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Abstract

3D image segmentation plays an important role in biomedi-
cal image analysis. Many 2D and 3D deep learning models
have achieved state-of-the-art segmentation performance on
3D biomedical image datasets. Yet, 2D and 3D models have
their own strengths and weaknesses, and by unifying them to-
gether, one may be able to achieve more accurate results. In
this paper, we propose a new ensemble learning framework
for 3D biomedical image segmentation that combines the
merits of 2D and 3D models. First, we develop a fully convo-
lutional network based meta-learner to learn how to improve
the results from 2D and 3D models (base-learners). Then, to
minimize over-fitting for our sophisticated meta-learner, we
devise a new training method that uses the results of the base-
learners as multiple versions of “ground truths”. Furthermore,
since our new meta-learner training scheme does not de-
pend on manual annotation, it can utilize abundant unlabeled
3D image data to further improve the model. Extensive ex-
periments on two public datasets (the HVSMR 2016 Chal-
lenge dataset and the mouse piriform cortex dataset) show
that our approach is effective under fully-supervised, semi-
supervised, and transductive settings, and attains superior per-
formance over state-of-the-art image segmentation methods.

1 Introduction
3D image segmentation plays an important role in biomed-
ical image analysis (e.g., segmenting the whole heart to di-
agnose cardiac diseases (Pace et al. 2015; Yu et al. 2017)
and segmenting neuronal structures to identify cortical con-
nectivity (Lee et al. 2015; Shen et al. 2017)). With recent
rapid advances in deep learning, many 2D (Shen et al. 2017;
Wolterink et al. 2017) and 3D (Yu et al. 2017; Çiçek et
al. 2016; Chen et al. 2017) convolutional neural networks
(CNNs) have been developed to attain state-of-the-art seg-
mentation results on various 3D biomedical image datasets
(Pace et al. 2015; Shen et al. 2017). However, due to the lim-
itations of both GPU memory and computing power, when
designing 2D/3D CNNs for 3D biomedical image segmen-
tation, the trade-off between the field of view and utilization
of inter-slice information in 3D images remains a major con-
cern. For example, 3D CNNs attempt to fully utilize 3D im-
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age information but only have a limited field of view (e.g.,
64 × 64 × 64 (Yu et al. 2017)), while 2D CNNs can have
a much larger field of view (e.g., 572 × 572 (Ronneberger,
Fischer, and Brox 2015)) but are not able to fully explore
inter-slice information.

Many methods have been proposed to circumvent this
trade-off by carefully designing the structures of 2D and
3D CNNs. Their main ideas can be broadly classified into
two categories. The models in the first category selectively
choose the input data. For example, the tri-planar schemes
(Wolterink et al. 2017; Prasoon et al. 2013) use only three
orthogonal planes (i.e., the xy, yz, and xz planes) instead of
the whole 3D image, aiming to utilize inter-slice information
without sacrificing the field of view. The models in the sec-
ond category first summarize intra-slice information using
2D CNNs and then use the distilled information as an (extra)
input to their 3D network component. For example, in (Lee
et al. 2015), intra-slice information is first extracted using
a 2D CNN (VD2D) and then passed to the 3D component
(VD2D3D) via recursive training. In (Chen et al. 2016b), its
recurrent neural network (RNN) component directly uses the
results of 2D CNNs as input to compute 3D segmentation.

However, these methods still have considerable draw-
backs. Tri-planar schemes (Wolterink et al. 2017; Prasoon
et al. 2013) use only a small fraction of 3D image infor-
mation and the computation cost is not reduced but shifted
to the inference stage (a tri-planar scheme can only predict
one voxel at a time, which is very slow when predicting new
3D images). For models that first summarize intra-slice in-
formation, the asymmetry nature of the network design (first
2D, then 3D) may hinder a full utilization of 3D image infor-
mation (2D results may dominate since they are much easier
to be interpreted than raw images in the 3D stage).

In this paper, we explore a different perspective. Instead
of designing new network structures to circumvent the trade-
off between field of view and inter-slice information, we ad-
dress this difficulty by developing a new ensemble learning
framework for 3D biomedical image segmentation which
aims to retain and combine the merits of 2D/3D models.
Fig. 1 gives an overview of our framework.

