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Abstract

While Unsupervised Domain Adaptation (UDA) algorithms,
i.e., there are only labeled data from source domains, have
been actively studied in recent years, most algorithms and
theoretical results focus on Single-source Unsupervised Do-
main Adaptation (SUDA). However, in the practical scenario,
labeled data can be typically collected from multiple diverse
sources, and they might be different not only from the target
domain but also from each other. Thus, domain adapters from
multiple sources should not be modeled in the same way. Re-
cent deep learning based Multi-source Unsupervised Domain
Adaptation (MUDA) algorithms focus on extracting common
domain-invariant representations for all domains by aligning
distribution of all pairs of source and target domains in a com-
mon feature space. However, it is often very hard to extract
the same domain-invariant representations for all domains in
MUDA. In addition, these methods match distributions with-
out considering domain-specific decision boundaries between
classes. To solve these problems, we propose a new frame-
work with two alignment stages for MUDA which not only
respectively aligns the distributions of each pair of source
and target domains in multiple specific feature spaces, but
also aligns the outputs of classifiers by utilizing the domain-
specific decision boundaries. Extensive experiments demon-
strate that our method can achieve remarkable results on pop-
ular benchmark datasets for image classification.

Introduction
Recent advances in deep learning have significantly im-
proved the state-of-the-arts across a variety of visual learn-
ing tasks (Ren et al. 2015; He et al. 2016). These achieve-
ments mainly come from the availability of large-scale la-
beled data for supervised learning. For a target task with
the shortage of labeled data, there is a strong motivation
to build effective learners that can leverage rich labeled
data from a related source domain. However, due to the
presence of domain shift (Quionero-Candela et al. 2009;
Pan and Yang 2010), the performance of the learned model
might tend to degrade heavily in the target domain.

Learning a discriminative model in the presence of do-
main shift between training and test distributions is known
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Figure 1: In Single-source Unsupervised Domain Adapta-
tion (SUDA), the distribution of source and target domains
cannot be matched very well. While in Multi-source Unsu-
pervised Domain Adaptation (MUDA), due to the shift be-
tween multiple source domains, it is much harder to match
distributions of all source domains and target domains. (Best
viewed in color.)

as domain adaptation. In recent years, most domain adap-
tation algorithms focus on Single-source Unsupervised Do-
main Adaptation (SUDA) problem, where there are only la-
beled data from one single source domain. Previous SUDA
methods include re-weighting the training data (Jiang and
Zhai 2007; Huang et al. 2007), and finding a transforma-
tion in a lower-dimensional manifold that draws the source
and target subspaces closer (Gong et al. 2012; Fernando
et al. 2013). In recent years, most SUDA algorithms learn
to map the data from both domains into a common fea-
ture space to learn domain-invariant representations by min-
imizing domain distribution discrepancy (Long et al. 2015;
Ganin and Lempitsky 2015; Sun and Saenko 2016; Long et
al. 2017), and the source classifier can then be directly ap-
plied to target instances.

However, in practice, it is very likely that we have mul-
tiple source domains. Consequently, Multi-source Unsuper-
vised Domain Adaptation (MUDA) is both feasible in prac-
tice and more valuable in performance improvement and
has received considerable attention in real-world applica-
tion fields (Yang, Yan, and Hauptmann 2007; Duan, Xu, and
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Tsang 2012; Jhuo et al. 2012; Liu, Shao, and Fu 2016). It
is a common and straightforward way to combine all source
domains into one single source domain and align distribu-
tions as SUDA methods do. Due to the data expansion, the
methods might improve the performance. However, the im-
provement might not be significant, hence, it is necessary
to find a better way to make full use of multiple source do-
mains.

