
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Bayesian Execution Skill Estimation

Christopher Archibald, Delma Nieves-Rivera
archibald@cse.msstate.edu, din7@msstate.edu

Computer Science and Engineering
Mississippi State University

Abstract

The performance of agents in many domains with continu-
ous action spaces depends not only on their ability to select
good actions to execute, but also on their ability to execute
planned actions precisely. This ability, which has been called
an agent’s execution skill, is an important characteristic of
an agent which can have a significant impact on their suc-
cess. In this paper, we address the problem of estimating the
execution skill of an agent given observations of that agent
acting in a domain. Each observation includes the executed
action and a description of the state in which the action was
executed and the reward received, but notably excludes the
action that the agent intended to execute. We previously in-
troduced this problem and demonstrated that estimating an
agent’s execution skill is possible under certain conditions.
Our previous method focused entirely on the reward that the
agent received from executed actions and assumed that the
agent was able to select the optimal action for each state. This
paper addresses the execution skill estimation problem from
an entirely different perspective, focusing instead on the ac-
tion that was executed. We present a Bayesian framework for
reasoning about action observations and show that it is able to
outperform previous methods under the same conditions. We
also show that the flexibility of this framework allows it to be
applied in settings where the previous limiting assumptions
are not met. The success of the proposed method is demon-
strated experimentally in a toy domain as well as the domain
of computational billiards.

1 Introduction
Many real-world physical domains require agents to both
plan and execute continuous actions. These planned actions
can generally not be executed with perfect precision, result-
ing in some amount of execution error which will vary from
agent to agent. Robust agents in these domains need to plan
actions taking into account their execution noise. Continu-
ous domains with these properties include robotics settings,
where angles and velocities are selected from continuous
ranges; human settings, where a human either moves itself or
causes other objects to move, again in continuous space; and
computational settings, where abstract toy domains or simu-
lations of games with continuous action spaces are modeled
and used as a test-bed for algorithms and approaches. In each

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of these settings, an important characteristic of an agent is
the probability distribution over action execution errors that
describe their ability to precisely execute actions.

This paper focuses on the problem of estimating this agent
property given observations of the same agent acting in a
continuous domain. This problem was first introduced in
(Archibald and Nieves-Rivera 2018). We are interested in
this problem for the potential impact it has in helping model
and analyze agents in adversarial continuous domains, as
well as the potential applications for assessing and giving
feedback on human skill levels in many real-world settings;
including sports, law enforcement, and elderly assistance.

Along with introducing the problem, we demonstrated
that it is possible to estimate an agent’s execution ability,
which we called execution skill, under certain assumptions
(Archibald and Nieves-Rivera 2018). The central assump-
tion in that work was that the agent utilized a perfectly ra-
tional planning component, which is similar to assumptions
made in work on plan recognition in continuous domains
(Kaminka, Vered, and Agmon 2018).

In this paper, we introduce a Bayesian approach to the
execution skill estimation problem and show that it outper-
forms the previous approach in the same toy domain. We
then demonstrate how this Bayesian approach can be nat-
urally applied to domains where the rationality assumption
does not hold and show how it can effectively estimate exe-
cution skill in the domain of computational billiards.

The remainder of the paper proceeds as follows, in sec-
tion 2 relevant related work is discussed. Section 3 presents
the definition of the problem and previous results. Section 4
introduces the novel Bayesian approach that is the focus of
this work. Sections 5, 6, and 7 present and discuss experi-
mental work in two domains, and section 8 concludes with
discussion and future work.

2 Related Work
Many topics related to the execution skill estimation prob-
lem have been studied.

The topics of skill in games has been investigated by
several researchers (Larkey et al. 1997; Dreef, Borm, and
Genugten 2002; Borm and Genugten 2001; Dreef, Borm,
and van der Genugten 2004), although skill as these works
define it refers to a characteristic of the game itself, and is

6014

meant to indicate how much the outcome of the game relies
on the actions of the players as opposed to random chance.

Research in multiple areas has investigated the topic of
execution uncertainty. Among them we can find general
games (Bowling and Veloso 2004; Archibald and Shoham
2011), where agents cannot execute actions with certainty
and security games (Yin et al. 2011; Jiang et al. 2013), where
it cannot always be assumed that actions undertaken by the
security agents will be executed as planned. Auction settings
(Van Valkenhoef et al. 2010), when goods, services, or pay-
ments may fail to occur as desired, are an example too.

