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Abstract

We propose a novel domain adaptation framework, namely
Consensus Adversarial Domain Adaptation (CADA), that
gives freedom to both target encoder and source encoder
to embed data from both domains into a common domain-
invariant feature space until they achieve consensus during
adversarial learning. In this manner, the domain discrep-
ancy can be further minimized in the embedded space, yield-
ing more generalizable representations. The framework is
also extended to establish a new few-shot domain adapta-
tion scheme (F-CADA), that remarkably enhances the ADA
performance by efficiently propagating a few labeled data
once available in the target domain. Extensive experiments
are conducted on the task of digit recognition across multi-
ple benchmark datasets and a real-world problem involving
WiFi-enabled device-free gesture recognition under spatial
dynamics. The results show the compelling performance of
CADA versus the state-of-the-art unsupervised domain adap-
tation (UDA) and supervised domain adaptation (SDA) meth-
ods. Numerical experiments also demonstrate that F-CADA
can significantly improve the adaptation performance even
with sparsely labeled data in the target domain.

Introduction
In recent years, a booming development of deep learning
methods has been witnessed, partially as a consequence of
the availability of a large amount of labeled data to train and
validate more advanced models. More often than not, these
recognition models trained with the large datasets perform
extremely well in one domain, i.e., the source domain. How-
ever, they often fail to generalize well to new datasets or new
environments, i.e., the target domain, due to domain shift or
dataset bias (Tzeng et al. 2017).

To alleviate the issue of domain shift, a large body
of research has been carried out on domain adaptation,
which aims to distill the shared knowledge across domains
and therefore improving the generalization of the learned
model. Domain adaptation methods can be categorized into
2 classes, unsupervised domain adaptation (UDA) and su-
pervised domain adaptation (SDA), depending on whether
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labeled data is available in the target domain. In many real-
world cases, it is time-consuming, labor-intensive and ex-
pensive to collect and annotate a huge number of samples
in the target domain. Thus, in practice, research on UDA
is arguably more popular than SDA since collecting unla-
beled target data is usually a trivial task. Conventional UDA
methods (e.g., DDC (Tzeng et al. 2014), RevGrad (Ganin
and Lempitsky 2015) and DRCN (Ghifary et al. 2016)) map
data from both domains into a common feature space to re-
duce the domain shift. This is achieved by minimizing some
measure of distance between the target and source feature
distributions, e.g., correlation distances or maximum mean
discrepancy. The goal is to identify a feature space in which
samples from both target and source domain are indistin-
guishable. Once the task is accomplished, the model con-
structed in the source domain can be applied to the tasks in
the target domain by embedding the dataset with the learned
transformation.

Meanwhile, with the unprecedented success of Genera-
tive Adversarial Network (GAN) (Goodfellow et al. 2014),
some researchers have proposed to construct an adversar-
ial loss to accommodate the domain shift, which is com-
monly referred as adversarial domain adaptation (ADA) or
adversarial UDA (Tzeng et al. 2017). GAN trains a gener-
ator and a discriminator in a min-max fashion, where the
generator learns to generate high-quality data to fool the
discriminator, and the discriminator aims to distinguish the
real and synthetic data. Similar to the setup of GAN, ADA
aims to minimize an approximate domain discrepancy dis-
tance through an adversarial objective with respect to a do-
main discriminator. Through adversarial learning, it trains
a source encoder and a target encoder such that a well-
formed domain discriminator cannot determine the domain
label of the encoded samples. Adversarial UDA methods,
e.g., CoGAN (Liu and Tuzel 2016) and ADDA (Tzeng et
al. 2017), achieve appealing performance compared to tradi-
tional UDA methods. However, the feature mapping is usu-
ally defined by the source encoder in these methods. More
specifically, previous methods align embedded feature rep-
resentations of the target domain to the source domain by
fixing parameters of the source encoder during adversarial
learning. Additionally, their network settings follow that of
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GAN’s exactly, where the real image distribution remains
fixed and synthesized one is learned to match it. Similar to
GAN, the source feature representation is considered as an
absolute good reference for the target, leading to the stag-
nated parameters of the source encoder. However, in prac-
tice, the domain discrepancy between source and target is
considerably significant. This assumption, therefore, might
not always hold and the target data cannot be completely
embedded into the imposed representation space. Both of the
aforementioned concerns would result in sub-optimal adap-
tation, particularly when the target representation is far from
source features in the latent space or the source encoder al-
ready exhibits over-fitting.