Due to the heterogeneous nature of our 2D and 3D mod-
els (base-learners), we use the idea of stacking (Wolpert
1992) (i.e., training a meta-learner to combine the re-
sults of multiple base-learners). Given a set of im-
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Figure 1: An overview of our proposed framework. Red box/planes show the effective fields of view of the corresponding
3D/2D base-learners. Our meta-learner works on top of all the base-learners.

age samples, X = {x1, x2, . . . , xn}, their correspond-
ing ground truth, Y = {y1, y2, . . . , yn}, and a set of
base-learners, F = {f1, f2, . . . , fm}, a common design
of a meta-learner is to learn the prediction of (xi, ŷi) =
fmeta(f1(xi), f2(xi), . . . , fm(xi)), by fitting yi. Since the
results from the base-learners can be very close to the ground
truth, training the meta-learner by directly fitting yi is sus-
ceptible to over-fitting. Many measures have been proposed
to address this issue: (1) simple meta-learner structure de-
signs (e.g., in (Ju, Bibaut, and van der Laan 2018), the meta-
learner was implemented as a single 1×1 convolution layer,
and in (Makarchuk et al. 2018), the meta-learner was im-
plemented using the XGBoost classifier (Chen and Guestrin
2016)); (2) excluding raw image information from the in-
put (Zhou 2012); (3) splitting the training data into multiple
folds and training the meta-learner by minimizing the cross-
validated risk (Van der Laan, Polley, and Hubbard 2007).

However, in our 3D biomedical image segmentation sce-
nario, these meta-learner designs may not work well due
to the following reasons. First, each of our individual base-
learners (2D and 3D models) has its distinct merit; in many
difficult image areas, it is quite likely that only one of the
base-learners could produce the correct results. Thus, our
meta-learner should be sophisticated enough in order to cap-
ture the merits of all the base-learners. Second, since ex-
tensive annotation efforts are often needed to produce full
3D annotation, not many 3D training images are available
(e.g., 3 in (Lee et al. 2015) and 10 in (Pace et al. 2015))
in common 3D biomedical image datasets. Splitting the al-
ready scarce training data can largely lower the accuracy of
the base-learners and meta-learner.

Hence, we propose a new stacking method that includes
(1) a deep learning based meta-learner to combine and im-
prove the results of the base-learners, and (2) a new meta-
learner training method that can train a sophisticated meta-
learner with less risk of over-fitting.

A deep learning based meta-learner. Comparing with
image classification, the output domain of image segmenta-
tion is much more structural. However, recent studies have
not leveraged this property to design a better meta-learner
for image segmentation. For example, in (Ju, Bibaut, and
van der Laan 2018; Nigam, Huang, and Ramanan 2018),
only linear combination of base-learners was explored. We
develop a new fully convolutional network (FCN) based

meta-learner to capture the merits of our base-learners and
produce spatially consistent results.

Minimizing the risk of over-fitting. A key idea of our
meta-learner training method is to use the results of the base-
learners as pseudo-labels (Lee 2013) and compute ensem-
ble by finding a balance among these pseudo-labels through
the training process (in contrast to directly fitting yi). More
specifically, for each input sample xi, there are multiple ver-
sions of pseudo-labels (from the individual base-learners).
During the iterative meta-learner training process, in each
iteration, we randomly choose one pseudo-label from all the
versions and use it as “ground truth” to compute the loss
and update meta-learner parameters. Iteration by iteration,
the pseudo-labels with small disagreement would provide a
more consistent supervision and the pseudo-labels with large
disagreement would request the meta-learner to find a bal-
anced solution by minimizing the overall loss.

Our method can minimize the risk of over-fitting in two
aspects. (1) Intuitively, over-fitting occurs when a model
over-explains the ground truth. Since our method uses mul-
tiple versions of “ground truths” (pseudo-labels), the meta-
learner is unlikely to over-fit any one of them. (2) Since our
meta-learner training uses only model-generated results, un-
labeled data can be easily incorporated into the training pro-
cess; this will allow us to further reduce over-fitting.

Compared with previous methods that combine 2D and
3D models, our main contributions are: (a) a new ensem-
ble learning framework for tackling 3D biomedical image
segmentation from a different perspective, and (b) an ef-
fective meta-learner training method for ensemble learn-
ing that minimizes the risk of over-fitting and makes use
of unlabeled data. Extensive experiments on two pub-
lic datasets (the HVSMR 2016 Challenge dataset (Pace
et al. 2015) and the mouse piriform cortex dataset (Lee
et al. 2015)) show that our framework is effective un-
der fully-supervised, semi-supervised, and transductive set-
tings, and attains superior performance over the state-of-
the-art methods (Yu et al. 2017; Shen et al. 2017; Chen
et al. 2017). Code will be made publicly available at
https://github.com/HaoZheng94/Ensemble.