The notions of execution skill and strategic skill were
first introduced and investigated in the domain of compu-
tational pool in (Archibald, Altman, and Shoham 2010),
where agents with varying strategic and execution skill were
evaluated to investigate how the notions interact. Exten-
sive previous work in the computational pool domain exists
(Archibald, Altman, and Shoham 2016; Landry, Dussault,
and Beaudry 2015; Smith 2007), but these are focused on
the problem of selecting a good action, given a skill level.
This work started in order to spur the development of meth-
ods to plan shots for a pool robot (Greenspan et al. 2008).

Another recent domain that has the same continuous ac-
tion and state space characteristics as billiards is curling,
which has been investigated again from the action selection
perspective (Yee, Lisỳ, and Bowling 2016; Ahmad, Holte,
and Bowling 2016).

Much work also exists in the area of estimating proper-
ties of an opponent, or opponent modeling. The majority
of this work has been done in imperfect information games
like poker (Billings et al. 1998; Bard et al. 2015; 2013;
Davis, Burch, and Bowling 2014), but this work focuses on
strategic characteristics and limitations of the opponents and
there is no execution uncertainty. Additional work exists in
general multi-agent systems (Carmel and Markovitch 1995),
real-time strategy games (Schadd, Bakkes, and Spronck
2007), and in n-player games (Sturtevant, Zinkevich, and
Bowling 2006).

The Bayesian reasoning techniques we apply to this prob-
lem have been well established in artificial intelligence,
and can be found in many textbooks, notably (Russell and
Norvig 2009) and (Thrun, Burgard, and Fox 2005).

3 Problem Definition and Background
The execution skill estimation problem was introduced in
(Archibald and Nieves-Rivera 2018). This problem consists
of estimating parameters of an agent’s execution noise dis-
tribution, given only observations of the actions taken by the
agent in an environment. In this section this problem will be
precisely defined and the previous work introduced.

Setting
The execution skill estimation problem focuses on domains
that can be modeled as traditional Markov Decision Pro-
cesses (MDPs) with continuous action spaces. These do-
mains can be described by the tuple 〈S,A,R, P 〉, which is
composed of a set of states S, a continuous set of possible
actions A ⊂ Rm, a rewards function R mapping a state and

Figure 1: Agent with Execution Skill Interacting with Envi-
ronment

action combination to a real-valued reward, and a transition
function P which specifies for any state and action combi-
nation a distribution over next states.

An agent is an entity that executes actions in an MDP and
receives rewards. The main focus of the current work is on
two components of an agent, their strategic skill and their
execution skill. Strategic skill refers to the method that the
agent uses to select actions in a given state. This is repre-
sented as a policy π : S 7→ A which specifies, for any state
s ∈ S the action to perform in that state. π(s) will be re-
ferred to as the planned, intended, or target action.

An agent’s execution skill is represented by χ, a distri-
bution over random perturbations ε ∼ χ. A sample from
χ is added to each attempted action before it is executed
in the current state. The entire model is shown in Figure 1.
At present we assume that an agent’s execution skill dis-
tribution χ is independent of both the current state and the
planned action, as this noise is meant to model uncertainties
and imperfections in the agent over which the agent has no
control. We additionally assume that each dimension of χ is
independent of the others. These assumptions can be relaxed
in future work, but they are utilized for the present work.

Every time an action is executed a sample is drawn from
χ and the resulting ε value is added to the planned action.
This perturbed action ã = a+ ε is then executed in the envi-
ronment and the reward and next state are drawn randomly
from the distributions R(· | s, ã) and P (· | s, ã) respectively.

At present, it is assumed that the distribution χ is fully
known to the planning component of an agent. This allows χ
to be considered zero-mean without loss of generality since
for any other mean, the strategic component of the agent
can compensate by making adjustments to the intended ac-
tion so that the resulting distribution over executed actions
is centered on the desired action. With these assumptions,
the main property of interest describing an agent’s execu-
tion skill is the standard deviation of χ in each dimension,
which will be referred to as σ.