In this paper, we propose Consensus Adversarial Domain
Adaptation (CADA), a novel unsupervised ADA scheme
that gives freedom to both target encoder and source en-
coder. As such, they can achieve consensus and transform
data from both domains into a general domain-invariant fea-
ture space to further accommodate the domain discrepancy
and avoid over-fitting models in neither domain. After ob-
taining a source encoder and a source classifier as a good
reference in the source domain, CADA trains a target en-
coder and also gives freedom to the source encoder by fine-
tuning it through adversarial learning. In this manner, both
unlabeled target data and labeled source data are embedded
to a domain-invariant feature space defined by both domains,
in a way that a domain discriminator cannot distinguish the
domain labels of them. The original source classifier is fur-
ther fine-tuned as a shared classifier with the source dataset
and the source encoder is refined via ADA. In the target do-
main, we employ the trained target encoder to embed the
target samples into the domain-invariant feature space and
infer its class using the shared classifier. In certain appli-
cations, a few labeled data samples can be collected oppor-
tunistically in the target domain. This availability is scarce in
practice but is precious for model improvement. To leverage
the extra information, we also propose a few-shot version of
CADA (F-CADA) which exploits the prior labeled data by
greedy label propagation for further performance enhance-
ment. In a nutshell, given a well-defined metric in the latent
feature space, F-CADA assigns presumptive labels to unla-
beled data points in the target domain, by greedily minimiz-
ing an information entropy loss function. The target encoder
is then fine-tuned and a target classifier is constructed using
both the prior and presumptively labeled data. The whole
process can be repeated until convergence. The class of each
target test sample is inferred using the final target encoder
and classifier.

The performance of CADA and F-CADA are validated
to the task of digit recognition across domains on standard
digit adaptation dataset (MNIST, USPS, and SVHN digits
datasets) and the task of spatial adaptation for WiFi-enabled
device-free gesture recognition (GR). Experimental results
demonstrate that CADA achieves outstanding domain adap-
tation results and outperforms state-of-the-art methods on
both digit adaptation and spatial adaptation for GR. For the
challenging SVHN⇒MNIST scenario, it improves the digit
recognition accuracy from 60% to 91%. It also enhances
the GR accuracy by 25% over non-adapted classifier under

environmental dynamics. Moreover, F-CADA achieves fur-
ther performance gain over the best few-shot ADA methods
when only one labeled target sample per class is available.
It validates that the proposed label learning method indeed
contributes to the overall performance improvement.

Related Work
Unsupervised Domain Adaptation The performance of
conventional classifiers degrade severely when the data dis-
tribution in source domain and target domain are different.
Unsupervised domain adaptation (UDA) aims to reduce the
difference in the feature distribution between the source and
target domain to improve generalization performance with-
out requiring any labeled data in target domain (Tzeng et
al. 2017). Some metrics have been proposed to measure the
domain shift between source and target domains for their
difference minimization. For instance, maximum mean dis-
crepancy is leveraged by DDC (Tzeng et al. 2014), that es-
timates the norm of mean difference and matches higher or-
der statistics of the two distributions in a reproducing kernel
Hilbert space. RevGrad (Ganin and Lempitsky 2015) and
DRCN (Ghifary et al. 2016) treat domain invariance as a bi-
nary classification problem and maximize the classifier loss
by reversing its gradients.

Adversarial Domain Adaptation Recently, with the
booming development of Generative Adversarial Network
(GAN) (Goodfellow et al. 2014), researchers have proposed
to construct an adversarial loss to accommodate the domain
shift, which is commonly referred to as adversarial domain
adaptation (ADA) (Shen et al. 2018). Similar to the learn-
ing configuration of GAN, the generator of ADA aims to
fool the discriminator to make the target domain samples
look like the source domain ones, and the discriminator tries
to identify the domain labels (source or target) instead of
fake or real image in GAN. CoGAN (Liu and Tuzel 2016)
trains 2 GANs to synthesize both source and target images
and achieves a domain invariant feature space by tying the
high-level layer parameters of the 2 GAN to solve the do-
main transfer problem. ADDA (Tzeng et al. 2017) learns a
discriminative representation using the labels in the source
domain and then a separate encoding that maps the target
data to the same space using an asymmetric mapping learned
through a standard GAN loss without weights sharing. A
cycle-consistency loss is designed in CyCADA (Hoffman et
al. 2017) to enforce both structural and semantic consistency
during ADA. One major limitation for these methods is that
the adversarial discriminative models focus on aligning fea-
ture embeddings of target domain to source domain defined
by the source encoder. Since the parameters of source en-
coder are fixed during ADA, there is no freedom for the
source encoder. Thus, the ADA performance is not guaran-
teed when the target representation is far from source fea-
tures.