2 Method
Our proposed approach has two main components: (1) a
group of 2D and 3D base-learners that are trained to explore
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the training data from different geometric perspectives; (2)
an ensemble learning framework that uses a deep learning
based meta-learner to combine the results from the base-
learners. A schematic overview of our proposed framework
is shown in Fig. 1.

In Section 2.1, we illustrate how to design our 2D and
3D base-learners to achieve a set of accurate and diverse re-
sults. In Section 2.2, we discuss our new deep learning based
meta-learner that can considerably improve the results from
the base-learners. In Section 2.3, we present our new method
for training a more powerful meta-learner while preventing
over-fitting.

2.1 2D and 3D base-learners
To achieve the best possible ensemble results, it is com-
monly desired that individual base-learners be as accurate
and as diverse as possible (Zhou 2012). In this section, we
show how to design our 2D and 3D base-learners to satisfy
these two criteria.

For accurate results. Our 2D model basically follows the
structure of that in (Yang et al. 2017). We choose this struc-
ture because it is based on a well-known FCN (Chen et al.
2016a) which has attained lots of successes in biomedical
image segmentation and has been integrated in recent ad-
vances of deep learning network design structures, such as
batch normalization (Ioffe and Szegedy 2015), residual net-
works and bottleneck design (He et al. 2016). It generalizes
well and is fast to train. As for the 3D model, we use Den-
seVoxNet (Yu et al. 2017), for three reasons. First, it adopts a
3D FCN architecture, and thus can fully incorporate 3D im-
age cues and geometric cues for effective volume-to-volume
prediction. Second, it utilizes the state-of-the-art dense con-
nectivity (Huang et al. 2017) to accelerate the training pro-
cess, improve parameters and computational efficiency, and
maintain abundant (both low- and high-complexity) features
for segmenting complicated biomedical structures. Third, it
takes advantage of auxiliary side paths for deep supervision
(Dou et al. 2016) to improve the gradient flow within the
network and stabilize the learning process. For further de-
tails of these 2D and 3D models, the readers are referred to
(Yang et al. 2017) and (Yu et al. 2017).

For diverse results. Our key idea to achieve diverse re-
sults is to let each of our base-learners have a unique geomet-
ric view of the data. As discussed in Section 1, 2D models
can have large fields of view in 2D slices while 3D models
can better utilize 3D image information in a smaller field of
view. Our mix of 2D and 3D base-learners creates the first
level of diversity. To further boost diversity, within the group
of 2D base-learners, we leverage the 3D image data to create
multiple 2D views (representations) of the 3D images (e.g.,
xy, xz, and yz views). The different 2D representations of
the 3D images create 2D models with diverse strengths (e.g.,
large fields of view for different planes) and thus generate
diverse 2D results. Note that the 2D representations are not
limited to being orthogonal to each of the major axes. But,
based on our trial studies, we found that the results from the
xy, xz, and yz views are the most accurate (probably be-
cause no interpolation is needed when extracting these 2D
slices from 3D images) and already create good diversity.

Thus, in our framework, we use the following four base-
learners: a 3D DenseVoxNet (Yu et al. 2017) for utilizing
full 3D information; three 2D FCNs (Yang et al. 2017) for
large fields of view in the xy, xz, and yz planes.

2.2 Deep meta-learner structure design
Since our base-learners have distinct model architectures
and work on different geometric perspectives of 3D im-
ages to produce diverse predictions, for difficult image ar-
eas, there is a better chance that one of the base-learners
would give correct predictions (see Fig. 3). In order to attain
a meta-learner to pick up the correct predictions, we need
a model that is, architecture and complexity wise, capable
of learning robust visual features for jointly utilizing the di-
verse prediction results (from the base-learners) as well as
the raw image information. It is known that simple models
(e.g., linear models, shallow neural networks) are not pow-
erful enough to learn/extract robust and comprehensive fea-
tures for difficult vision tasks (Zhou 2012). Furthermore, our
learning task is a segmentation problem that requires spa-
tially consistent output. Thus, we employ a state-of-the-art
3D FCN (DenseVoxNet (Yu et al. 2017)) for building our
meta-learner. The input of the network is the base-learners’
results and the raw image, and the output of the network
is the computed ensemble. Below we describe how to con-
struct the input of our deep meta-learner and the details of
the deep meta-learner’s model architecture.