Despite the rapid progress in deep learning based SUDA,
a few studies have been given to deep learning based
MUDA, which is much more challenging (Xu et al. 2018).
In recent years, some works on deep learning for MUDA
are proposed, and there are two common problems exist in
these methods. First, they try to map all source and target
domain data into a common feature space to learn common
domain-invariant representations. However, it is not easy to
learn domain-invariant representations even for one single
source and one target domain data. As an intuitive example
in Figure 1, we can not remove the shift between one sin-
gle source and one target domains, and when we try to align
multiple source and target domains, the bigger mismatch de-
gree might lead to unsatisfying performance. Second, they
assume that the target domain data can be classified cor-
rectly by multiple domain-specific classifiers because they
are aligned with the source domain data. However, these
methods might fail to extract discriminative features because
it does not consider the relationship between target samples
and the domain-specific decision boundary when aligning
distributions.

In this paper, we propose a new framework with two-stage
alignments for MUDA to overcome both problems. The first
stage is aligning the domain-specific distribution, i.e., we
respectively map each pair of source and target domains
data into multiple different feature spaces, and align domain-
specific distributions to learn multiple domain-invariant rep-
resentations. Then we train multiple domain-specific classi-
fiers using multiple domains-invariant representations. The
second stage is aligning domain-specific classifiers. The tar-
get samples near domain-specific decision boundary pre-
dicted by different classifiers might get the different labels.
Hence, utilizing the domain-specific decision boundaries,
we align the classifiers’ output for the target samples. Ex-
tensive experiments show that our method can obtain re-
markable results for MUDA on public benchmark datasets
compared to the state-of-the-art methods.

The contributions of this paper are summarized as fol-
lows. (1) We propose a new two-stage alignment framework
for MUDA which aligns the domain-specific distributions
of each pair of source and target domains in multiple feature
spaces and align the domain-specific classifiers’ output for
target samples. (2) We conduct comprehensive experiments
on three well-known benchmarks, and the experimental re-
sults validate the effectiveness of the proposed model.

Related Work
In this section, we will introduce the related work in two
aspects: Single-source Unsupervised Domain Adaptation
(SUDA) and Multi-source Unsupervised Domain Adapta-
tion (MUDA).

Single-source Unsupervised Domain Adaptation
(SUDA). Recent years have witnessed many ap-
proaches to solve the visual domain adaptation prob-
lem, which is also commonly framed as the visual
dataset bias problem (Quionero-Candela et al. 2009;
Pan and Yang 2010). Previous shallow meth-
ods for SUDA include re-weighting the train-
ing data so that they could more closely reflect
those in the test distribution (Jiang and Zhai 2007;
Huang et al. 2007), and finding a transformation in a
lower-dimensional manifold that draws the source and
target subspaces closer (Gong et al. 2012; Pan et al. 2011;
Fernando et al. 2013).

Some recent works bridge deep learning and domain
adaptation (Long et al. 2015; Ganin and Lempitsky 2015;
Tzeng et al. 2017; Sun and Saenko 2016). The two main-
streams: the one extends deep convolutional networks to do-
main adaptation by adding adaptation layers through which
the mean embeddings of distributions are matched (Tzeng et
al. 2014; Long et al. 2015; 2017), while the other by adding
a subnetwork as domain discriminator and the deep fea-
tures are learned to confuse the discriminator in a domain-
adversarial training paradigm (Ganin and Lempitsky 2015;
Tzeng et al. 2017; Saito et al. 2017). And recent related work
extends the adversarial methods to a generative adversarial
way (Bousmalis et al. 2017; Hoffman et al. 2018).

Besides of these two mainstreams, there are diverse meth-
ods to learn domain-invariant features: DRCN (Ghifary
et al. 2016) reconstructs features to images and makes
the transformed images are similar to original images. D-
CORAL (Sun and Saenko 2016) “recolors” whitened source
features with the covariance of features from the target do-
main.

Multi-source Unsupervised Domain Adaptation
(MUDA). The SUDA methods mentioned above mainly
consider one single source and one target domain. However,
in practice, there are multiple source domains available.
Due to the dataset shift among them, we can not use
SUDA methods by combining all source domains into
one single source domain. The research originates from
A-SVM (Yang, Yan, and Hauptmann 2007) that lever-
ages the ensemble of source-specific classifiers to tune
the target categorization model, and there have been a
variety of shallow models invented to tackle the MUDA
problem (Duan, Xu, and Tsang 2012; Jhuo et al. 2012;
Liu, Shao, and Fu 2016). MUDA also develops with theo-
retical supports (Ben-David et al. 2010; Blitzer et al. 2008;
Liu, Shao, and Fu 2016). Blitzer et al. (Blitzer et al. 2008)
provided the first learning bound for MUDA. Mansour
et al. (Mansour, Mohri, and Rostamizadeh 2009) claimed
that an ideal target hypothesis can be represented by a
distribution weighted combination of source hypotheses.
However, in our method, we just use the average of source
hypotheses as the target hypothesis.

