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Abstract

This paper addresses the challenge of designing efficient
framework for real-time object detection and image com-
pression. The proposed Compressive Convolutional Network
(CCN) is basically a compressive-sensing-enabled convolu-
tional neural network. Instead of designing different compo-
nents for compressive sensing and object detection, the CCN
optimizes and reuses the convolution operation for recover-
able data embedding and image compression. Technically,
the incoherence condition, which is the sufficient condition
for recoverable data embedding, is incorporated in the first
convolutional layer of the CCN model as regularization;
Therefore, the CCN convolution kernels learned by training
over the VOC and COCO image set can be used for data em-
bedding and image compression. By reusing the convolution
operation, no extra computational overhead is required for
image compression. As a result, the CCN is 3.1 to 5.0 fold
more efficient than the conventional approaches. In our ex-
periments, the CCN achieved 78.1 mAP for object detection
and 3.0 dB to 5.2 dB higher PSNR for image compression
than the examined compressive sensing approaches.

Introduction
Since the last a few years, the approach of convolutional
neural network (CNN) has been proven to be successful
for various computer vision applications (Sun et al. 2014;
Amato et al. 2016; Loquercio et al. 2018). For example,
one application scenario is the smart wireless surveillance
camera, which is a new type of device that performs object
detection using embedded system. However, due to the con-
straints of computation resource and power budget, it is still
a challenge to implement real-time CNN-based computer
vision using wireless embedded systems (Sze et al. 2017).

Early CNN based object detection approaches, such as the
well-known Regional CNN (R-CNN) (Girshick et al. 2014),
consisted of a region-proposal stage to select thousands of
regions from the target image for object recognition, which
resulted in high computational overhead. Recently, a group
of more efficient CNN frameworks, including the Fast R-
CNN (Girshick 2015) , Faster R-CNN (Ren et al. 2015),
the Single Short Detection (SSD) (Liu et al. 2016) and the
YOLO models (Redmon and Farhadi 2017) were proposed
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for efficient object detection. Thanks to these inspiring
works, the complexity of the CNN based object detection
has been significantly reduced, which makes it possible
to implement CNN-based computer vision applications on
wireless embedded devices.

Besides high computational complexity, another chal-
lenge of designing embedded computer vision systems is
limited power budget. Since a major proportion of the
energy is consumed by wireless communication (SanMiguel
and Cavallaro 2016), it is desired that data should be com-
pressed before wireless transmission. One conventional way
to achieve that is to use an extra device for image com-
pression, which will potentially increase the cost and energy
consumption on the system level. To address that challenge,
this paper proposes an efficient method for unified object
detection and image compression. The basic idea is to
optimize and reuse the CNN convolution operation for both
feature extraction and image compression; therefore, no
extra computational overhead is required compared to the
original neural network built for object detection.

The proposed method is based on the modern compressive
sensing technique. It has been proven that, due to the
sparse nature of the image signal, one may recover it
from far fewer samples by solving undetermined linear
systems (Candès, Romberg, and Tao 2006). To recover a
compressed image, the compressive sensing theory requires
the sufficient condition of incoherence, which is applied
through the isometric property (Donoho 2006; Candès and
Wakin 2008). At the front end, the conventional compressive
sensing approach uses random matrices for data embedding,
which has been proven to satisfy the incoherence condition
with high probability (Candes and Tao 2006). It is worth
noting that, since the convolution operation is also linear,
it can be used for data embedding. Romberg found that,
the convolution between the data and a random embedding
matrix is an efficient compressive sensing strategy, and the
image compressed by random convolution can be recovered
via L1-norm optimization (Romberg 2009).

As the pioneering work to use the convolution oper-
ation for compressive sensing, research (Romberg 2009)
still adopted random embedding matrices to ensure the
incoherence condition. Recently, a group of learning based
approaches were proposed to estimate deterministic em-
bedding matrices using a set of training samples. As an
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Figure 1: The CCN-YOLO method designed for wireless
computer vision applications. With no extra computational
overhead, the unified design is over three fold more efficient
than the conventional design that contains separate modules
for image sub-sampling and object detection.

early attempt, the NuMax approach estimated the linear
near-isometric embedding matrix via solving a semi-definite
program (SDP) problem (Hegde et al. 2015). Baldassarre
proposed a learning based sub-sampling approach, which
formulated combinatorial optimization problems to estimate
the embedding matrices (Baldassarre et al. 2016). Blasiok
relaxed the NuMax SDP problem to an eigenvalue problem,
thus it can be applied to larger data set that contained a few
thousand samples (Błasiok and Tsourakakis 2016).