Given a set of image samples, X = {x1, x2, . . . , xn},
and a set of base-learners, F = {f1, f2, . . . , fm}, a
pseudo-label set for each xi can be obtained as PLi =
{f1(xi), f2(xi), . . . , fm(xi)}. The input of our meta-learner
H includes two parts: xi and S(PLi), where S is a func-
tion of PLi that forms a representation of PLi. There are
multiple design choices for constructing S. For example, (1)
concatenating all the elements of PLi, or (2) averaging all
the elements of PLi. Concatenation allows the meta-learner
to gain full information from the base-learners (no informa-
tion is added or lost). Averaging provides a more compact
representation of all pseudo-labels, while still showing the
image areas where the pseudo-labels hold agreement or dis-
agreement. Furthermore, using the average of all the pseudo-
labels of xi to form part of the meta-learner’s input can be
viewed as a preliminary ensemble of the base-learners. We
have experimented with both these design choices and found
that making S an averaging function of the elements of PLi

gives slightly better results. The overall model specification
of our proposed deep meta-learner is shown in Fig. 2.

2.3 Meta-learner training using pseudo-labels
A major goal of our training procedure is to train a power-
ful meta-learner, while minimizing the risk of over-fitting.
To achieve this goal, instead of using the ground truth to su-
pervise the meta-learner training, we use the pseudo-labels
produced by our base-learners (as discussed in Section 2.1)
to form the supervision signals. Because there are multiple
possible targets (pseudo-labels) for the meta-learner to fit,
the meta-learner is unlikely to over-fit any fixed target. The
base-learners can also be applied to generate pseudo-labels
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Figure 2: Our deep meta-learner (a variant of 3D DenseVoxNet (Yu et al. 2017)). Since S(PLi) and xi are of different nature,
we use separate encoding blocks (i.e., DenseBlock 1.1 and DenseBlock 1.2) for extracting information from S(PLi) and xi,
respectively, before the information fusion. The auxiliary loss in the side path can improve the gradient flow within the network.

for unlabeled data. Thus, our method is also capable of us-
ing unlabeled data for deep meta-learner training (which can
further reduce over-fitting).

Suppose X , PLi, and S(PLi) are given, for i =
1, 2, . . . , n. Ideally, the learning objective of the meta-
learner would be: (1) finding the “best” pseudo-labels in
PLi, and (2) training the meta-learner H to fit the pseudo-
labels found in (1). However, the best pseudo-labels are not
clearly defined and can be difficult to find. Based on different
evaluation criteria, the “best” choices can be different. Even
when a criterion is given, using the most accurate pseudo-
labels can likely lead to a higher chance of suffering over-
fitting. Furthermore, when training using unlabeled data, it
is in general quite difficult to determine which pseudo-label
gives more accurate predictions than the others. One could
set up a hand-crafted algorithm based on a predefined cri-
terion to select the “best” pseudo-labels for training. The
meta-learner, however, could very likely over-fit the algo-
rithm’s choices and hence likely not be able to generalize
well to future unseen image data.

Rather than explicitly defining the full learning objec-
tive for meta-learner training, we initially train the meta-
learner in order to set up a near-optimal (or sub-optimal)
configuration: The meta-learner is aware of all the avail-
able pseudo-labels, and its position in the hypothesis space
is influenced by the raw image and the pseudo-label data
distribution. Next, the meta-learner itself chooses the near-
est pseudo-labels to fit (based on its current model param-
eters) and updates its model parameters based on its cur-
rent choices. This nearest-neighbor-fit process iterates un-
til the meta-learner fits the nearest neighbors well enough.
Thus, our meta-learner training consists of two phases: (1)
random-fit, and (2) nearest-neighbor-fit. We describe these
two training phases below.