In recent years, some works bridge multiple source do-
main adaptation and deep transfer (Xu et al. 2018; Zhao et
al. 2018). Xu et al. (Xu et al. 2018) proposed to use a classi-
fier and a domain discriminator for each pair of source and
target domains, and then to vote for the target labels accord-
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ing to the confusion loss. Zhao et al. (Zhao et al. 2018) pro-
posed to combine the gradient of multiple domain discrim-
inators. These work focus on extracting common domain-
invariant representations for all domains. However, as men-
tioned above, it is hard to learn common domain-invariant
representations for all domains. Hence, we try to respec-
tively map each pair of source and target domain into multi-
ple feature spaces and extract multiple domain-invariant rep-
resentations. In addition, utilizing the domain-specific deci-
sion boundaries, we align the classifiers’ output for the target
samples.

Method
In multi-source unsupervised domain adaptation, there
are N different underlying source distributions denoted
as {psj(x, y)}Nj=1, and the labeled source domain data
{(Xsj , Ysj)}Nj=1 are drawn from these distributions respec-

tively, where Xsj = {xsji }
|Xsj |
i=1 represents samples from

source domain j and Ysj = {ysji }
|Xsj |
i=1 is the correspond-

ing ground-truth labels. Also, we have target distribution
pt(x, y), from which target domain data Xt = {xti}

|Xt|
i=1 are

sampled yet without label observation Yt.
In recent years, some works bridge deep learning and

multi-source domain adaptation (Xu et al. 2018; Zhao et
al. 2018), and they minimize a distance loss between each
pair of source and target domains to learn common domain-
invariant representations in a common feature space for all
domains. The formal representation can be:

min
F,C

N∑
j=1

Ex∼XsjJ(C(F (x
sj
i )),ysji )

+ λ

N∑
j=1

D̂(F (Xsj), F (Xt)),

(1)

where J(·, ·) is the cross-entropy loss function (classifica-
tion loss) and D̂(·, ·) is an estimate of the discrepancy be-
tween two domains, such as MMD (Gretton et al. 2012;
Long et al. 2015), CORAL (Sun and Saenko 2016), Con-
fusion loss (Ganin and Lempitsky 2015; Tzeng et al. 2015).
F (·) is the feature extractor to map all domains into a com-
mon feature space, and C(·) is the classifier. The com-
mon problem with these methods is that they mainly fo-
cus on learning common domain-invariant representations
for all domains and do not consider domain-specific deci-
sion boundaries between classes. However, it is not an easy
task. Actually, extracting domain-invariant representations
for each pair of source and target domains respectively is
easier than extracting common domain-invariant representa-
tions for all domains. In addition, the target samples near
domain-specific decision boundary predicted by different
classifiers might get the different labels. Hence, utilizing
the domain-specific decision boundaries, we align the clas-
sifiers’ outputs for the target samples. Therefore, we propose
a new two-stage alignment framework to overcome these
problems.

First alignment stage is aligning the domain-specific dis-
tributions for each pair of source and target domains. The
way to extract multiple domain-invariant representations for
each pair of source and target domain is that mapping each
of them into specific feature spaces and matching their distri-
butions. To map each pair of source and target domains into
a specific feature space, the easiest way is to train multiple
networks. However, this would spend a lot of time. Hence,
we propose to divide the network into two part. Specifically,
the first part shares a subnetwork to learn some common
features for all domains, and the second part contains N
domain-specific subnetworks that do not share the weights
with each other for each pair of source and target domains.
For each unshared subnetwork, we learn a domain-specific
classifier. However, the target samples near domain-specific
decision boundary predicted by different classifiers might
get the different labels. Hence, utilizing the domain-specific
decision boundaries, the second alignment stage is aligning
the domain-specific classifiers’ output for the target samples.
In paper (Xu et al. 2018), they proposed a complex voting
method for multiple classifiers, in our method the complex
voting method is not needed due to the second stage align-
ment.