Our method is also a learning based approach for com-
pressive sensing and object detection. Fig. 1 compares
the proposed method and the conventional implementation,
which uses separate modules to perform image compression
and object detection. As a unified approach, the CCN refor-
mulates and reuses the convolution operation for both fea-
ture extraction and recoverable data embedding; therefore,
no extra computational overhead or latency is required for
image compression at the front end, which saves cost and
energy for wireless computer vision implementations.

The incorporation of compressive sensing in the
deep learning framework is not trivial. Different
from work (Romberg 2009) which studied random
convolution operations, the CCN convolution operation
is deterministic and learned from samples. To satisfy
the incoherence condition for accurate image recovery, a
relaxed measurement of mutual coherence between the
embedding matrix and the basis matrix is defined. And the
coherence measurement is used as regularization for the
modified convolutional layer. By minimizing the coherence
measurement through training, the compressed output
features of the modified convolutional layer can be used to
reconstruct the original image with higher quality.

From a system point of view, there are several advantages
of adopting the incoherence regularization. First, by learn-
ing near-isometric embedding matrices from large-scale
training set, the CCN-compressed images have 3.0-5.2 dB
higher PSNR than the conventional compressive sensing
approaches. Secondly, since there is no computational over-
head or extra latency at the inference stage, the CCN is over
three-fold more efficient than the conventional implemen-
tations shown in Fig. 1. Thirdly, since the CCN training
process is based on back propagation, it is significantly
more efficient than the NuMax and ADAGIO approaches
of estimating near-isometric data embedding (Hegde et al.
2015; Błasiok and Tsourakakis 2016). The CCN extends the

approach of data-driven compressive sensing to large-scale
data sets.

Recently, several researches attempted to address dif-
ferent problems of compressive sensing using convolutional
neural networks. Mousavi proposed a CNN based approach
to recover the original signal from random under-sampled
measurements (Mousavi and Baraniuk 2017). Later,
Mousavi improved his approach by adopting the CNN
for both signal compression and recovery (Mousavi,
Dasarathy, and Baraniuk 2017). Similar idea was explored
by Lu for image processing (Lu et al. 2018). Iliadis
proposed a deep fully-connected networks for recovering
video images (Iliadis, Spinoulas, and Katsaggelos 2018).
The main difference between these researches and the
proposed method is that, instead of building a network
for image compression or recovery, the CCN is a network
enhancement approach, which enables object-detection
networks to gain the ability of image compression without
degrading performance.

Background
The proposed method attempts to add the function of recov-
erable data embedding in the CNN framework. Compressive
sensing is a sampling approach for the signals that are known
to be sparse. Suppose the signal x ∈ RN is an N dimensional
vector, which can be sampled using an embedding matrix
Φ ∈ RM×N as

y = Φx (1)
The constant M is defined as the sampling rate. Because

M is smaller than N in compressive sensing, Eq. 1 is under-
determined, the signal x cannot be uniquely recovered from
Φ and y. However, the assumption of sparsity allows the
signal x to be represented using a set of sparse coefficients
s ∈ RN and a matrix of basis Ψ ∈ RN×N as x = Ψs.
Then we have y = ΦΨs = Θs where Θ = ΦΨ is an
M×N measurement matrix. Since s is sparse, it is possible to
retrieve the value of s by solving the L1 norm minimization
problem as

mins‖s‖1, s.t.‖y −Θs‖2 < ξ (2)
After solving Eq. 2, one could approximate the original

signal x by x̂ = Ψs. To find the unique sparest solution of
Eq. 2, Φ should be built to satisfy the incoherence condition,
i.e. the matrices Φ and Ψ should be incoherent.