Random-fit. In the first training phase (which aims to
train the meta-learner H to reach a near-optimal solution),
we seek to minimize the overall cross-entropy loss for all
the image samples with respect to all the pseudo-labels:

`(θH)=

n∑
i=1

m∑
j=1

`mce(θH(xi, S(PLi)),fj(xi)), (1)

where θH is the meta-learner’s model parameters and `mce is
a multi-class cross-entropy criterion. The above loss ensures

Algorithm 1: Random-fit
Input: (xi, PLi = {f1(xi), f2(xi), . . . ,

fm(xi)}, S(PLi)) , i = 1, 2, . . . , n;
Output: A trained meta-learnerH;
initialize a meta-learnerH with random weights;
mini-batch = ∅;
while stopping condition not met do

for k = 1 to batch-size do
p = rand-int(1, n);
q = rand-int(1,m);
add training sample {(xp, S(PLp)), fq(xp)} to
the mini-batch;

updateH using training samples in the mini-batch
with forward and backward propagation;

mini-batch = ∅;

that the meta-learner training process in this phase works on
all the available pseudo-labels. Since the loss function itself
does not impose any favor towards any particular pseudo-
labels produced by the base-learners, our meta-learner is
unlikely to over-fit any pseudo-labels. Exploring the overall
raw image and the pseudo-label data distribution, the meta-
learner obtained by minimizing the above loss may have dif-
ferent tendencies towards different pseudo-labels.

To effectively optimize the loss function in Eq. (1), we
develop a random-fit algorithm. In the SGD-based opti-
mization, for one image sample xi, our algorithm randomly
chooses a pseudo-label from PLi and sets it as the cur-
rent “ground truth” for xi (see Algorithm 1). This ensures
the supervision signals not to impose any bias towards any
base-learner, and allows image samples with diverse pseudo-
labels to have a better chance to be influenced by other im-
age samples. Our experiments show that our random-fit al-
gorithm is effective for learning with diverse pseudo-labels.

Nearest-neighbor-fit (NN-fit). Unlike image classifica-
tion problems, the label space of segmentation problems is
with high spatial dimensions and not all solutions in the la-
bel space are meaningful. For example, a union or intersec-
tion of two prediction maps (pseudo-labels) may incur a risk
of yielding strange shapes or structures that are quite likely
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Algorithm 2: Nearest-neighbor-fit (NN-fit)
Input: (xi, PLi = {f1(xi), f2(xi), . . . ,

fm(xi)}, S(PLi)) , i = 1, 2, . . . , n,
meta-learnerH (obtained from random-fit);

Output: A refined meta-learnerH;
mini-batch = ∅;
while stopping condition not met do

for k = 1 to batch-size do
p = rand-int(1, n);
ŷ = H(xp, S(PLp));
q̂ = argminq=1,2,...,m Lmce(ŷ, fq(xp));
add training sample {(xp, S(PLp)), fq̂(xp)} to

the mini-batch;
updateH using training samples in the mini-batch

with forward and backward propagation;
mini-batch = ∅;

raw image average ensemble random-fit NN-fit

2D xy base-learner 2D xz base-learner 2D yz base-learner 3D base-learner

Figure 3: Visual comparison of segmentation results (yel-
low: myocardium; blue: blood pool). With NN-fit, our meta-
learner can achieve more accurate segmentation of my-
ocardium (red arrows).

incorrect. Even when all pseudo-labels of a particular im-
age sample are close to the true solution, the trained meta-
learner, if not fitting any of the pseudo-labels appropriately,
can still have a risk of producing new types of errors.

Thus, to help the model training process converge, in the
second training phase, we aim to train the meta-learner to
fit the nearest pseudo-label. Since the overall training loss is
based on cross-entropy, to make NN-fit have direct effects on
the convergence of the model training, we use cross-entropy
to measure difference between a meta-learner’s output and
a pseudo-label. The details of our NN-fit algorithm are pre-
sented in Algorithm 2. Our experiments show that NN-fit
can effectively improve the performance of the deep meta-
learner (see Fig. 3, and Tables 1 and 2).

3 Evaluation datasets and implementation
details

We evaluate our approach using two public datasets: (1) the
HVSMR 2016 Challenge dataset (Pace et al. 2015) and (2)
the mouse piriform cortex dataset (Lee et al. 2015).