Supervised Domain Adaptation Though UDA achieves
acceptable performance using large amounts of unlabeled
target data, it still cannot deal with large covariate shift in the
distributions of the samples between two datasets. In reality,
it is reasonable to label only a few samples for each class
in the target dataset and then supervised domain adaptation
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Figure 1: An overview of CADA. Step 1: A source encoder and a source classifier are trained with the labeled source data. Step
2: A target encoder is trained and the source encoder is fine-tuned through unsupervised adversarial domain adaptation to map
both target data and source data to a domain-invariant feature space such that a domain discriminator cannot distinguish the
domain labels of the data. Step 3: A shared classifier is constructed with the labeled source data. Step 4: During testing, the
class of each target test sample is inferred using the target encoder trained in Step 2 and shared classifier obtained in Step 3.
The network parameters in solid line boxes are fixed and those in dashed line boxes are trained in each step.

(SDA) can efficiently transfer the knowledge from source
domain to this sparsely labeled target domain. Also, SDA
does not demand large annotation overhead commonly re-
quired by standard supervised learning approaches. In (Luo
et al. 2017), the authors propose a framework that learns
a representation transferable across different domains and
tasks in a label efficient manner. It tackles the problem of
high sensitivity and overfitting during fine-tuning stage us-
ing a novel end-to-end SDA approach. Apart from feature-
based SDA method, Ren et al. (2018) designed a proto-
typical network from the perspective of metric learning. It
maps the samples into a space where the samples from the
same class are close and those from different classes are
far apart. Recently, few-shot learning has become attractive
because only a few labeled data is required for adaptation.
In domain adaptation, few-shot adversarial domain adapta-
tion (FADA) (Motiian et al. 2017a) is proposed to trans-
fer knowledge with only several annotated samples in each
class. It exploits adversarial learning to learn an embedded
subspace that simultaneously maximizes the confusion be-
tween two domains while semantically aligning their em-
beddings. However, they only consider a few labeled target
samples but never use unlabeled target samples that are more
easily obtained. In our approach, we build the few-shot do-
main adaptation based on semi-supervised learning, which
minimizes the domain confusion via adversarial training and
guides the adaptation process in a few-shot manner.

Consensus Adversarial Domain Adaptation
The objective of CADA is to improve the generalization
capability of a classifier across domains without collecting
labeled data in the target domain via ADA. The rationale
behind CADA is to embed data from both domains into a
common feature space until they achieve consensus during
ADA. It is different from existing methods, which force rep-
resentation alignment of the target to the source. The system-
atic training procedure of CADA is demonstrated in Fig. 1,
which is consisted of 4 steps. The detailed methodology of
each step is elaborated as follows.

Step 1: Suppose Ns samples Xs with labels Ys are col-
lected in the source domain with L possible classes. As

the first step of CADA, we train a source encoder Ms and
a source classifier Cs so that the source samples can be
recognized with high classification accuracy. Mathemati-
cally, Step 1 solves the following minimization via back-
propagation:

min
Ms,Cs

LCs
(Xs, Ys) =

− E(xs,ys)∼(Xs,Ys)

L∑
l=1

[I[l=ys] logCs(Ms(xs))] (1)

This is indispensable since a good baseline of the feature
space and the classifier for the sub-sequent steps is needed.

