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Abstract

We investigate the verification of Multi-agent Systems
against strategic properties expressed in Alternating-time
Temporal Logic under the assumptions of imperfect informa-
tion and perfect recall. To this end, we develop a three-valued
semantics for concurrent game structures upon which we de-
fine an abstraction method. We prove that concurrent game
structures with imperfect information admit perfect informa-
tion abstractions that preserve three-valued satisfaction. Fur-
ther, we present a refinement procedure to deal with cases
where the value of a specification is undefined. We illustrate
the overall procedure in a variant of the Train Gate Controller
scenario under imperfect information and perfect recall.

1 Introduction
Alternating-time Temporal Logic (ATL) and its exten-
sion ATL∗ are well-known formalisms for reasoning about
strategic bahaviours in Multi-agent Systems (Alur, Hen-
zinger, and Kupferman 2002). An attractive feature of ATL
is the computational complexity of its model checking prob-
lem, which is PTIME-complete under the assumption of per-
fect information. Multi-agent systems (MAS), however, typ-
ically exhibit imperfect information, and model checking
MAS against ATL specifications under imperfect informa-
tion and perfect recall is known to be undecidable (Dima and
Tiplea 2011). Given the practical and theoretical importance
of the imperfect information setting, even partial solutions to
the problem can be useful. Previous approaches (see related
work below) have either focused on how the information is
shared amongst the agents in the system (Belardinelli et al.
2017b; 2017a), or developed notions of bounded recall (Be-
lardinelli, Lomuscio, and Malvone 2018).

Instead, at the heart of the present contribution is the idea
that, under a three-valued semantics, MAS with imperfect
information can be approximated (or abstracted) by perfect
information variants. This enables us to derive a sound, al-
beit incomplete, verification procedure for ATL and ATL∗
under imperfect information and perfect recall. In more de-
tail, given a concurrent game structure with imperfect infor-
mation (iCGS) representing a MAS, we build a perfect in-
formation abstraction that preserves satisfaction for a three-
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valued variant ofATL∗. As we show, if theATL∗ specifica-
tion is true (resp. false) in the (perfect information) abstrac-
tion, then it is also true (resp. false) in the original iCGS with
imperfect information. On the other hand, if the specification
is undefined, we can proceed to refining the abstraction in
an attempt to give a defined truth value to the specification.
The original problem is undecidable; so no guarantee can be
given that by succesive refinements, the property’s truth or
falsity can ever be established. However, the procedure pro-
vides a constructive method to partially model check ATL∗
under imperfect information and perfect recall.

Related work. Several approaches for the verification of
specifications in ATL and ATL∗ under imperfect informa-
tion and perfect recall have been recently put forward. In
one line, restrictions are made on how information is shared
amongst the agents, so as to retain decidability (Berthon
et al. 2017). In a related line, interactions amongst agents
are limited to public actions only (Belardinelli et al. 2017b;
2017a). These approaches are markedly different from ours
as they seek to identify classes for which verification is de-
cidable. Instead, we consider the whole class of iCGS and
define a general verification procedure. In this sense, our
approach is closely related to (Belardinelli, Lomuscio, and
Malvone 2018) where a bounded recall method, also incom-
plete, is defined. However, while in that work perfect recall
is approximated, here abstraction is carried out on the levels
of information.

At the heart of the method we describe is the notion
of abstraction and refinement of MAS models, as well as
three-valued semantics in modal languages. An abstraction-
refinement framework for CTL over the 3-valued seman-
tics was studied in (Shoham and Grumberg 2004; 2007) and
the case of hierarchical systems is considered in (Aminof,
Kupferman, and Murano 2012). Moreover, in (Grumberg
et al. 2007) an abstraction-refinement technique for full
µ-calculus is introduced. An abstraction-refinement proce-
dure for network games with perfect information was in-
troduced in (Avni, Guha, and Kupferman 2017) and a sym-
bolic abstraction-refinement approach to the solution of two-
player games with reachability or safety goals is shown
in (de Alfaro and Roy 2010). Games with incomplete in-
formation are studied in (Dimitrova and Finkbeiner 2008)
by considering only safety goals and, as we do in this pa-
per, abstraction and refinement are used to generate from
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a game with imperfect information a new one with per-
fect information. Model checking MAS by abstraction in
an epistemic context was originally investigated in (Co-
hen et al. 2009; Belardinelli and Lomuscio 2016). Three-
valued abstractions for the verification of ATL properties
have also been put forward in (Ball and Kupferman 2006;
Lomuscio and Michaliszyn 2014; 2015; 2016). There are,
however, considerable differences between these approaches
and the one here pursued. In fact, the methods above fo-
cus on decidable settings. In (Ball and Kupferman 2006;
Shoham and Grumberg 2004) ATL∗ is interpreted un-
der perfect information; while (Lomuscio and Michaliszyn
2014; 2015; 2016) considers non-uniform strategies (Rai-
mondi and Lomuscio 2005). In both cases the correspond-
ing model checking problem is decidable. Their aim, there-
fore, is to speed-up the verification task and not, as we do
here, to provide a sound procedure for an undecidable prob-
lem. Finally, in (Jamroga, Konikowska, and Penczek 2016)
is shown a multi-valued semantics for ATL∗ that is a con-
servative extension of the classical 2-valued variant. Mainly,
they consider the model checking problem for perfect infor-
mation games but they also refer at the imperfect informa-
tion case by giving an undecidable result in general and an
exponential-time result for singleton coalitions.