HVSMR 2016. The objective of the HVSMR 2016 Chal-
lenge (Pace et al. 2015) is to segment the myocardium and
great vessel (blood pool) in cardiovascular magnetic res-
onance (MR) images. 10 3D MR images and their corre-

sponding ground truth annotation are provided by the chal-
lenge organizers as training data. The test data, consist-
ing of another 10 3D MR images, are publicly available,
yet their ground truths are kept secret for fair comparison.
The results are evaluated using three criteria: (1) Dice co-
efficient, (2) average surface distance (ADB), and (3) sym-
metric Hausdorff distance. Finally, a score S, computed as
S =

∑
class(

1
2Dice − 1

4ADB − 1
30Hausdorff ), is used to

reflect the overall accuracy of the results and for ranking.
Mouse piriform cortex. Our approach is also evaluated

on the mouse piriform cortex dataset (Lee et al. 2015) for
neuron boundary segmentation in serial section EM images.
This dataset contains 4 stacks of 3D EM images. Following
the previous practice (Lee et al. 2015; Shen et al. 2017), the
2nd, 3rd, and 4th stacks are used for model training, and the
1st stack is used for testing. Also, as in (Lee et al. 2015;
Shen et al. 2017), the results are evaluated using the Rand F-
score (the harmonic mean of the Rand merge score and the
Rand split score).

Implementation details. All our networks are imple-
mented using TensorFlow (Abadi et al. 2016). The weights
of our 2D base-learners are initialized using the strategy
in (He et al. 2015). The weights of our 3D base-learner
and meta-learner are initialized with a Gaussian distribution
(µ = 0, σ = 0.01). All our networks are trained using Adam
(Kingma and Ba 2015) with β1 = 0.9, β2 = 0.999, and
ε = 1e-10. The initial learning rates are all set as 5e-4. Our
2D base-learners reduce the learning rates to 5e-5 after 10k
iterations; our 3D base-learner and meta learner adopt the
“poly” learning rate policy (Yu et al. 2017) with the power
variable equal to 0.9 and the max iteration number equal to
40k. To leverage the limited training data, standard data aug-
mentation techniques (i.e., random rotation with 90, 180,
and 270 degrees, as well as image flipping along the axial
planes) are employed to augment the training data.

For the HVSMR 2016 Challenge dataset, due to large in-
tensity variance among different images, all the cardiac im-
ages are normalized to have zero mean and unit variance. We
also employ spatial resampling to 1mm isotropically. For
the mouse piriform cortex data, since the 3D EM images are
highly anisotropic (7× 7× 40nm), the 2D base-learners in
the xz and yz views did not converge well. Thus, we only
use the 3D base-learner and the 2D base-learner in the xy
view for this dataset.

4 Experiments
Because our meta-learner training does not require any
manual-labeled data, our method can be easily adapted to the
semi-supervised and transductive settings. Thus, we experi-
ment with the following three main settings to demonstrate
the effectiveness of our method.

1. To achieve fair comparison with the known state-of-the-
art methods that cannot leverage unlabeled data, under the
first setting, we train our meta-learner using only training
data (the “only training data” entries in Tables 1 and 2).

2. We show that our model can be improved under the semi-
supervised setting in which we use additional unlabeled
images to train our meta-learner (Table 4).
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Table 1: Quantitative analysis on the HVSMR 2016 dataset. VFN∗: For fair comparison, we use DenseVoxNet (Yu et al. 2017)
as backbone, which is the same as our 3D base-learner.

Method
Myocardium Blood pool Overall

scoreDice ADB [mm] Hausdorff [mm] Dice ADB [mm] Hausdorff [mm]
3D U-Net (Çiçek et al. 2016) 0.694± 0.076 1.461± 0.397 10.221± 4.339 0.926± 0.016 0.940± 0.192 8.628± 3.390 -0.419
VoxResNet (Chen et al. 2017) 0.774± 0.067 1.026± 0.400 6.572± 0.013 0.929± 0.013 0.981± 0.186 9.966± 3.021 -0.202
DenseVoxNet (Yu et al. 2017) 0.821± 0.041 0.964± 0.292 7.294± 3.340 0.931± 0.011 0.938± 0.224 9.533± 4.194 -0.161

Wolterink et al.(Wolterink et al. 2017) 0.802± 0.060 0.957± 0.302 6.126± 3.565 0.926± 0.018 0.885± 0.223 7.069± 2.857 -0.036
VFN∗ (Xia et al. 2018) 0.773± 0.098 0.877± 0.318 4.626± 2.319 0.935± 0.009 0.770± 0.098 5.420± 2.152 0.108
Base learner 2D (xy) 0.789± 0.076 0.852± 0.265 4.231± 1.908 0.930± 0.016 0.794± 0.153 5.295± 1.671 0.13
Base learner 2D (xz) 0.736± 0.093 1.000± 0.260 5.417± 1.604 0.924± 0.015 0.932± 0.113 7.951± 2.820 -0.098
Base learner 2D (yz) 0.756± 0.082 0.870± 0.181 4.169± 0.632 0.928± 0.012 0.812± 0.111 5.229± 1.721 0.108