In practice, Ψ is usually a predefined constant matrix,
and one can either use random or deterministic embedding
matrix Φ to fulfill the incoherence condition. For the random
approach, it is proven that, the matrix with Gaussian entries
satisfies the incoherence condition (Candès, Romberg, and
Tao 2006). On the other hand, recent researches showed that,
by learning deterministic embedding matrix from data, the
compressed images can be reconstructed with higher quality.
The proposed method attempts to calculate the optimal
deterministic embedding matrix by deep learning approach.

Proposed Method
This section presents the proposed method of Compressive
Convolutional Network (CCN) for efficient object detection
and image compression.
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Figure 2: The prototyping Compressive Convolutional Network built for unified object detection and image compression.
Compared to the standard YOLOv2 model, the first convolutional layer and pooling layer are modified and optimized for
recoverable data embedding and image compression.

Network Design
The goal of object detection is to recognize multiple objects
in a single image. The class confidence and the bounding
box for each object are returned. So far, many CNN based
frameworks have been proposed for object detection (Ren
et al. 2015; Liu et al. 2016; Redmon and Farhadi 2017).
Different frameworks usually have different types of layers
and different parameters, yet a typical CNN framework uses
a pipeline of modules for classification or object detection.

Fig. 2 shows the prototyping CCN model trained over the
VOC and COCO data sets. Though the proposed approach
can be applied to different CNN based frameworks, this
paper uses the YOLOv2 model as the basic architecture,
which contains 1 compressive convolutional layer, 22 con-
ventional convolutional layers, 1 uniform pooling layer, 1
reorg layer, 5 max-pooling layers and 1 soft-max layer.
The YOLO model was earlier invented for efficient object
detection. We modified the first two layers to perform unified
feature extraction and image compression. The network
configuration parameters such as layer type, kernel number
and kernel size are compatible with the YOLOv2 model
(Redmon and Farhadi 2017).

From a functional point of view, the CCN can perform
image compression and object detection simultaneously
after training. Specifically, given a test image, the uniform
pooling layer, built after the first convolutional layer, sub-
samples the embedded image data which can be used for
image recovery (Fig. 2). Meanwhile, the last layer of the
CCN can return the class confidence and the bounding box
of each object in the test image.

The main difference between the proposed method and
other CNN based frameworks is the first compressive con-
volutional layer. The compressive convolutional layer is
basically a 3×3 convolutional layer which is optimized for
compressive sensing. As a data-driven approach, the CCN
uses deterministic convolution operation for recoverable
data embedding. The convolution operation is optimized to
fulfil the incoherence condition, so that the sub-sampled
feature maps can be used to reconstruct the original image
by reconstruction algorithms like the standard orthogonal
matching pursuit (Tropp and Gilbert 2007). The rest of
this section shows how to learn deterministic convolution
operations for recoverable data embedding.

Data Embedding via Convolution Operation
As shown in (Romberg 2009), the convolution operation can
be seems as a linear embedding operation. Suppose W ∈
R3×3 is a kernel matrix of the compressive convolutional
layer. Suppose X ∈ RP×Q is a channel of the input image
data. Given N = P×Q, X can be vecterized and represented
as x ∈ RN. Since the convolution operation ⊕ in the
CNN only consists of first-order multiplications, it can be
reformulated as a linear embedding operation as

vec(W ⊕X)
.
= Φx = y (3)

where vec(·) is the vectorization operation, Φ ∈ RN×N is
the associated embedding matrix determined by the kernel
matrix W, y ∈ RN is the vectorized output of the convolu-
tion operation.

Since the kernel matrices in the CNN model are
learned from training samples, the embedding matrix
Φ is determined by iterative training. Define the row
vector w ∈ R2Q+3 based on the kernel matrix W as
w = [w1, w2, w3, 0, w4, w5, w6, 0, w7, w8, w9], where
w1, . . . , w9 are the nine elements of the kernel matrix W.
The embedding matrix associated with the kernel can be
written as

Φ =


w 0 . . . 0 0
0 w . . . 0 0
...

... . . .
...

...
0 0 . . . w 0
0 0 . . . 0 w


N×N

(4)

where 0 and 0 are the vector and scalar form of zeros. The
embedding matrix Φ is a sparse matrix with 3 × 3 nonzero
elements in each row.