Problem Definition
An observation consists of a tuple (s, a, r, s′) which speci-
fies the state s that the agent was in, the action a that was ac-
tually executed, and the subsequent reward r and next state
s′ that resulted from the execution of a in state s. The ex-
ecution skill estimation problem can now be defined. Is it
possible to identify the execution skill parameter σ for an
agent given only observations of its interactions with the en-
vironment? The main difficulty arises due to the fact that
the only action that is observed is the executed action and

6015

not the intended action. The interaction between the strate-
gic skill and execution skill makes it challenging in general
to estimate each component independently.

Consider an agent with minimal strategic skill that se-
lects actions uniformly at random. In this situation it won’t
be possible to determine how much noise is product of the
agent’s imperfect ability to execute actions and how much is
due to the random aiming.

Motivated by this observation, we originally focused on
a constrained version of the execution skill estimation prob-
lem where all agents were perfectly rational and introduced
a successful approach under these assumptions (Archibald
and Nieves-Rivera 2018). A perfectly rational agent always
selects the action that maximizes expected value.

Baseline Estimation Method: True Noise
If the observations included the intended actions along with
the executed ones, identifying the execution skill level of an
agent becomes trivial. For each one of the observations, the
difference between the intended action and the executed one
can be computed. The sample standard deviation of those
differences will provide an estimate at any point in time.
This method, called the true noise method (TN), was intro-
duced as a baseline for comparison (Archibald and Nieves-
Rivera 2018), and it will be used in like manner in this work.
For real applications, it is not a feasible approach because
we typically don’t have access to the internal state and in-
tentions of other agents.

Previous Estimation Method: Observed Reward
The method introduced in (Archibald and Nieves-Rivera
2018) focuses on the rewards that an agent receives from the
environment in the observations, and is called the observed
reward (OR) method. The method calculates, for each state
observed, what the expected reward would be for a perfectly
rational agent with each of a set of hypothesis execution skill
levels. The mean expected reward is tracked for each hy-
pothesis over all the observations. The execution skill esti-
mate is produced by interpolating the observed mean reward
of the agent into the set of mean expected rewards to produce
an execution skill level that would be most likely to produce
the observed rewards.

The main limitation of this method is that it assumes that
the planning component of the agent is perfectly rational,
or at least can be perfectly predicted, given an execution
skill level. It also completely ignores the specific actions
that were executed, focusing entirely on the rewards. The
proposed Bayesian method is designed to address these lim-
itations.

4 Bayesian Execution Skill Estimation
The Bayesian approach to execution skill estimation was ini-
tially motivated by the following question: Can estimation
be done by focusing on the agent’s executed actions, instead
of simply the obtained rewards? The proposed Bayesian
method is general enough to be applied both to settings
with assumptions of perfect rationality, as in (Archibald and

Figure 2: Action Planning and Execution Bayesian Network

Nieves-Rivera 2018), as well as settings where this assump-
tion does not hold.

The Bayesian approach (TBA) can be seen as performing
probabilistic inference in the continuous Bayesian network
shown in Figure 2, where Σ is a random variable correspond-
ing to the agent’s execution skill level, T is a random vari-
able for the target, or intended, action, and X is a random
variable that represents the executed action. The arrows in-
dicate the probabilistic influence that these different random
variables have on each other. The execution skill level Σ in-
fluences the target action T , and the final executed action X
depends on both Σ and T .

The Bayesian Approach Derivation
The main goal of TBA is to estimate the probability of an
execution skill level σ given an observed executed action x,
using Bayes rule as follows:

P (σ | x) ∝ P (x | σ)P (σ)

A single update will be derived, and this update will be
used repeatedly, in an online manner, using the posterior
P (σ | x) after each update as the prior P (σ) for the next.
For notational simplicity the different time steps are not dis-
tinguished, as they are each processed sequentially. We also
focus on a single dimension of action space for simplicity,
but the method could be used for each dimension indepen-
dently in the case of multiple dimensions.

The initial conditional distribution P (x | σ) does not cor-
respond conceptually to any components of the model and
setting as described. Using the dependencies described in
the Bayesian network of Figure 2 this can be rewritten in
terms of modeled concepts as:

P (x | σ) =

∫
t∈T

P (t | σ)P (x | t, σ)

Here the first component P (t | σ) corresponds to the plan-
ning component of the agent, and represents the probability
that the agent will select t as a target action given its execu-
tion skill level is σ. P (x | t, σ) reflects the true conditional
distribution over executed actions given an intended action t
and an execution skill level σ, and will directly correspond
to the execution noise distribution χ.