Two-stage alignment Framework

Our framework consists of three components, i.e., a com-
mon feature extractor, domain-specific feature extractors,
domain-specific classifiers, as shown in Figure 2.

Common feature extractor We propose a common sub-
network f(·) to extract common representations for all do-
mains, which map the images from the original feature space
into a common feature space.

Domain-specific feature extractor We want each pair
of source and target domain data could be mapped into
a specific feature space. Given a batch images xsj from
source domain (Xsj , Ysj) and a batch images xt from
target domain Xt, these domain-specific feature extrac-
tors receive the common features f(xsj) and f(xt) from
common feature extractor. Then, there are N unshared
domain-specific subnetworks hj(·) for each source domain
(Xsj , Ysj), which map each pair of source and target do-
mains into a specific feature space.

The aim of deep domain adaptation is to learn domain-
invariant representations, and there are several methods to
achieve this goal in recent years, such as mmd loss (Gret-
ton et al. 2012; Long et al. 2015), adversarial loss (Ganin
and Lempitsky 2015; Tzeng et al. 2015), coral loss (Sun
and Saenko 2016), reconstruction loss (Ghifary et al. 2016).
Here we choose the MMD method to reduce the distribution
discrepancy between domains.

Domain-specific classifier C is a multi-output net com-
posed by N domain-specific predictor {Cj}Nj=1. Each pre-
dictor Cj is a softmax classifier, and receives the specific
domain-invariant feature after domain-specific feature ex-
tractor H(F (x)) for j-th source domain. For each classifier,
we add a classification loss using cross entropy, which is
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Figure 2: An overview of the proposed two-stage alignment framework. Our framework receives multi-source instances with
annotated ground truth and adapts to classifying the target samples. There are specific feature extractors and classifiers for each
source. (Best viewed in color.)

formulated as:

Lcls =
N∑
j=1

Ex∼XsjJ(Cj(Hj(F (x
sj
i ))),ysji ). (2)

Domain-specific Distribution Alignment
To achieve the first alignment stage (align distributions for
each pair of source and target domains), we choose Maxi-
mum Mean Discrepancy (MMD) (Gretton et al. 2012) as our
estimate of the discrepancy between two domains. MMD is
a kernel two-sample test which rejects or accepts the null
hypothesis p = q based on the observed samples. The ba-
sic idea behind MMD is that if the generating distributions
are identical, all the statistics are the same. Formally, MMD
defines the following difference measure:

DH(p, q) , ‖Ep[φ(xs)]−Eq[φ(x
t)]‖2H, (3)

where H is the reproducing kernel Hillbert space (RKHS)
endowed with a characteristic kernel k. Here φ(·) denotes
some feature map to map the original samples to RKHS and
the kernel k means k(xs,xt) = 〈φ(xs), φ(xt)〉 where 〈·, ·〉
represents inner product of vectors. The main theoretical re-
sult is that p = q if and only if DH(p, q) = 0 (Gretton et
al. 2012). In practice, an estimate of the MMD compares the
square distance between the empirical kernel mean embed-
dings as

D̂H(p, q) =

∥∥∥∥∥∥ 1

ns

∑
xi∈Ds

φ(xi)−
1

nt

∑
xj∈Dt

φ(xj)

∥∥∥∥∥∥
2

H

, (4)

where D̂H(p, q) is an unbiased estimator of DH(p, q). We
use Equation (4) as the estimate of the discrepancy between
each source domain and target domain. The MMD loss is
reformulated as:

Lmmd =
1

N

N∑
j=1

D̂(Hj(F (Xsj)), Hj(F (Xt))), (5)

Each specific feature extractor could learn domain-invariant
representations for each pair of source and target domain by
minimizing the Equation 5.