It is worth noting that Eq. 3 and Eq. 1 have the same linear
form. But different from the standard compressive sensing,
the convolution operation of the CNN doesn’t reduce the
dimension of the data. To compress the image to M dimen-
sions (M � N), a uniform-pooling layer is built after the
compressive convolutional layer for dimension reduction.
In practice, a single N×N feature map is selected for sub-
sampling, and M×N elements are uniformly extracted in a
row-by-row fashion.
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Figure 3: Change of mean average precision (mAP) during
the training process over the VOC and COCO data sets.

Incoherence Regularization
As a data-driven approach, Eq. 3 uses the deterministic
embedding matrix Φ learned from samples. According to
the theorem of compressive sensing, Φ should satisfy the
incoherence condition that the embedding matrix Φ and the
basis matrix Ψ should be incoherent. Suppose ϕi is the
ith row of Φ, and ψj is the jth column of Ψ. The mutual
coherence between Φ and Ψ is defined as

µ(Φ,Ψ) = max | < ϕi,ψj > | = max |ϕiψj | (5)

Within the compressive sensing framework, lower coher-
ence between Φ and Ψ translates to fewer samples required
for recovering the signal. For data-driven approaches, it
is intuitive to minimize the mutual coherence during the
training process; However, since the mutual coherence in
Eq. 5 is not differentiable, we relax it as the following
coherence measurement:

RW(Φ) =
∑
ij

< ϕi,ψj >=
∑
ij

|ϕiψj | (6)

Since the basis matrix Ψ is usually a predefined constant
matrix, e.g. a discreet wavelet transform (DWT) matrix, the
coherence measurement defined in Eq. 6 is a weighted L1
norm of the matrix variable Φ. Given that Φ is determined
by the kernel matrix W as in Eq. 4, the function RW is
differentiable with respect to W; therefore, one could use
Eq. 6 as regularization and estimate the embedding matrix
Φ by minimizingRW.

In practice, the incoherence regularization term RW is
used for estimating the kernels of the compressive con-
volutional layer. The values of W and Φ are calculated
via a gradient decent training process. By reducing the
coherence between Φ and Ψ, the iterative training process
could calculate the near-isometric embedding matrix Φ for
effective compressive sensing.

Model Implementation
To construct the embedding matrix Φ for image compres-
sion, we selected the single best kernel of the compressive
convolutional layer that achieved the highest Peak Signal
to Noise Ratio (PSNR). It is worth noting that, the output
feature maps of the compressive convolutional layer had the
same dimension as the input image data. The dimension
reduction process and the compression rate were controlled
by the uniform pooling layer.

Data Set Train Test Total
BSD100 100 - 100
VOC2007+2012 16551 4952 21053
COCO 117263 5000 122263

Table 1: Data sets used to evaluate the performance of object
detection (VOC & COCO) and image compression (VOC &
BSD100).

As for the training process of the prototyping CCN model,
the pre-trained model of YOLOv2 was used as the initial
parameter setting. YOLOv2 was an open-source framework
pre-trained for objection detection(Redmon and Farhadi
2017). We further trained the network over the VOC and
COCO data sets for 200000 iterations respectively, using
stochastic gradient descent with a starting learning rate of
0.0001, incoherence regularization weight of 0.0005 and
momentum of 0.9.

Since the YOLOv2 model was designed for object de-
tection, modifying the first convolutional layer might affect
the performance of object detection. To remedy the loss
of accuracy, we controlled the influence of incoherence
regularization via a two-stage training strategy. At the first
stage, the coherence measurement associated with each
kernel of the compressive convolutional layer was monitored
during training iterations. Fig. 3 shows the change of mean
average precision (mAP) during the training process over the
VOC and COCO data sets. For the VOC data set, after 2200
iterations, the coherence measurement began to stabilize,
then the values of the top 3 kernels with the lowest coherence
measurement were frozen. Then at the second stage, we
removed the incoherence regularization, and the parameters
of the whole deep neural network, including the 29 unfrozen
kernels in the compressive convolutional layer, were further
updated until reaching convergence. As shown in Fig. 3, By
updating the parameters without incoherence regularization,
the proposed method suffered almost no loss of detection
accuracy over the VOC and COCO data sets.