Step 2: More often than not, data labeling in the target
domain is a time-consuming and expensive process. On the
other hand, accumulating unlabeled data in the target do-
main, denoted by Xt, is usually a trivial task. As the most
essential step of CADA, in Step 2 we train a target encoder
Mt and fine-tune the source encoderMs such that a discrim-
inator D cannot tell whether a sample is from the source do-
main or from the target domain after the associated feature
mapping. In other words, after the feature embedding in the
target and source domain via Mt(Xt) and Ms(Xs), respec-
tively, the domain label cannot be effectively recognized by
a well-formed discriminator D. This task is similar to the
original GAN, that aims to generate a fake image that is in-
distinguishable from the real image. In our case, the labels
for the discriminator D are domain labels (source and tar-
get) instead of fake and real. We formulate this step as an
optimization of the following adversarial loss,
min

Ms,Mt

max
D
LD(Xs,Xt,Ms,Mt) =

Exs∼Xs
[logD(Ms(xs))] + Ext∼Xt

[log(1−D(Mt(xt)))]
(2)

The GAN loss for the source encoder Ms is
min
Ms

LMs
(Xs,Xt, D) = −Exs∼Xs

[logD(Ms(xs))] (3)

and the inverted label GAN loss (Goodfellow et al. 2014) is
employed to train the target encoder Mt as follows,
min
Mt

LMt(Xs,Xt, D) = −Ext∼Xt [logD(Mt(xt))]. (4)
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Figure 2: An overview of F-CADA. Step 1 and Step 2 are the same as CADA. Step 3: in the target domain, presumptive labels
are generated for target unlabeled data with target few labeled data. Then, the target encoder is fine-tuned and a target classifier
is constructed with unlabeled and few labeled target data. Step 4: During testing, the class of each target test sample is inferred
using the target encoder and target classifier obtained in Step 3. The network parameters in solid line boxes are fixed and those
in dashed line boxes are trained in each step.

The parameters in Mt and Ms are initialized with those of
the source encoder Ms learned in the Step 1 for burn-in
training. It is worth pointing out the novelty of CADA and
its difference from the state-of-the-art ADA methods (e.g.
ADDA (Tzeng et al. 2017) and DIFA (Volpi et al. 2017)).
Under previous methods, the parameters of the source en-
coder are fixed during the training process of the target en-
coder via ADA. Consequently, the feature mapping is de-
fined by the source encoder and ADA essentially tries to
align the feature embeddings of the target domain with the
source domain. In this way, the obtained source encoder is
used as an absolute reference, which may deteriorate the do-
main adaptation performance because the alignment could
be sub-optimal when the target samples cannot be com-
pletely embedded into the imposed representation space.
The issue can be substantial particularly when the source
and the target domain exhibit material discrepancy or the
source encoder already bears some overfitting. This bottle-
neck is well-addressed in the proposed CADA framework,
where the parameters of the source encoder are not fixed but
are instead given the freedom to be fine-tuned together with
the target encoder. Therefore, the feature space is defined by
the consensus between Mt and Ms, yielding better general-
ization in both the domains.

Step 3: When the discriminator D in Step 2 is not able
to identify the domain label of target samples and source
samples, it is an indication that the target encoder Mt and
the source encoder Ms achieved consensus by mapping the
corresponding input data to a shared domain-invariant fea-
ture space. Given that, we fix the parameters of the source
encoder Ms and train a shared classifier Csh using the la-
beled source domain data {Xs, Ys}. The learning process is
equivalent to minimizing the cross-entropy loss:

min
Csh

LCsh
(Xs, Ys) =

− E(xs,ys)∼(Xs,Ys)

L∑
l=1

[I[l=ys] logCsh(Ms(xs))] (5)

The shared classifier Csh can be directly used in the target
domain since the target encoderMt has embedded the target
samples to the domain-invariant feature space.

Step 4: During testing in the target domain, we map the
target test samples to the domain-invariant feature space
through the target encoder Mt trained in Step 2, and then
use the shared classifier Csh obtained in Step 3 to identify
category of the samples in the target domain without collect-
ing any labeled target data.