Domain-specific Classifier Alignment
The target samples near the class boundaries are more likely
to be misclassified by the classifiers learned from source
samples. The classifiers are trained on different source do-
mains, hence they might have the disagreement on the pre-
diction for target samples especially the target samples near
class boundaries. Intuitively, the same target sample pre-
dicted by different classifiers should get the same prediction.
Hence, the second alignment stage is to minimize the dis-
crepancy among all classifiers. In this paper, we utilize the
absolute values of the difference between all pairs of classi-
fiers’ probabilistic outputs of target domain data as discrep-
ancy loss:

Ldisc =
2

N × (N − 1)

N−1∑
j=1

N∑
i=j+1

Ex∼Xt [|Ci(Hi(F (xk)))

− Cj(Hj(F (xk)))|],
(6)

In (Xu et al. 2018), they propose a target classification oper-
ator to combine the multiple source classifiers. However, it is
complex to vote the label for target samples. By minimizing
the Equation (6), the probabilistic outputs of all classifiers
are similar. Finally, to predict the labels of target samples,
we compute the average of all classifier outputs.

Multiple Feature Spaces Adaptation Network
Learning common domain-invariant representations is dif-
ficult for multiple source domains. In addition, The target
samples near the class boundaries are likely to be misclas-
sified. To this end, we propose a Multiple Feature Spaces
Adaptation Network (MFSAN for short). Specifically, this
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Algorithm 1 Multiple Feature Spaces Adaptation Network
(MFSAN)

1: Give the number of training iterations T
2: for t in 1 : T do
3: Randomly sample m images {xsji , y

sj
i }mi=1 from one

of N source domains {(Xsj , Ysj)}Nj=1.
4: Sample m images {xti}mi=1 from target domain (Xt).
5: Feed source and target samples to common feature

extractor to get the common latent representations
F (xsji ) and F (xti).

6: Feed common latent representations of source sam-
ples to domain-specific feature extractor to get
domain-specific representations of source samples
Hj(F (x

sj
i )).

7: Feed domain-specific representations of source sam-
ples Hj(F (x

sj
i )) to domain-specific classifier to get

Cj(Hj(F (x
sj
i ))), and the classification is computed

as Equation (2).
8: Feed common latent representation of target

samples to all domain-specific extractor to get
domain-specific representations of target samples
H1(F (x

t1
i )), · · · , HN (F (xtNi )),

9: Use Hj(F (x
sj
i )) and Hj(F (x

t1
i )) to calculate mmd

loss as Equation (5).
10: Use H1(F (x

t1
i )), · · · , HN (F (xtNi )) to compute the

disc loss as Equation (6).
11: Update the common feature extractor F , multiple

domain-specific feature extractor H1, · · · , HN and
multiple classifier C1, · · · , CN by minimizing the to-
tal loss in Equation (7).

12: end for

network includes two alignment stages, which are to learn
source specific domain-invariant representations and align
the classifiers’ output for target samples. Our framework
is composed by a common feature extractor, N domain-
specific feature extractors, and N source specific classifiers.
Overall, the loss of our method is consist of three parts, clas-
sification loss, mmd loss, disc loss. For details, by minimiz-
ing classification loss, the network could accurately classify
the source domain data; by minimizing mmd loss to learn
domain-invariant representations; by minimizing disc loss
to reduce the discrepancy among classifiers. The total loss
is formulated as,

Ltotal = Lcls + λLmmd + γLdisc. (7)

Since training deep CNNs requires a large amount of la-
beled data that is prohibitive for many domain adaptation
applications, we start with the CNN models pre-trained on
ImageNet 2012 data and fine-tune it as (Long et al. 2017).
The training mainly follows standard mini-batch stochastic
gradient descent (SGD) algorithm. Our method is a general
framework for Multi-source Unsupervised Domain Adapta-
tion(MUDA). The Lmmd could be replaced by other adap-
tation methods, such as adversarial loss, coral loss. And the
Ldisc could be replaced by other loss, such as L2 regulariza-
tion. The whole procedure is summarized in Algorithm 1.