Base learner 3D 0.809± 0.069 0.785± 0.235 4.121± 1.870 0.937± 0.008 0.799± 0.145 6.285± 3.108 0.13
Average ensemble 0.805± 0.073 0.708± 0.184 3.211± 0.923 0.936± 0.011 0.752± 0.119 5.960± 2.526 0.2
Our meta-learner

(only training data) 0.823± 0.060 0.685± 0.164 3.224± 1.096 0.935± 0.010 0.763± 0.120 5.804± 2.670 0.21
Our meta-learner

(transductive) 0.833± 0.054 0.681± 0.178 3.285± 1.370 0.939± 0.008 0.733± 0.143 5.670± 2.808 0.234

3. We show that improved results can be obtained under the
tranductive setting in which we allow our meta-learner to
utilize test data (the “transductive” entries in Tables 1 and
2). We emphasize that, although it might be less common
to use test data for training in natural scene image seg-
mentation, the transductive setting plays an important role
in many biomedical image segmentation tasks (e.g., for
making biomedical discoveries). For example, after bio-
logical experiments are finished, one may have all the raw
images available and the sole remaining goal is to train a
model to attain the best possible segmentation results for
all the data to achieve accurate quantitative analysis.

4.1 Comparison with state-of-the-art methods
when only using training data

HVSMR 2016. Table 1 shows a quantitative comparison
with other methods in the leader board of the HVSMR 2016
Challenge (Pace et al. 2015). Recall the two categories of
the known deep learning based 3D segmentation methods
(discussed in Section 1). We choose at least one typical
method from each category for comparison. (1) (Wolterink
et al. 2017) is based on the tri-planar scheme (Prasoon et al.
2013), which utilizes three 2D ConvNets on the orthogonal
planes to predict a class label for each voxel. (2) VFN (Xia
et al. 2018) first trains three 2D models with slices that are
split from three orthogonal planes, respectively, and then ap-
plies a 3D ConvNet to fuse 2D results together. Besides, we
compare our approach with state-of-the-art models (includ-
ing 3D U-Net (Çiçek et al. 2016), VoxResNet (Chen et al.
2017), and DenseVoxNet (Yu et al. 2017)). Without using
unlabeled data, our meta-learner outperforms these meth-
ods on nearly all the metrics and has a very high overall
score, 0.215 (ours) vs. −0.161 (DenseVoxNet), −0.036 (tri-
planar), and 0.108 (VFN).
Mouse piriform cortex. Owning to the advanced compo-
nents used in our base-learners (e.g., ResNet components
(He et al. 2016) and DenseNet components (Huang et al.
2017)), our 2D and 3D base-learners already achieve bet-
ter results than the known state-of-the-art methods (Table

Table 2: Quantitative results on the mouse piriform cortex
dataset.

Method V Rand
Fscore

N4 (Ciresan et al. 2012) 0.9304
VD2D (Lee et al. 2015) 0.9463

VD2D3D (Lee et al. 2015) 0.9720
M2FCN (Shen et al. 2017) 0.9866

Our 2D base-learner 0.9948
Our 3D base-learner 0.9956

Average ensemble of 2D and 3D 0.9959
Random-fit (only training data) 0.9963

NN-fit (only training data) 0.9967
Random-fit (transductive) 0.9967

NN-fit (transductive) 0.9970

2). Nevertheless, from Table 2, one can see that our meta-
learner is able to (1) further improve the accuracy of the
base-learners, and (2) achieve a result that is considerably
better than the known state-of-the-art methods (0.9967 vs.
0.9866).

4.2 Utilizing unlabeled data
Semi-supervised setting. We conduct semi-supervised
learning experiments on the HVSMR 2016 dataset. The
training set of HVSMR 2016 is randomly divided into two
groups evenly, Sa and Sb. We conduct two sets of experi-
ments. Under the setting of “Group A”, we first use Sa to
train base-learners using the original manual annotation; we
then use Sa∪Sb to train our meta-learner with pseudo labels
generated by the trained base-learners. For the overall train-
ing procedure, Sa is labeled data and Sb is unlabeled data.
Testing phase utilizes the original test images in HVSMR
2016 dataset. The training & testing procedures for “Group
B” follows the same protocol except that base-learners are
trained with Sb. As shown in Table 4, by leveraging unla-
beled images, our approach can improve the model accuracy
and generalize well to unseen test data.
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Table 3: Ablation experiments on the HVSMR 2016 dataset. “GT” represents ground truth and “PL” represents pseudo labels.
Transductive learning setting: Test image data are involved as unlabeled data in model training.