In summary, the complete learning objective of CADA
can be formulated as follows:

LCADA(Xs,Xt, Ys, D,Ms,Mt) = LCs(Xs, Ys) (6)
+ LD(Xs,Xt,Ms,Mt) + LMs

(Xs,Xt, D)

+ LMt
(Xs,Xt, D) + LCsh

(Xs, Ys)

The training of CADA is thusly equivalent to solving:

min
Csh

min
Mt,Ms

max
D

min
Ms,Cs

LCADA(Xs,Xt, Ys, D,Ms,Mt)

As is illustrated in Fig. 1, we firstly train a source en-
coder Ms and a source classifier Cs with the labeled source
data by optimizing LCs

as described in equation (1). After
that, in Step 2, we train a target encoder Mt and fine-tune
the source encoder Ms via adversarial learning by optimiz-
ing LD, LMs

and LMt
, i.e., equation (2)-(4). Then, a shared

classifierCsh is constructed in Step 3 with the labeled source
domain data by optimizing LCsh

as described in equation
(5). During testing in Step 4, we employ the trained target
encoder Mt to map the test sample from the target domain
into the domain-invariant feature space and use the shared
classifier Csh directly to identify the category of each test-
ing sample in the target domain.

Few-shot Consensus Adversarial Domain
Adaptation (F-CADA)

A powerful extension of the CADA learning framework is to
enrich it with the ability to integrate a few labeled data that
may be available in the target domain for information fusion
and model improvement. This task, although seems chal-
lenging in many other learning paradigms, can be achieved
efficiently with F-CADA. Notation-wise, we assume thatNs

samples Xs with labels Ys are available in the source do-
main and the target domain contains Nu

t unlabeled samples
Xu

t . Additionally, a few samples, numbered N l
t and denoted
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by Xl
t, are assumed available with associated labels Y l

t in
the target domain. To conform with the scenario of few-shot
learning, the number of labeled samples in the target do-
main is much smaller than the that of unlabeled ones, i.e.,
N l

t � Nu
t . Moreover, it is also much smaller than the num-

ber of source domain samples, i.e., N l
t � Ns.

The overall training procedure of F-CADA is presented in
Fig. 2. All the other steps are pretty much similar to CADA
except for step 3, detailed below:

Step 3: Suppose few labeled samples {Xl
t, Y

l
t } are avail-

able in the target domain. As the most vital step in F-CADA,
we design a label learning algorithm to assign presumptive
labels Ỹ l

t to target unlabeled samples Xu
t . Then, we fine-

tune the target encoder obtained in Step 2 and build up a
target classifier Ct using both unlabeled target samples with
presumptive labels {Xu

t , Ỹ l
t } and labeled target samples

{Xl
t, Y

l
t }.

Assume ki labeled samples are available for class i in the
target domain, we can compute in the embedded space (1)
the centroid vector ci for each class and (2) a similarity met-
ric between each unlabeled target sample xut,j ∈ Xu

t and the
specific centroid, denoted by ψ

(
f(xut,j), ci

)
. Depending on

the dimension of the transformed feature space, this simi-
larity metric can simply be a Gaussian kernel to capture lo-
cal similarity (Maaten and Hinton 2008), or the inverse of
Wasserstein distance (Shen et al. 2018) for better general-
ization with complex networks.

Ideally, the semi-supervised scheme should be able to (1)
identify the correct labels of unlabeled target samples, and
(2) update the encoder with the additional information. Us-
ing information entropy as the measure of “goodness of sep-
aration”, we can formulate the joint objective into the fol-
lowing minimization:

min
yu
t,j∈Ỹ u

t ,f∈H
LU (X

u
t ,X

l
t, Ỹ

l
t ) =∑

xu
t,j∈Xu

t

H
(
σ(ψ(f(xut,j), cyu

t,j
)/τ)

)
where the H(·) is the entropy function, σ(·) is the softmax
function, and τ is a decay factor that controls the neighbor-
hood proximity. The above problem is combinatorial in na-
ture due to the discrete presumptive labels yut,j . We establish
an alternating approach that recursively performs (1) fixing
the feature mapping f and propagating presumptive labels
using a greedy assignment, i.e., the jth unlabeled sample is
presumed to have the same label to its closest centroid, and
(2) updating the feature mapping (the encoder) as supervised
learning by treating the presumptive labels as true labels.

The proposed greedy propagation, intuitively simple and
practically easy to implement, in fact has theoretical guar-
antees since the entropy objective is approximately submod-
ular when the feature mapping is fixed. Interested readers
are referred to (Zhou and Spanos 2016) for a detailed theo-
retical analysis. The above is conducted alternately until the
convergence of the feature mapping and presumptive label
assignment. In practice, it is observed that the convergence
is usually achieved in few iterations. Adding the above ob-
jective function to that of CADA in equation (6), we obtain

the overall learning formulation of F-CADA. In the testing
step (step 4 in Fig. 2), we map the target testing samples to
the latent feature space through the updated target encoder
Mt, and then apply the updated target classifier Ct to iden-
tify their classes.