Experiments
We evaluate the Multiple Feature Spaces Adaptation Net-
work (MFSAN) against state-of-the-art domain adaptation
methods on three datasets: ImageCLEF-DA, Office-31 and
Office-Home. Our code will be available at: https://github.
com/easezyc/deep-transfer-learning

Data Preparation
ImageCLEF-DA1 is a benchmark dataset for ImageCLEF
2014 domain adaptation challenge, which is organized by
selecting the 12 common categories shared by the follow-
ing three public datasets, each is considered as a domain:
Caltech-256 (C), ImageNet ILSVRC 2012 (I), and Pascal
VOC 2012 (P). There are 50 images in each category and
600 images in each domain. We use all domain combina-
tions and build three transfer tasks: I, C→ P; I, P→ C; C,
P→ I.

Office-31 (Saenko et al. 2010) is a benchmark for do-
main adaptation, comprising 4,110 images in 31 classes col-
lected from three distinct domains: Amazon(A), which con-
tains images downloaded from amazon.com, Webcam(W)
and DSLR(D), which contain images taken by web camera
and digital SLR camera with different photographical set-
tings. The images in each domain are unbalanced. The im-
ages in each domain are unbalanced. To enable unbiased
evaluation, we evaluate all methods on all three transfer
tasks A, W→ D; A, D→W; D, W→ A.

Office-Home (Venkateswara et al. 2017) is a new dataset
which consists 15,588 images larger than Office-31 and
ImageCLEF-DA. It consists of images from 4 different do-
mains: Artistic images (A), Clip Art (C), Product images (P)
and Real-World images (R). For each domain, the dataset
contains images of 65 object categories collected in office
and home settings. We use all domain combinations and
build four transfer tasks: C, P, R → A; A, P, R → C; A,
C, R→ P; A, C, P→ R.

Baselines and Implementation Details
Baselines There is a small amount of MUDA work on
real-world visual recognition benchmarks. In our experi-
ment, we introduce a recent deep MUDA method Deep
Cocktail Network (DCTN) (Xu et al. 2018) as the multi-
source baselines. Besides, We compare MFSAN with var-
ious kinds of SUDA methods, including Deep Convolu-
tional Neural Network ResNet (He et al. 2016), Deep Do-
main Confusion (DDC) (Tzeng et al. 2014), Deep Adap-
tation Network (DAN) (Long et al. 2015), Deep CORAL
(D-CORAL) (Sun and Saenko 2016), Reverse Gradient
(RevGrad) (Ganin and Lempitsky 2015) and Residual
Transfer Network (RTN) (Long et al. 2016). Since those
methods perform in single-source setting, we introduce three
MUDA standards for different purposes: (1) Source com-
bine: all source domains are combined together into a tra-
ditional single-source v.s. target setting. (2) Single best:
among the multiple source domains, we report the best sin-
gle source transfer results. (3) Multi-source: the results of
MUDA methods. The first standard testifies whether the

1http://imageclef.org/2014/adaptation.
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multiple sources are valuable to exploit; the second standard
evaluates whether we can further improve the best SUDA
via introducing other sources; the third demonstrates the ef-
fectiveness of our MFSAN.

To further validate the effectiveness of mmd loss and
diff loss, we also evaluate several variants of MFSAN:
(1) MFSANdisc , without considering the mmd loss;
(2) MFSANmmd, without considering the disc loss; (3) MF-
SAN, considering both disc loss and mmd loss. For all
domain-specific feature extractors, we use the same struc-
ture (conv(1x1), conv(3x3), conv(1x1)), and at the end of the
network, we reduce the channels to 256 like DDC (Tzeng et
al. 2014).

Table 1: Performance Comparison of Classification Accu-
racy (%) on Office-31 Dataset.