Experiment Results
We performed a group of experiments to evaluate the
CCN for both object detection and image compression.
Our experiments showed that, the prototyping CCN-
YOLO model achieved relatively high image compression
performance, while keeping competitively high accuracy
and efficiency for object detection. A demo program of
the proposed method is uploaded on the Github website at
https://github.com/CQUlearningsystemgroup/Langxu.

Data Sets and Experiment Setting
For better comparison, we use the data sets and configu-
ration of the YOLOv2 research to evaluate the proposed
method (Redmon and Farhadi 2017). Specifically, we eval-
uate the proposed method for object detection and image
compression over the BSD100, the VOC (2007+2012) and
the COCO data sets (Table 1). Both the VOC and the COCO
data sets are widely used for evaluating object detection ap-
proaches. The VOC set has 21530 images containing 27450
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Figure 4: Comparing the proposed CCN approach with different compressive sensing approaches using Gaussian, random
convolution, CS-SM and ADAGIO sub-sampling strategies. The image quality measurements of PSNR/SSIM are shown below
each subgraph.

annotated objects and 6929 segmentations. The COCO data
set includes more than 200000 images in 80 classes. The
Berkeley BSD100 data set is a small image set with 100
images, which is used to evaluate the computationally-
expensive data-driven compressive sensing approaches.

Different measurements are adopted in our experiment to
compare the CCN with other approaches for image com-
pression, including the peak signal to noise ratio (PSNR)
and the structural similarity index (SSIM). Typical values
for the PSNR in lossy images and video compression are
between 30 and 50 dB, provided the bit depth is 8 bits,
but it is acceptable to be 20 dB to 25 dB for wireless
transmission loss (Li and Cai 2007). The SSIM measures
the similarity in luminance, contrast, and structure between
two images. Both measurements of the PSNR and SSIM are
widely used to measure the quality of image compression.
For object detection, the mean average precision (mAP), the
top-5 class average accuracy and the recall rate over the
VOC and COCO test data sets are calculated and compared

for evaluation.
Similar to the NuMax and ADAGIO approaches, the CCN

is a data-driven near-isometric data embedding approach.
Generally, different back-end image reconstruction algo-
rithms can be applied to recover the data compressed by
these approaches. It may not be the optimal solution, but for
fair comparison, we adopt the standard orthogonal matching
pursuit (OMP) algorithm for image reconstruction. The
OMP algorithm uses the discrete wavelet transform (DWT)
matrix as the basis matrix Ψ to rebuild the image (Tropp
and Gilbert 2007). The block size of the OMP method used
in our experiment is the default value of 16×16 pixels.

Performance of Image Compression
We compared the CCN with other approaches over the VOC
and BSD100 data sets for image compression. We examined
the conventional compressive sensing approach using Gaus-
sian embedding matrices. The random convolution approach
(Romberg 2009) and sparse matrix based approach (CS-
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Figure 5: The change of coherence measurement and
average PSNR during the training process over the VOC
data set. Only the top two kernels with the highest PSNR
are shown here to save space.

Figure 6: Image reconstruction PSNR for the examined
approaches over the BSD100 data set.

SM) (Gilbert and Indyk 2010) were also compared. As
a data-driven approach, we compared the CCN with the
NuMax and the recently proposed ADAGIO algorithm. A
thousand images randomly selected from the VOC data set,
along with all the images in the BSD100 image set, were
compressed using different approaches. The CCN was set to
use a single kernel of the compressive convolutional layer
for data embedding. The standard OMP algorithm was used
for image reconstruction (Tropp and Gilbert 2007) .

Table 2 summarizes the experiment results over the VOC
and BSD100 data sets with fixed compression ratio of 0.33.
For comparison, we evaluated the original kernels of the
YOLOv2 for data embedding. Experiment showed that, the
best kernel of the first convolutional layer of YOLOv2
achieved 25.3 dB average PSNR for image compression,
which was 2.1 dB higher than the random convolution
approach (RandConv). By incorporating the incoherence
regularization, the CCN achieved 26.5 dB average PSNR.
The CCN also outperformed the data-driven approaches of
the NuMax and ADAGIO by 2.6 dB.