Experiments
We evaluate CADA and F-CADA for 2 real-world domain
adaptation problems: 1) digit classification adaptation across
3 benchmark splits of public digit datasets; 2) spatial adap-
tation for WiFi-enabled device-free gesture recognition.

Digit Adaptation
3 public digit datasets, MNIST (LeCun et al. 1998), USPS
(Hull 1994), and SVHN (Netzer et al. 2011), which con-
sist 10 classes of digits are used in our digit adaptation
experiments. We evaluate our methods across 3 adaptation
shifts: MNIST ⇒ USPS, USPS ⇒ MNIST, and SVHN ⇒
MNIST, that are commonly adopted for digit adaptation as-
sessment. The models are trained using the full training sets
and evaluated on the full testing sets. We leverage a variant
of the LeNet architecture as the encoder and the classifier for
CADA and F-CADA for all digit shifts. We repeat the exper-
iment 50 times for each digit adaptation case and performed
model selection based on the recent Bayesian optimization
technique (Malkomes, Schaff, and Garnett 2016) to identify
optimal choices of all hyper-perimeters, e.g., the structure
and dropout rate of the encoder, the decay fact of F-CADA,
etc.

Figure 3: The t-SNE visualization of features embedded us-
ing distinct encoders in target domain. (SVHN⇒MNIST).

Performance of CADA We compare the performance of
CADA with 3 traditional UDA methods (DDC, RevGrad,
DRCN), and 3 state-of-the-art adversarial UDA methods
(CoGAN, ADDA, CyCADA). Table 1 reports the classifi-
cation accuracies of these methods for each shift. The 2nd

column shows the accuracies when the non-adapted source
classifiers are applied as the lower-baseline, and the last
column reports the accuracies when the target classifiers
are trained with full target training samples as the upper-
baseline. It can be observed that CADA outperforms others
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Table 1: Digit adaptation across MNIST-USPS-SVHN datasets.
Scenario Source only Traditional UDA Adversarial UDA SDA Target fully

supervisedDDC RevGrad DRCN CoGAN ADDA CyCADA CADA SDA 1 2 3 4 5 6 7
MNIST ⇒ USPS

75.2 ± 1.6 79.1 ± 0.5 77.1 ± 1.8 91.8 ± 0.1 91.2 ± 0.1 89.4 ± 0.2 95.6 ± 0.2 96.4 ± 0.1
CCSA 85.0 89.0 90.1 91.4 92.4 93.0 92.9

98.9 ± 0.1⇒ FADA 89.1 91.3 91.9 93.3 93.4 94.0 94.4
F-CADA 97.2 97.5 97.9 98.1 98.3 98.4 98.6

USPS ⇒ MNIST
57.1 ± 1.7 66.5 ± 3.3 73.0 ± 2.0 73.7 ± 0.04 89.1 ± 0.8 90.1 ± 0.8 96.5 ± 0.1 97.0 ± 0.1

CCSA 78.4 82.2 85.8 96.1 88.8 89.6 89.4
99.2 ± 0.1⇒ FADA 81.1 84.2 87.5 89.9 91.1 91.2 91.5

F-CADA 97.5 97.8 98.1 98.4 98.6 98.8 98.9
SVHN ⇒ MNIST

60.1 ± 1.1 68.1 ± 0.3 73.9 82.0 ± 1.6 - 76.0 ± 1.8 90.4 ± 0.4 90.9 ± 0.2
FT 65.5 68.6 70.7 7.3 74.5 74.6 75.4

99.2 ± 0.1⇒ FADA 72.8 81.8 82.6 85.1 86.1 86.8 87.2
F-CADA 94.8 95.1 95.4 95.5 95.6 95.9 96.1

Figure 4: Confusion matrices for the digit adaptation (SVHN⇒MNIST).

for all the aforementioned digit adaptation scenarios. For rel-
atively easy shift between MNIST and USPS (both greyscale
hand-written digit datasets), CADA enhances the accuracy
in both adaptation directions by at least 21% compared to
the lower-baseline. It elevates the performance closer to su-
pervised learning methods as well as the upper-baseline as
demonstrated in Table 1.