Setting Inputs Supervision of
training set

Transductive
learning

Supervision of
testing set

Training Overall
scoreraw image (xi) S(PLi) random fit NN fit

S1 3 GT 0.075
S2 3 3 GT 0.192
S3 3 3 GT 3 PL 3 0.217
S4 3 3 GT + PL 3 PL 3 0.205
S5 3 3 GT + PL 3 PL 3 3 0.224
S6 3 3 PL 3 0.199
S7 3 3 PL 3 3 0.215
S8 3 3 PL 3 PL 3 0.218
S9 3 3 PL 3 PL 3 3 0.234

Transductive setting. In this setting, we use the full train-
ing data to train our base learners, and use the training and
testing data to train our meta-learner. As discussed at the
beginning of this section, the transductive setting is impor-
tant for biomedical image segmentation applications and re-
search. The ability to refine the model after seeing the raw
test data (no annotation for test data) is another advantage of
our framework. From Table 1 and Table 2, one can see that
our meta-learner can achieve further improvements than us-
ing only the training data (0.234 vs. 0.215 on the HVSMR
dataset, and 0.9970 vs. 0.9967 on the piriform dataset).

4.3 Ablation study
Average ensemble vs. naı̈ve meta-learner vs. our best. The
results of the average ensemble of all the base-learners (the
2D and 3D models) are shown in Tables 1 and 2. One can
see that the average ensemble is consistently worse than our
meta-learner ensemble. We also compare our meta-learner
with the naı̈ve meta-learner implementation (in which the
outputs of the base-learners are used as input and the ground
truths of the training set are used to train the meta-learner).
Table 3 shows the results (the S1 row). One can see that
the naı̈ve meta-learner implementation is even worse than
the average ensemble (probably due to over-fitting). This
demonstrates the effectiveness of our meta-learner structure
design and training strategy.
Random-fit + NN-fit vs. Random-fit alone. Random-fit +
NN-fit performs significantly better than Random-fit alone
(Table 3: S7>S6, S5>S4, S9>S8; Table 2), which demon-
strates that NN-fit can help the training procedure converge
and thus improve the segmentation quality.
Model training using pseudo-labels vs. ground truth. One
may concern that our meta-learner training method totally
discards manual-labeled ground truth even when it is avail-
able. This ablation study shows that our method can perform
better without using any manual ground truth. We explore
the following ways of utilizing ground truth. When using
only the training data, we compare the difference between
only ground truth (S2) and only pseudo-labels (S7). Table 3
shows that our training method can achieve better results
(0.215 > 0.192) when not using ground truth. When utiliz-
ing the test data (the transductive setting), we compare the
difference between (1) only ground truth (S3), (2) mix of
ground truth and pseudo-labels, i.e., using ground truth as

Table 4: Semi-supervised setting on HVSMR 2016 dataset.

Group Model Overall score

A Base-learner 3D -0.036
Meta-learner 0.063

B Base-learner 3D -0.045
Meta-learner 0.038

the 5th version (S4 & S5), and (3) only pseudo-labels (S8
& S9). In Table 3, one can see that (a) using pure ground
truth or pure pseudo-labels achieves better results than mix-
ing them together (probably due to the different nature of
ground truth and pseudo-labels), and (b) using only pseudo-
labels is still better than using ground truth (S8 > S3). We
think the reason that our method can work well with only
pseudo-labels is because the pseudo-labels have already ef-
fectively distilled the knowledge from ground truth (Hinton,
Vinyals, and Dean 2015).

5 Conclusions
In this paper, we presented a new ensemble learning frame-
work for 3D biomedical image segmentation that can retain
and combine the merits of 2D and 3D models. Our approach
consists of (1) diverse and accurate base-learners by lever-
aging diverse geometric and model-architecture perspectives
of multiple 2D and 3D models, (2) a fully convolutional net-
work (FCN) based meta-learner that is capable of learning
robust visual features/representations to improve the base-
learners’ results, and (3) a new meta-learner training method
that can minimize the risk of over-fitting and utilize unla-
beled data to improve performance. Extensive experiments
on two public datasets show that our approach can achieve
superior performance over the state-of-the-art methods.
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