Fig. 4 compares the results of four typical VOC im-
ages. The measurements of PSNR/SSIM are shown below
each subgraph. Generally, the CCN shows higher PSNR
and SSIM compared with other approaches. The images

Data Set BSD100 VOC
Method PSNR SSIM PSNR SSIM
CCN 26.56

±2.98
0.8192
±0.0550

26.54
±3.71

0.8786
±0.0745

ADAGIO 22.42
±1.75

0.6055
±0.0632

23.89
±3.38

0.6325
±0.0618

RandConv 22.31
±1.91

0.6243
±0.0642

22.21
±2.93

0.6608
±0.0671

CS-SM 21.39
±2.86

0.5954
±0.0941

21.46
±3.74

0.6217
±0.0521

GAUSS 21.32
±2.93

0.5921
±0.0976

22.48
±4.18

0.6409
±0.1188

Table 2: Image recovery quality over the BSD100 and VOC
data sets at the fixed compression ratio of 0.33.

Number of Images 10 20 40 100
NuMax 267 838 1537 4460

ADAGIO 0.7432 2.041 7.263 45.782
CCN-YOLO 3.034 6.072 12.325 31.069

Table 3: Training time (second) of the examined data-driven
compressive sensing approaches over the BSD100 set.

compressed by the CCN look better and are less noisy.
The square in each graph shows the magnified detail of the
recovered images. It seems that, the CCN images has higher
sharpness in regions containing complex contexture.

The CCN approach uses the incoherence regularization
to enable the convolutional neural networks to perform data
compression. Fig. 5 shows the change of coherence mea-
surement and the average PSNR during the training process
over the VOC data set. With the regularization weight set
as 0.0005, the coherence measurement continuously drops
at the first two thousand iterations, while the PSNR of the
compressed images increases by 1.2 dB to over 4.0 dB. Fig.
5 shows the results achieved by the top two convolution
kernels of the compressive convolutional layer. The baseline
PSNR is achieved by the conventional compressive sensing
using Gaussian embedding matrices. This experiment ex-
plains the effectiveness of the incoherence regularization for
image compression.

Fig. 6 compares the examined compressive sensing ap-
proaches across a range of compression rate from 10% to
50% with a step size of 5%. This experiment was performed
over the small BSD100 data set, because the NuMax and
ADAGIO approaches need to solve semi-definite program
and eigenvalue problems, which were difficult to be applied
over large-scale data sets. Generally, the CCN achieved the
highest average PSNR over the BSD100 data set.

We also compared the training efficiency of the examined
data-driven approaches using deterministic embedding ma-
trices. The experiment was performed over a computer with
one i7-6800k CPU and 32 GB memory. Since the BSD100
images have 38400 dimensions, it was hard for the NuMax
approach to run on a regular computer. We split the images
into 16 × 16 blocks for the NuMax algorithm. The training
time of the prototyping YOLO-CCN network, the ADAGIO
and the NuMax is listed in Table 3. Even over a small data
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Method Training Set mAP FPS
Fast R-CNN VOC 2007+2012 70.0 0.5

Faster R-CNN ResNet VOC 2007+2012 76.4 5
SSD300 VOC 2007+2012 74.3 22
SSD500 VOC 2007+2012 76.8 19

YOLOv1 VOC 2007+2012 63.4 45
YOLOv2 VOC 2007+2012 78.6 40

CCN-YOLO VOC 2007+2012 78.1 40
Fast R-CNN COCO trainval 35.9 0.5

Faster R-CNN ResNet COCO trainval 45.3 5
SSD300 COCO trainval 41.2 22
SSD500 COCO trainval 46.5 19

YOLOv2 COCO trainval 44.0 40
CCN-YOLO COCO trainval 43.8 40

Table 4: Comparing the proposed method with other CNN
based approaches for object detection. Both accuracy mea-
surement of mean average precision (mAP) and efficiency
measurement of frames per second (FPS) are listed.

set of 100 images, the NuMax approach still consumed over
4000 seconds to train. The ADAGIO approach relaxed the
NuMax SDP problem into an eigenvalue problem, but it was
less efficient than the proposed CCN approach when more
than 100 images were used for training. As for the large-
scale COCO data set, the ADAGIO approach was impracti-
cal due to unaffordable memory and time complexity.