The question now becomes, how can the planning distri-
bution P (t | σ) be represented and computed? Different as-
sumptions about the setting will lead to different extensions
of this approach.

6016

Rational TBA Variant
In the constrained setting investigated in (Archibald and
Nieves-Rivera 2018) the planning component was assumed
to be perfectly rational. That can be represented within TBA
by having P (t | σ) be a distribution with all of the proba-
bility mass on a single target action for each σ. This single
target action, which can be denoted by tσ , will be the opti-
mal action given an execution noise level of σ. This results
in P (x | σ) = P (x | tσ, σ).

Beyond Rationality
How can TBA be moved beyond the assumption that the
agent being observed has a completely rational planning
component? Two extensions of TBA that broaden its appli-
cability will now be presented.

First, instead of assuming that the optimal action for a
given state and execution skill level can be calculated, we
will assume that for a given state there are a set of focal ac-
tions which correspond to actions that are expected to gen-
erate high reward in the state. It is assumed that this set of
actions can be quickly generated for a given state, without
necessarily taking into account their robustness with respect
to execution noise. The planning component can then be
assumed to select one of these focal actions. The weakest
assumption on how the planning component makes use of
these focal actions is that it selects among them uniformly at
random, and this is the variant that of TBA that is explored
in this paper. Given that the number of focal actions in the
set T is m, the P (x | σ) distribution of TBA can now be
rewritten as P (x | σ) = 1

m

∑
t∈T P (x | t, σ)

The second extension addresses the possibility that an
agent with imperfect planning skill might not even select
one of the focal actions. In this case the distribution P (x | σ)
can be constructed as a mixture of β times the previous dis-
tribution (1

m

∑
t∈T P (x | t, σ)) and (1− β) times a uniform

distribution over all actions. If W is the width of the action
space then P (x | σ) can be rewritten as

P (x | σ) = β

(
1

m

∑
t∈T

P (x | t, σ)

)
+

(1− β)

W

Both of these extensions move the estimator away from
relying on the assumption that the agent’s target action se-
lections can be perfectly predicted, given the state and ex-
ecution skill level. As will be demonstrated, full TBA, or
TBA with both of these extensions, can be applied to more
interesting domains than the observed reward method, and
on less rational agents.

Representation and Predictions
The estimates P (σ | x) are represented using a discrete dis-
tribution over a set of hypothesis execution skill levels. Two
different methods are investigated and compared for produc-
ing a single numerical execution skill level estimate from
P (σ | x) after each observation.

The first method is the maximum a posteriori (MAP) es-
timate σ̃MAP , which selects the execution skill hypothesis
with the highest posterior probability.

σ̃MAP = argmax
σi

P (σi | x)

The second method is the expected execution skill (EES) es-
timate σ̃EES , which takes into account each hypothesis and
its corresponding posterior probability. It computes the final
estimate as follows:

σ̃EES =
∑
i

σiP (σi | x)

The experimental analysis of TBA will proceed as fol-
lows. First, in section 5 the rational TBA variant will be
compared to the observed reward method in the constrained
toy domain used in (Archibald and Nieves-Rivera 2018).
Then, in section 6, full TBA method will be applied to
the domain of computational billiards, a continuous domain
with execution skill for which many computer agents have
been designed.

5 Experimental Domain: 1D-Darts
The one-dimensional darts, or 1D-Darts, domain was intro-
duced in (Archibald and Nieves-Rivera 2018) as a simple
to domain to validate the OR method. Rational TBA will be
compared to OR in a reproduction of this domain to compare
the performance of the two methods.

The 1D-Darts domain consists of a single state and the
one-dimensional continuous action space of [−10, 10]. The
reward function is defined on the action space and alternates
between having a value of 1 and 0. Given a 1D-Darts re-
ward function, an agent selects an action, which then has
noise from the agent’s execution skill distribution added to
it before execution. The reward is determined by where the
executed action falls on the reward function.