2 Classic Imperfect Information
In this section we introduce a two-valued semantics for the
Alternating-time Temporal LogicATL∗ under imperfect in-
formation and perfect recall. To fix the notation, we assume
that Ag = {1, . . . ,m} is the set of agents and AP the set of
atomic propositions. Given a set U , U denotes its comple-
ment. We denote the length of a tuple v as |v|, and its i-th
element either as vi or v.i. Let last(v) = v|v| be the last
element in v. For i ≤ |v|, let v≥i be the suffix vi, . . . , v|v| of
v starting at vi and v≤i the prefix v1, . . . , vi of v.

Models for MAS. We begin by giving a formal model
for Multi-agent Systems by means of concurrent game
structures with imperfect information (Alur, Henzinger, and
Kupferman 2002; Jamroga and van der Hoek 2004).

Definition 1 (iCGS). Given sets Ag of agents
and AP of atoms, a concurrent game structure
with imperfect information (iCGS) is a tuple
M = 〈Ag,AP, S, s0, {Acti}i∈Ag, d, δ, {∼i}i∈Ag, V 〉
such that:

• S 6= ∅ is a finite set of states, with initial state s0 ∈ S.

• For every i ∈ Ag, Acti is a nonempty finite set of ac-
tions. Let Act =

⋃
i∈Ag Acti be the set of all actions, and

ACT =
∏

i∈Ag Acti the set of all joint actions.

• The protocol function d : Ag×S → (2Act \∅) defines the
availability of actions so that for every i ∈ Ag, s ∈ S, (i)
d(i, s) ⊆ Acti and (ii) s ∼i s

′ implies d(i, s) = d(i, s′).

• The (deterministic) transition function δ : S×ACT → S
assigns a successor state s′ = δ(s,~a) to each state s ∈ S,
for every joint action ~a ∈ ACT such that ai ∈ d(i, s) for
every i ∈ Ag, that is, ~a is enabled at s.

• For every i ∈ Ag, ∼i is a relation of indistinguishability
between states. That is, given states s, s′ ∈ S, s ∼i s

′ iff
s and s′ are observationally indistinguishable for agent i.

• V : S × AP → {tt,ff} is the two-valued labelling func-
tion.

By Def. 1 an iCGS describes the interactions of a group
Ag of agents, starting from the initial state s0 ∈ S, accord-
ing to the transition function δ. The latter is constrained by
the availability of actions to agents, as specified by the pro-
tocol function d. Further, we assume that every agent i has
imperfect information of the exact state of the system; so in
any state s, i considers epistemically possible all states s′
that are i-indistinguishable from s (Fagin et al. 1995). When
every ∼i is the identity relation, i.e., s ∼i s

′ iff s = s′, we
obtain a standard CGS with perfect information (Alur, Hen-
zinger, and Kupferman 2002). Hereafter we consider both
the class iCGS of all iCGS, and its subclass CGS of all
CGS with perfect information.

Given a set Γ ⊆ Ag of agents and a joint action~a ∈ ACT ,
let ~aΓ and ~aΓ be two tuples comprising only of actions for
the agents in Γ, resp. Γ. We also write ~ai and ~ai for ~a{i}
and ~a{i} respectively. Finally, for ~a and ~b in ACT , (~aΓ,~bΓ)

denotes the joint action where the actions for the agents in Γ

(resp. Γ) are taken from ~a (resp.~b).
A history h ∈ S+ is a finite (non-empty) sequence of

states. The indistinguishability relations are extended to his-
tories in a synchronous, pointwise way, i.e., histories h, h′ ∈
S+ are indistinguishable for agent i ∈ Ag, or h ∼i h

′, iff (i)
|h| = |h′| and (ii) for all j ≤ |h|, hj ∼i h

′
j .

Syntax. To reason about the strategic abilities of agents
in iCGS with imperfect information, we use the Alternating-
time Temporal Logic ATL∗ (Alur, Henzinger, and Kupfer-
man 2002).