Performance of Object Detection
Generally, the incorporation of image compression in the
prototyping CCN-YOLO model did not degrade the perfor-
mance of object detection. The CCN-YOLO model trained
over the VOC data set achieved 78.1% mean average pre-
cision (mAP), which was almost the same as the original
YOLOv2 model. The CCN-YOLO also achieved similar
recall rate of 86.6%, and competitively high average accu-
racy of 92.8% over the top 5 classes of the VOC data set.
Giving that the recall rate and the average accuracy over the
top 5 classes for the original YOLOv2 model were 86.8%
and 93.3% respectively, the CCN suffered marginal loss of
performance compared to the YOLOv2 model.

Table 4 summarizes the results of inference accuracy and
speed of the CCN-YOLO model, which is compared with
different variants of the R-CNN, the SSD and the YOLO
models. The CCN-YOLO model shows competitively high
mAP over the VOC and COCO data sets. Moreover, the
incorporation of image compression function doesn’t af-
fect inference efficiency; therefore, the CCN-YOLO model
could perform object detection and image compression at
the speed of 40 frames per second on a computer accelerated
by one NVIDIA 1080Ti GPU.

The CCN is a compressive-sensing-enabled convolutional
neural network, which is a unified approach for object de-
tection and image compression. Table 5 compares the com-
bined latency of image compression and object detection
of the compared designs illustrated in Fig. 1. The proposed
method is compared with the conventional strategies that a
YOLOv2 model is performing object detection side-by-side

Block Size 16*16 32*32 64*64 128*128
CCN-YOLO 2.82 2.82 2.82 2.82
Original YOLOv2 2.81 2.81 2.81 2.81
Gauss+YOLOv2 8.81 9.25 11.65 14.15
ADAGIO+YOLOv2 8.81 9.24 11.67 14.13
CS-SM+YOLOv2 8.80 9.21 11.47 13.69

Table 5: Comparing the inference time (second) of proposed
unified CCN approach and the conventional approaches with
separate object detection and sub-sampling components.

with a compressive sensing module using different types of
embedding matrices. It is worth noting that, the compared
compressive sensing approaches require O( M×N

B ) times of
multiplications at the front end for data embedding. Though
the complexity of these strategies depends on the block size
B, the CCN-YOLO model is 3.1 to 5.0 fold more efficient
than the compared approaches, because no computational
overhead is required for compression sensing.

Conclusion and Discussion

To address the challenge of implementing CNN based com-
puter vision applications on wireless embedded devices,
this paper presents an efficient Compressive Convolutional
Network (CCN) for unified object detection and image
compression. A incoherence regularization approach is pro-
posed to enable the convolution operation to perform near-
isometric data embedding for compressive sensing. This
paper focuses on the CCN-YOLO framework; however, the
incoherence regularization approach can be easily applied to
other CNN based frameworks.

The benefits of the proposed method are three fold.
First, as a regularization based approach, the CCN suffers
almost no loss of detection accuracy. Secondly, since no
computational overhead is caused by incorporating image
compression function, the unified approach is over three-
fold more efficient than the conventional approaches using
separate compressive sensing and object detection modules.
Thirdly, the CCN is more efficient than the existing ap-
proaches for data-driven near-isometric embedding. It can
be applied to large-scale data sets and achieves over 3.1
dB higher image compression PSNR than the conventional
approaches.

There are several limitations for the current CCN-YOLO
system that can be improved in the future. First, for fair
comparison, the standard OMP image reconstruction ap-
proach is adopted in our implementation, which may not
be the optimal solution for the CCN or other compared
approaches. It may be the reason why all the compared
approaches had lower PSNR than 35 dB. Moreover, from
a system point of view, the OMP method is computationally
expensive, which requires extra computational overhead for
image reconstruction on the back-end cloud or servers.
In the future, we plan to extend the CCN and build a
back-end neural network for efficient and accurate image
reconstruction.
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