The OR and TBA methods both used the same 17 hy-
pothesis execution skill levels. In each state and for each
execution skill level, the optimal action was computed by
convolution of the reward function with the execution noise
distribution using a resolution of 0.01. The OR method uti-
lizes the expected reward obtained by this optimal action,
while TBA uses the actual optimal action. For each ex-
periment, the agent’s true execution noise distribution was
a zero-mean Gaussian with a standard deviation generated
uniformly at random from the interval [0.5, 4.5]. Each ex-
periment ran for 5,000 observations, and the mean squared
error of the different methods across all 10,000 experiments
are shown in Figure 3. The figure shows that both variants
of TBA have significantly better performance than OR with
fewer observations, converging around 2 orders of magni-
tude faster. In addition, TBA-EES has slightly better perfor-
mance than TBA-MAP with few observations, but the two
variants are indistinguishable as the number of observations
grows. This shows that TBA is a better method than OR at
the task of estimating the execution skill of a rational agent
in 1D-Darts.

6 Experimental Domain: Billiards
The computational billiards game used for the experiments
is the game of eight ball. This game consists of two players
playing on a table initially filled with 15 target balls of three
types: stripes, solids, and the eight ball. The players act by
using a cue stick to send a cue ball towards the other balls on

6017

Figure 3: 1D-Darts Method Comparison

the table, with the aim of knocking the target balls into the
pockets of the table. The goal of the players is to be the first
to pocket all of either the striped or solid balls, followed by
the eight ball. If a player’s shot successfully pockets one of
their balls, then that player gets to act again.

In computational billiards, the states of a billiards table
are represented by the locations of all of the balls on the
table. An action is specified by five real numbers that com-
pletely specify the position, orientation, and velocity of the
cue stick. These parameters are v, φ, θ, a, and b. v repre-
sents the cue stick velocity upon striking the cue ball, φ rep-
resents the angle of the cue stick when viewed from over-
head, θ represents the angle of the cue stick above the table,
and a and b designate the position on the cue ball where the
cue stick strikes, which plays a big role in imparting spin,
or “english”, to the cue ball. φ and θ are measured in de-
grees, v in m/s, and a and b are measured in millimeters.
Each component of the selected action is perturbed by noise
drawn from an independent zero-mean Gaussian distribution
with a different standard deviation. The perturbed shot is
then executed on the deterministic FastFiz physics simula-
tor (Archibald, Altman, and Shoham 2009),

The action parameter that has the most impact on the suc-
cess of an individual shot is the φ value, as this specifies the
direction that the cue ball will initially travel. The other pa-
rameters main effect is on the location of the cue ball at the
end of the shot. For this reason we first focus on estimat-
ing σφ, the standard deviation of the noise applied to the φ
parameter for the observed agent.

Since this domain explicitly features imperfect execution
skill, it is a good testbed for our problem of estimating an
agent’s execution skill.

Billiards Agent
Decision-making in the billiards domain is complex and has
been the focus of significant research efforts (see section 2
for examples). Suffice it to say that exhaustive calculation of
the optimal action as was done in the domain of 1D-darts is
not feasible. To have an agent with as much strategic skill
as possible, we utilized CueCard (CC) (Archibald, Altman,

and Shoham 2009), a previous championship computational
billiards agent for use in the experiments. CueCard selects
actions taking into account its execution skill level.

The OR Method in Billiards
The OR method relies entirely on observed rewards. One
difficulty with billiards is that the only true reward comes
at the end of the game. Because of this, in the experiments,
the success of an individual shot was used as a proxy for the
true reward. If a shot is successful, that is, if it pockets a valid
target ball, then this will be considered as a reward of 1. If
the shot fails to successfully pocket a ball, then the reward
will be 0. Not all shots in billiards are intended to pocket a
ball. These other types of shots are generally called safety
shots, and their goal is to put the opponent in a particularly
tricky situation. These types of shots are, however, relatively
rare in practice, and so we hypothesize that this proxy reward
function will suffice for present purposes.

Since it is impossible to compute the expected shot suc-
cess probability for a given state and execution skill hypoth-
esis in a timely manner, we instead adapted the OR method
by assuming the existence of historical mean shot success
rate statistics for agents of different rough execution skill
levels. This is a non-trivial assumption, and it is unlikely to
be available in many settings, but using this will provide a
way to compare the performance of OR in billiards to TBA.

