remaining 20% in each run.
The results are respectively 84.10%, 88.38% and 80.32%
on Heart, Australian and German datasets for SAL-MC,
which are the same as A-NICE-MC (Song, Zhao, and Ermon
2017). However, as shown in Figure 8, SAL-MC obtains
much better ESS. The experiments also indicate A-NICE-
MC must take 20K training iterations to get the highest ESS
(which is much lower than SAL-MC as shown in Table 2).

Table 2: ESS (2000 maximum) and ESS speed for BLR.
ESS / (ESS/s) Heart Australian German

SAL-MC - 1683/93140 1385/70655 1897/86512
MH 1/10 1/8 1/14

A-NICE-MC - N/A N/A N/A
MH 663/10939 596/9834 483/7848

4.4 AL-MC for image synthesize
We finally test AL-MC, a variant with only real samples
available in training, for image synthesis on MNIST and
CelebA datasets. The balance factor of Wasserstein regular-
ization term in (8) is set to α = 0.1.

The generated samples are visualized in Figure 7 and Fig-
ure 9. For MNIST, when a sampler is well trained, the sam-
ple distribution over 10 classes on the generated samples
should be relatively uniform in order to match that of the
training-data statistics. To verify this, we classify the gener-
ated samples with a pre-trained deep-CNN MNIST classifier
(with a 99.1% accuracy). We calculate the class distribu-
tion on two settings with different injected noise, ξ = 0 and
ξ ∼ N (0, 0.5I). The empirical distributions of the ten digits
are indeed even. We also plot the digits generated from the
learned Markov chain in Figure 7, from which we can see
in the case of ξ ∼ N (0, 0.5I), the sampler can make distant
jumps easily; whereas when ξ = 0, transitions seem to be
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very smooth, thus it needs longer time to generate all digits
from the ten classes. Similar results on CelebA, though not
as obvious, are observed in Figure 9. More detailed results
are included in the SM.

5 Conclusion
Motivated by the WGF theory, we present self-adversarially
learned Bayesian sampling, a generative model learning
to draw samples from a target distribution. Two settings,
i.e. whether or not true samples are provided as training
data, are considered. When learning without true samples,
a self-learning mechanism is proposed to automatically ad-
just samples from the current generator to approach a target
distribution. Our method is fully automatic, and is fast and
effective in sample generation. Experiments on both syn-
thetic and real datasets demonstrate the effectiveness of our
framework, which endows good convergence property while
is able to generate much less correlated samples, relative to
existing methods.
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