Standards Method A,W
→ D

A,D→
W

D,W
→ A

Avg

ResNet 99.3 96.7 62.5 86.2
DDC 98.2 95.0 67.4 86.9

Single DAN 99.5 96.8 66.7 87.7
Best D-CORAL 99.7 98.0 65.3 87.7

RevGrad 99.1 96.9 68.2 88.1
RTN 99.4 96.8 66.2 87.5

DAN 99.6 97.8 67.6 88.3
Source D-CORAL 99.3 98.0 67.1 88.1

Combine RevGrad 99.7 98.1 67.6 88.5

DCTN 99.3 98.2 64.2 87.2
Multi- MFSANdisc 99.7 97.9 68.1 88.6
Source MFSANmmd 99.9 98.3 71.5 89.9

MFSAN 99.5 98.5 72.7 90.2

Table 2: Performance Comparison of Classification Accu-
racy (%) on Image-CLEF Dataset.

Standards Method I,C→ P I,P→ C P,C→ I Avg

ResNet 74.8 91.5 83.9 83.4
DDC 74.6 91.1 85.7 83.8

Single DAN 75.0 93.3 86.2 84.8
Best D-CORAL 76.9 93.6 88.5 86.3

RevGrad 75.0 96.2 87.0 86.1
RTN 75.6 95.3 86.9 85.9

DAN 77.6 93.3 92.2 87.7
Source D-CORAL 77.1 93.6 91.7 87.5

Combine RevGrad 77.9 93.7 91.8 87.8

DCTN 75.0 95.7 90.3 87.0
Multi- MFSANdisc 78.0 95.0 92.5 88.5
Source MFSANmmd 78.7 94.8 93.1 88.9

MFSAN 79.1 95.4 93.6 89.4

Implementation Details All deep methods are imple-
mented base on the pytorch framework, and fine-tuned from
pytorch-provided models of ResNet (He et al. 2016). We
fine-tune all convolutional and pooling layers and train the
classifier layer via back propagation. Since the domain-
specific feature extractors and classifiers are trained from
scratch, we set its learning rate to be 10 times that of the
other layers. We use mini-batch stochastic gradient descent
(SGD) with momentum of 0.9 and the learning rate anneal-
ing strategy in RevGrad (Ganin and Lempitsky 2015): the

Table 3: Performance Comparison of Classification Accu-
racy (%) on Office-Home Dataset.

Standards Method C,P,R A,P,R A,C,R A,C,P Avg→ A → C → P → R

ResNet 65.3 49.6 79.7 75.4 67.5
Single DDC 64.1 50.8 78.2 75.0 67.0
Best DAN 68.2 56.5 80.3 75.9 70.2

D-CORAL 67.0 53.6 80.3 76.3 69.3
RevGrad 67.9 55.9 80.4 75.8 70.0

DAN 68.5 59.4 79.0 82.5 72.4
Source D-CORAL 68.1 58.6 79.5 82.7 72.2

Combine RevGrad 68.4 59.1 79.5 82.7 72.4

MFSANdisc 69.8 60.2 80.2 81.0 72.8
Multi- MFSANmmd 71.1 61.9 79.3 80.8 73.3
Source MFSAN 72.1 62.0 80.3 81.8 74.1

Table 4: Classification Accuracy (%) on Office-31 Dataset
for MFSAN with and without disc Loss.

Standards Method A,W
→ D

A,D
→W

D,W
→ A

Avg

S1 97.7 95.0 68.3 87.0
MFSANmmd S2 85.5 89.0 71.0 81.8

Avg 99.9 98.3 71.5 89.9

S1 97.3 97.6 72.5 89.1
MFSAN S2 96.6 97.7 72.4 88.9

Avg 99.5 98.5 72.7 90.2

learning rate is not selected by a grid search due to high com-
putational cost, it is adjusted during SGD using the follow-
ing formula: ηp = η0

(1+αp)β
, where p is the training progress

linearly changing from 0 to 1, η0 = 0.01, α = 10 and
β = 0.75, which is optimized to promote convergence and
low error on the source domain. To suppress noisy activa-
tions at the early stages of training, instead of fixing the
adaptation factor λ and γ, we gradually change them from
0 to 1 by a progressive schedule: γp = λp = 2

exp(−θp) − 1,
and θ = 10 is fixed throughout the experiments (Ganin and
Lempitsky 2015). This progressive strategy significantly sta-
bilizes parameter sensitivity and eases model selection for
MFSAN.