The adaptation for SVHN⇒MNIST is much more chal-
lenging since SVHN is a color digit dataset of house num-
ber plates while MNIST contains unified greyscale digits.
Even in this case, CADA improves the accuracy by 31%
over the lower-baseline and outperforms the prior works.
We use t-SNE (Maaten and Hinton 2008) to map the em-
bedded feature representations through different encoders
to a 2-D space for better visualization of the domain shift.
Fig. 3(a) and Fig. 3(b) depict the embedded features using
the non-adapted source encoder and the CADA source en-
coder, respectively (different color represents different dig-
its). Confusion matrices before and after using CADA for
this adaptation are presented in Fig. 4(a) and Fig. 4(b). If we
directly apply the non-adapted source encoder in the target
domain, as shown in Fig. 3(a), the clusters of 3s and 5s, 4s
and 9s overlap with each other, which leads to correspond-
ing large misclassification among these digits as shown in
Fig. 4(a). After employing CADA, the digit clusters of these
common confusions are separated in the latent feature space
(Fig. 3(b)), that indeed contributes to the corresponding per-
formance gain as presented in confusion matrix (Fig. 4(b)).

Performance of F-CADA We randomly chose (k =
1, . . . , 7) labeled samples per class as the labeled target sam-
ples and utilized them for Step 3 label learning of F-CADA.
The performance of F-CADA is compared with one SDA
method: CCSA (Motiian et al. 2017b), and one advanced
few-shot adversarial SDA method: FADA (Motiian et al.

Figure 5: Impact of number of labeled target samples on
labeling accuracy and classification accuracy (SVHN ⇒
MNIST). The shaded area is the 5% and 95% percentile.

2017a). For the scenario of SVHN⇒MNIST, we compared
F-CADA to the source only model on available labeled tar-
get data with fine-tuning (denote as FT in Table 1). It can
be observed from Table 1 that F-CADA achieves significant
performance gain over the current best SDA benchmarks in
all scenarios. Another noteworthy point is that it achieves
comparable accuracy to the upper-baseline with only 7 la-
beled target samples per category. This impressive perfor-
mance comes from 2 main reasons. Firstly, F-CADA inher-
its the advantages of CADA. As shown in Table 1, the ac-
curacy of CADA is already higher than SDA methods for
several cases. The embedded target dataset via CADA is
the ideal input dataset for the following label learning of F-
CADA. Secondly, the proposed label learning method can
fully make use of the few labeled target samples for accu-
racy enhancements. For instance, Fig. 5 depicts the label
learning accuracy and classification accuracy of SVHN ⇒
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Table 2: Spatial adaptation for gesture recognition across different environments.
Scenario source only Traditional UDA Adversarial UDA F-CADA Target fully

supervisedRevGrad DRCN GoGAN ADDA CADA 1 3 5
Large⇒ Small 58.4 ± 0.7 68.1 ± 0.2 69.3 ± 0.3 69.4 ± 0.2 71.5 ± 0.3 88.8 ± 0.1 92.3 96.3 98.7 99.2 ± 0.1
Small⇒ Large 62.2 ± 0.6 66.6 ± 1.1 65.8 ± 0.7 70.2 ± 0.5 67.7 ± 0.6 87.4 ± 0.1 91.7 96.0 98.3 99.1 ± 0.1

Figure 6: Confusion matrices for gesture recognition (large conference room⇒ small conference room).

Figure 7: Floor plan of the testbeds for the spatial adaptation
experiments and sample CSI frames from different spatial
sources.

MNIST when distinct numbers of labeled target samples are
available. We can easily observe the positive correlation be-
tween label learning accuracy and classification accuracy as
the number of labeled target samples is increased. Compar-
ing the confusion matrices between CADA (Fig. 4(b)) and
F-CADA (k = 1) (Fig. 4(c)), the digit misclassification be-
tween 1s and 4s is reduced significantly by F-CADA with
only one labeled target sample per class. It leads to 4% over-
all accuracy improvement. These analyses prove the excel-
lent few-shot domain adaptation performance of F-CADA
even when the number of labeled target samples is tiny.