To be specific, we utilized a database of 6 CueCard agents,
each with known execution skill level and between 30,000
and 60,000 observed shots. From these shots we calculated
the average reward/shot success probability for each agent.
Then, we classified the agents into 3 different categories (ex-
pert, average, novice) and computed the mean of the success
probabilities for all the agents inside each of the buckets.
These mean average rewards and their accompanying execu-
tion skill levels were then used in the OR method described
in section 3.

The Bayesian Approach in Billiards
The full Bayesian approach (TBA) described in section 4 re-
quires a set of focal actions derived from the state. These
are actions that, when unperturbed, should lead to high re-
ward. In the case of billiards, we again use a successful shot
as a proxy for reward and seek actions that should pocket a
ball. This set of actions can be geometrically generated for a
given state. In 8-ball the acting agent has to indicate before
their shot the object ball that they intend to pocket, as well
as the target pocket where the object ball is hoped to end up.
These focal actions consist of φ angles that can be generated
for each of the following types of shots:
• Straight-in Shot - the φ angle that will direct the cue ball

directly into the object ball and send it directly into the
middle of the target pocket

• Bank Shot - direct the cue ball into the object ball, send-
ing it first bouncing off of a rail and then into the middle
of the target pocket.

• Kick Shot - direct the cue ball first into a rail and then
into the object ball, sending it straight into the middle of
the target pocket.

6018

• Combo Shot - direct the cue ball first into one legal object
ball, sending it into another legal object, with the second
object ball sent directly into the center of the pocket.

A set of these actions is generated for the object ball and
target pocket, together with all feasible rail and intermediate
object ball combinations respectively. Another requirement
of TBA is the parameter β. This was determined by parame-
ter sweep and validation on a subset of the data. β was set for
the experiments with CueCard to a value of 0.55. TBA was
run with 100 hypothesis execution skill levels evenly space
in the interval [0.01, 0.9].

Experimental Setup
To generate the data for the experiments, CueCard played
in matches against itself with a number of different execu-
tion skill levels. The execution skill levels used were 0.025,
0.125, 0.25, 0.375, 0.5 and 0.75. These levels indicate σφ,
the standard deviation of the zero-mean Gaussian noise ap-
plied to the φ action component.

For each experiment, a random game was repeatedly se-
lected for an agent and all shots from that game were ob-
served in sequence by the methods. This process was re-
peated until the 1,000 shots had been observed. The OR and
TBA methods then generated their predictions in an online
manner. After obtaining each new observation, each method
produced a new estimate.

A total of around 1,900 experiments were performed for
each one of the different agents. The results shown are aver-
aged across all experiments.

Billiards Experimental Results
Figure 4 shows the mean squared estimation error (MSE)
for each method, averaged across all of the different execu-
tion skill level agents. This gives a sense of the convergence
of the different methods and shows how they compare at a
high level. The true noise method is included for compar-
ison. Both variants of TBA noticeably outperform OR, and
seems to stay close to TN over the whole timeline. TBA with
the EES prediction appears to have slightly better perfor-
mance overall than TBA with the MAP prediction. In com-
paring TBA and OR we note again that without historical
shot success data, OR couldn’t even be run in this setting,
while TBA simply needs to do some geometric calculations
on the state to produce its estimate.

Significance
Just looking at the average mean squared error across all
of the agents it is hard to tell how significant this result is,
since we are just looking at numbers, although it is good
that the TBA estimates look very comparable to, and some-
times better than, TN. To get a better qualitative idea of how
successful the estimation methods are, the following figures
are provided. Figures 5 and 6 show the mean estimates for a
single agent after each number of observations. Each figure
shows these mean estimate plots for CueCard agents with six
different execution skill levels on the same plot. Each exe-
cution skill level CueCard agent is reflected by a horizontal

Figure 4: Billiards MSE Comparison on CC

Figure 5: Estimate Comparison for TBA-MAP on CC

line at their true execution skill level. The estimate for that
agent is shown in the same color.

These figures show how quickly the estimates converge,
and how quickly and decisively they differentiate between
the agents of different execution skill levels. As an example
of how much these differences matter to the success of the
agents, the CueCard agent with an execution skill level of
0.1875 will win against an 0.25 agent 56.24% of the time,
but win against an 0.125 agent only 41.93% of the time.