Results
we compare MFSAN with the baselines on three datasets
and the results are shown in Tables 1, 2 and 3, respectively.
We also compare the MFSAN with or without disc loss on
Office-31 dataset and list the results of each classifier from
different sources and the average voting in Table 4. From
these results, we have the following insightful observations:
• The results of Source Combine are better than Single

Best, which demonstrates that combining all source domains
into single source domain is helpful in most transfer tasks.
This may be due to the data enrichment.
•MFSAN outperforms all compared baseline methods on

most multi-source transfer tasks. The encouraging results in-
dicate that it is important to learn multiple domain-invariant
representations for each pair of source and target domains
together with considering domain-specific class boundary.
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(a) DAN (Single Source):
D, A

(b) DAN (Source Com-
bine): D, A

(c) DAN (Source Com-
bine): W, A

(d) MFSAN: D, A (e) MFSAN: W, A

Figure 3: The Visualization of Latent Representations of Source and Target Domains.
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Figure 4: Algorithm Convergence and Parameter Sensitivity.

• Comparing MFSANmmd with DAN (source combine),
the only difference is that MFSANmmd extracts multiple
domain-invariant representations in multiple feature spaces,
while DAN extracts common domain-invariant representa-
tions in a common feature space. MFSANmmd is better than
DAN (Source Combine), which shows that it is difficult to
extract common domain-invariant representations for all do-
mains.
•MFSANdisc outperforms all compared methods on most

multi-source transfer tasks. This verifies that the consider-
ation of the domain-specific class boundary to reduce the
gap between all classifiers can help each classifier learn the
knowledge from other classifiers.
• Comparing MFSAN with MFSANmmd which does not

have disc loss, we find that the results of classifiers from
different sources with disc loss (MFSAN) are very close to
each other, while there is a large gap between the results
of classifiers without disc loss (MFSANmmd). The results
demonstrate the effectiveness of introducing disc loss to re-
duce the gap between all classifiers.

Analysis
Feature visualization In Figure 3, we visualize the latent
representations of the task D→ A learned by DAN (Single
Source) and D, W→ A learned by DAN (Source Combine),
MFSAN using t-SNE embeddings (Donahue et al. 2014).

From Figure 3, we can observe that 1) the results in Fig-
ures 3b and 3c are better than the one in Figure 3a, which
show that we can benefit from the consideration of more
source domains: the results in Figures 3d and 3e are bet-
ter than the ones in Figure 3a ∼ 3c, which again validates
the effectiveness of our model to align both domain-specific
distributions and classifiers.

Algorithm Convergence To investigate the convergence
our algorithm and the influence of disc loss, we record the
performance of MFSAN and MFSANmmd during the iter-
ating on the task D, W→ A in Figure 4a. We can find that
all algorithms can almost converge after 1.5×104 iterations.
Also, the results from MFSAN with disc loss have a smaller
gap among classifiers and they achieve higher accuracy.

Parameter Sensitivity For simplicity, we set the trade-off
parameters λ and γ as the same value in our experiments,
which respectively control the importance of mmd loss and
disc loss. To study the sensitivity of λ, we sample the values
in {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2}, and perform the ex-
periments on tasks D, W→ A and I, C→ P. All the results
are shown in Figure 4b, and we find that the accuracy first
increases and then decreases, and displays as a bell-shaped
curve. Finally, we set λ = 0.5 to achieve good performance.

Conclusion
Most previous deep learning based multi-source domain
adaptation methods focus on extracting common domain-
invariant representations for all domains without consider-
ing domain-specific class boundary. In this paper, we pro-
posed a Multiple Feature Space Adaptation Network (MF-
SAN), which simultaneously aligns the domain-specific dis-
tribution of each pair of source and target domains by learn-
ing multiple domain-invariant representations and the out-
puts of classifiers from multiple sources. Extensive experi-
ments are conducted on three image datasets to demonstrate
the effectiveness of the proposed framework. Moreover, our
model is a general framework, which can integrate different
kinds of mmd loss and disc loss functions.
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