Spatial Adaptation for Gesture Recognition
We also implement our methods to enhance the spatial adap-
tation capability of WiFi-enabled device-free gesture recog-
nition (GR). By leveraging fine-grained channel measure-
ment (Channel State Information (CSI)) from WiFi physi-
cal layer and advanced machine learning methods, numer-
ous occupancy sensing tasks, e.g. crowd counting (Zou et al.
2018b), human activity recognition (Zou et al. 2018c), and
even human identification (Zou et al. 2018a), have been re-
alized in a device-free, privacy-preserving and non-intrusive
manner. Since human gestures also alter the WiFi signal

propagation among WiFi-enabled IoT devices, we can iden-
tify the gestures in a device-free manner via the Channel
State Information (CSI) enabled sensing platform proposed
in (Zou et al. 2018a). One major bottleneck being, tedious
data collection and labeling process required to train a new
gesture classifier when the system is to be employed in a
new environment. The classifier is also vulnerable to spa-
tial variations. Thus, we aim to use our methods to improve
the accuracy and resilience of the classifier over spatial dy-
namics without collecting 1) any labeled target samples, 2)
sparsely labeled ones. As shown in Fig. 7, the experiments
were conducted in 2 conference rooms with different sizes
(i.e. a large conference room (7m×5m) and a small confer-
ence room (6.1m×4.4m). Volunteers performed 6 common
gestures, moving a hand right and left, up and down, push
and pull between the two IoT devices. 200 samples per ges-
ture were collected in each room during different days. Af-
ter transforming CSI time series data into CSI frames (each
CSI frames size: 400×228 as depicted in Fig. 7), we modi-
fied the LeNet architecture and designed a dedicated encoder
and classifier for our methods.

Performance of CADA We compare the performance
of CADA with 2 state-of-the-art UDA methods (RevGrad
and DRCN) and 2 adversarial UDA methods (CoGAN and
ADDA). Table 2 summarizes the gesture classification ac-
curacies of these methods in both adaptation directions be-
tween the 2 conference rooms. CADA enhances the accu-
racy by at least 25% over the lower-baseline (non-adapted
source encoder is adopted) in both adaptation scenarios,
without tedious labeled target data collection and training
process. Comparing the confusion matrices before and after
using CADA (Fig. 6(a) and Fig. 6(b) (large ⇒ small)), the
recognition accuracy of every gesture is improved. It can be
easily observed that CADA outperforms all the traditional
and adversarial UDA approaches. It realizes resilient WiFi-
enabled device-free gesture recognition against spatial vari-
ations without time-consuming and labor-intensive data col-
lection and labeling process in a new environment.
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Performance of F-CADA We randomly chose (k =
1, 3, 5) labeled samples per gesture as the labeled target
samples and used them for the Step 3 of F-CADA train-
ing process. Similar to the digit adaptation results, F-CADA
achieves significant performance gain over UDA methods
by at least 3.5% when only one labeled sample per gesture
is available in the target domain. Moreover, as demonstrated
in Table 2 and Fig. 6, its accuracy is further increased when
a little more labeled samples are available and employed. Its
accuracy reaches 98.5% with 5-shot learning, which is only
0.6% lower than the upper-baseline (train a new classifier
with full labeled target samples).

Conclusion
In this paper, we proposed Consensus Adversarial Domain
Adaptation (CADA) that gives freedom to both target en-
coder and source encoder in adversarial learning, by em-
bedding data from both domains into a consensus domain-
invariant feature space. In this manner, the domain discrep-
ancy can be further minimized. CADA’s feature represen-
tations are more robust to large domain shift and have the
capacity to avoid over-fitting models in both domains. A
novel few-shot domain adaptation scheme (F-CADA) is also
proposed to enhance the ADA performance by exploring
few labeled target data in an efficient way. By inheriting
CADA’s feature representation, F-CADA assigns presump-
tive labels to unlabeled data points in the target domain, by
greedily minimizing an information entropy loss function.
The greedy label learning method has theoretical guaran-
tees since the entropy objective is approximately submod-
ular. Extensive real-world experiments on digit recognition
across multiple benchmark digit datasets and WiFi-enabled
device-free gesture recognition under spatial dynamics are
conducted. The results validate that CADA achieves com-
pelling results and outperforms state-of-the-art UDA and
SDA methods. F-CADA can further enhance the adaptation
performance even with sparsely labeled target data.
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