Figure 5 shows these results for TBA while Figure 6
shows them for OR. This shows how much more quickly
TBA is able to differentiate between the different agents, of-
ten after observing fewer than 50 actions. On the other hand
OR struggles to have accurate predictions outside of a few
agents with medium execution skill, and the estimate of the
0.75 execution skill agent converges to an estimate closer to
0.5 than 0.75. A typical billiards game includes around 9-15
actions from a player, so this means that in 4 or 5 games,
TBA could have an estimate that could help determine the
skill level of a player, which could be important in interact-
ing with or predicting the later performance of that player.
For example, after watching a few games, a player might
have to decide whether or not to face the observed player in

6019

Figure 6: Estimate Comparison for OR on CC

Figure 7: Estimate Comparison for TBA-MAP on RA

a match. Having an idea of their skill level and an ability to
predict their future success would be crucial to help make
this decision.

7 Testing the Limits
After observing the success of TBA at estimating the execu-
tion skill level of a billiards agent with high strategic skill,
we ran another set of experiments to see how well it could
do at estimating the execution skill level of a billiards agent
with low strategic skill. Random agent (RA) is an agent that
randomly samples φ directions and simulates an action with
each φ value a number of times to estimate the success prob-
ability of a shot with that φ value. Whichever φ direction that
successfully pockets a ball most frequently is used in the fi-
nal selected shot. Could TBA still produce useful estimates
in this case? Could OR?

We did a parameter sweep for the random agent to set
β for TBA. The results of the TBA estimator with this
β = 0.02 is shown in Figure 7. The estimates are clumped
in the center of the region, and significantly over and under-
estimate the extreme execution skill levels respectively. The

Figure 8: Estimate Comparison for OR on RA

estimates do properly reflect the ordering among the agents,
in terms of their execution skill level. This could still be use-
ful for ranking agents, but not at extracting their precise ex-
ecution skill levels.

Figure 8 puts the TBA results in perspective. These re-
sults show the performance of the OR method on the random
agent. The method gets the correct ordering over agents, but
the skill levels are more closely bunched together and much
farther away from the true execution skill levels. This re-
sult indicates that TBA is much more useful than OR when
dealing with less rational agents. To get a sense of how infe-
rior the random agent is to CueCard, the random agent with
an execution noise level of 0.125 wins only around 2.59%
of their games against a CueCard agent with the same noise
level. The fact that TBA was able to pull any useful informa-
tion out of such an unintelligent agent can be viewed posi-
tively. It also raises a lot of questions for future work.

8 Conclusions
The execution skill level of agents is an important character-
istic of agents in many continuous domains. We introduce a
robust Bayesian approach that uses the actions an agent se-
lects and information about the state to estimate that agent’s
execution skill level. This approach was shown to outper-
form the only previous existing algorithm for this problem.
It was also shown to be able to accurately estimate execution
skill levels and meaningfully differentiate between agents of
different execution skill levels in computational billiards.

In the future, we plan to investigate extensions and modifi-
cations of TBA to discover a method that performs well even
for agents with less planning skill, like the random agent.
We also plan to investigate methods for extracting not only
an agent’s execution skill level, but also their planning skill
level. Furthermore, we also plan to apply these ideas to other
continuous domains.

References
Ahmad, Z. F.; Holte, R. C.; and Bowling, M. 2016. Action
selection for hammer shots in curling. In IJCAI, 561–567.

6020

Archibald, C.; Altman, A.; and Shoham, Y. 2009. Anal-
ysis of a winning computational billiards player. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 1377–1382.
Archibald, C.; Altman, A.; and Shoham, Y. 2010. Success,
strategy and skill: an experimental study. In Proceedings of
the 9th International Conference on Autonomous Agents and
Multiagent Systems, 1089–1096. International Foundation
for Autonomous Agents and Multiagent Systems.
Archibald, C.; Altman, A.; and Shoham, Y. 2016. A dis-
tributed agent for computational pool. IEEE Transactions
on Computational Intelligence and AI in Games 8(2):190–
202.
Archibald, C., and Nieves-Rivera, D. 2018. Execution skill
estimation. In Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems, AA-
MAS ’18, 1859–1861. Richland, SC: International Founda-
tion for Autonomous Agents and Multiagent Systems.
Archibald, C., and Shoham, Y. 2011. Hustling in re-
peated zero-sum games with imperfect execution. In IJCAI
Proceedings-International Joint Conference on Artificial In-
telligence, volume 22, 31–36.
Bard, N.; Johanson, M.; Burch, N.; and Bowling, M. 2013.
Online implicit agent modelling. In Proceedings of the
Twelfth International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), 255–262.
Bard, N.; Nicholas, D.; Szepesvari, C.; and Bowling, M.
2015. Decision-theoretic clustering of strategies. In Pro-
ceedings of the Fourteenth International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS). To
Appear.
Billings, D.; Papp, D.; Schaeffer, J.; and Szafron, D. 1998.
Opponent modeling in poker. In AAAI/IAAI, 493–499.
Borm, P., and Genugten, B. 2001. On a relative measure
of skill for games with chance elements. TOP: An Official
Journal of the Spanish Society of Statistics and Operations
Research 9(1):91–114.
Bowling, M., and Veloso, M. 2004. Existence of multiagent
equilibria with limited agents. Journal of Artificial Intelli-
gence Research 22:353–384. A previous version appeared
as a CMU Technical Report, CMU-CS-02-104.
Carmel, D., and Markovitch, S. 1995. Opponent modeling
in multi-agent systems. In International Joint Conference
on Artificial Intelligence, 40–52. Springer.
Davis, T.; Burch, N.; and Bowling, M. 2014. Using response
functions to measure strategy strength. In Proceedings of the
Twenty-Eighth Conference on Artificial Intelligence (AAAI),
630–636.
Dreef, M.; Borm, P.; and Genugten, B. v. d. 2002. On strat-
egy and relative skill in poker. Discussion Paper 59, Tilburg
University, Center for Economic Research.
Dreef, M.; Borm, P.; and van der Genugten, B. 2004. A
new relative skill measure for games with chance elements.
Managerial and Decision Economics 25(5):255–264.
Greenspan, M.; Lam, J.; Leckie, W.; Godard, M.; Zaidi, I.;
Anderson, K.; Dupuis, D.; and Jordan, S. 2008. Toward a

competitive pool playing robot. IEEE Computer Magazine
41(1):46–53.
Jiang, A. X.; Yin, Z.; Zhang, C.; Tambe, M.; and Kraus, S.
2013. Game-theoretic randomization for security patrolling
with dynamic execution uncertainty. In Proceedings of the
2013 international conference on Autonomous agents and
multi-agent systems, 207–214. International Foundation for
Autonomous Agents and Multiagent Systems.
Kaminka, G. A.; Vered, M.; and Agmon, N. 2018. Plan
recognition in continuous domains. In Proceedings of 32nd
AAAI Conference.
Landry, J. F.; Dussault, J. P.; and Beaudry, E. 2015. A
straight approach to planning for 14.1 billiards. IEEE Trans-
actions on Computational Intelligence and AI in Games
PP(99):1–1.
Larkey, P.; Kadane, J. B.; Austin, R.; and Zamirm, S. 1997.
Skill in games. Management Science 43(5):596–609.
Russell, S., and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. Upper Saddle River, NJ, USA: Prentice
Hall Press, 3rd edition.
Schadd, F.; Bakkes, S.; and Spronck, P. 2007. Opponent
modeling in real-time strategy games. In GAMEON, 61–70.
Smith, M. 2007. PickPocket: A computer billiards shark.
Artificial Intelligence 171:1069–1091.
Sturtevant, N.; Zinkevich, M.; and Bowling, M. 2006. Prob-
Maxn: Opponent modeling in n-player games. In Proceed-
ings of the Twenty-First National Conference on Artificial
Intelligence (AAAI), 1057–1063.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
Robotics. Cambridge, MA: MIT Press.
Van Valkenhoef, G.; Ramchurn, S. D.; Vytelingum, P.; Jen-
nings, N. R.; and Verbrugge, R. 2010. Continuous dou-
ble auctions with execution uncertainty. In Agent-Mediated
Electronic Commerce. Designing Trading Strategies and
Mechanisms for Electronic Markets. Springer. 226–241.
Yee, T.; Lisỳ, V.; and Bowling, M. H. 2016. Monte carlo
tree search in continuous action spaces with execution un-
certainty. In IJCAI, 690–697.
Yin, Z.; Jain, M.; Tambe, M.; and Ordónez, F. 2011. Risk-
averse strategies for security games with execution and ob-
servational uncertainty. In AAAI.

6021