Definition 2 (ATL∗). State (ϕ) and path (ψ) formulas in
ATL∗ are defined as follows, where q ∈ AP and Γ ⊆ Ag:

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈Γ〉〉ψ
ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | (ψUψ)

Formulas in ATL∗ are all and only the state formulas.

As customary, a formula 〈〈Γ〉〉Φ is read as “the agents in
coalition Γ have a strategy to achieve Φ”. The meaning of
linear-time operators next X and until U is standard (Baier
and Katoen 2008). Operators [[Γ]], release R, finally F , and
globally G can be introduced as usual.

Formulas in the ATL fragment of ATL∗ are obtained
from Def. 2 by restricting path formulas ψ as follows, where
ϕ is a state formula and R is the release operator:

ψ ::= Xϕ | (ϕUϕ) | (ϕRϕ)

Hereafter we also consider the fragment of Γ-formulas,
i.e., formulas in which the strategic operator 〈〈Γ〉〉 ranges
only over some coalition Γ ⊆ Ag.

Semantics. When giving a semantics to ATL∗ formulas
we assume that agents are endowed with uniform strategies
(Jamroga and van der Hoek 2004), i.e., they perform the
same action whenever they have the same information.
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Definition 3 (Uniform Strategy with Perfect Recall). A uni-
form strategy with perfect recall for agent i ∈ Ag is a func-
tion fi : S+ → Acti such that for all histories h, h′ ∈ S+,
(i) fi(h) ∈ d(i, last(h)); and (ii) if h ∼i h

′ then fi(h) =
fi(h

′).

By Def. 3 any strategy for agent i has to return actions that
are enabled for i. Also, whenever two histories are indistin-
guishable for i, then the same action is returned. Notice that,
for the case of (perfect information) CGS, condition (ii) is
satisfied by any strategy fi : S+ → Acti.

Given an iCGS M , a path p ∈ Sω is an infinite sequence
s1s2 . . . of states. Given a joint strategy FΓ = {fi | i ∈ Γ},
comprising of one strategy for each agent in coalition Γ, a
path p is FΓ-compatible iff for every j ≥ 1, pj+1 = δ(pj ,~a)
for some joint action ~a such that for every i ∈ Γ, ai =
fi(p≤j), and for every i ∈ Γ, ai ∈ d(i, pj). Let out(s, FΓ)
be the set of all FΓ-compatible paths from s.

We can now assign a meaning toATL∗ formulas on iCGS
based on a semantics with two truth values: ff and tt.

Definition 4 (Satisfaction). The two-valued satisfaction re-
lation |=2 for an iCGS M , state s ∈ S, path p ∈ Sω , atom
q ∈ AP , andATL∗ formula φ is defined as follows (clauses
for Boolean connectives are immediate and thus omitted):

(M, s) |=2 q iff V (s, q) = tt
(M, s) |=2 〈〈Γ〉〉ψ iff for some FΓ, for all p ∈ out(s, FΓ),

(M,p) |=2 ψ
(M,p) |=2 ϕ iff (M,p1) |=2 ϕ
(M,p) |=2 Xψ iff (M,p≥2) |=2 ψ
(M,p) |=2 ψUψ′ iff for some k ≥ 1, (M,p≥k) |=2 ψ′, and

for all j, 1 ≤ j < k ⇒ (M,p≥j) |=2 ψ

We say that formula ϕ is true in an iCGS M , or M |=2 ϕ,
iff (M, s0) |=2 ϕ.

We now state the model checking problem within the two-
valued semantics.

Definition 5 (Model Checking). Given an iCGS M and a
formula φ, the model checking problem concerns determin-
ing whether M |=2 φ.

Since the semantics provided in Def. 4 is the standard
interpretation of ATL∗ (Alur, Henzinger, and Kupferman
2002; Jamroga and van der Hoek 2004), it is well known
that model checking ATL, a fortiori ATL∗, against iCGS
with imperfect information and perfect recall is undecid-
able (Dima and Tiplea 2011). In the rest of the paper we
develop methods to obtain partial solutions to this; but first
we illustrate the formal machine above with a toy example.

Example 1. The iCGS M depicted in Fig. 1 describes a
variant of the Train Gate Controller scenario (Alur, Hen-
zinger, and Kupferman 2002). Two trains t1 and t2 pass
through a crossroad. Due to agreements between the rail-
way companies, train t1 can choose between the right (r) or
left (l) track, while t2 can choose between the right (r), left
(l) or straight (s) track. At the same time, controller c has
to select the right combination of tracks. For example, if t1
and t2 choose the joint action rs, then c has to select action
1 to proceed to the next step. Moreover, train t1 has partial
observability on the choices of t2. For instance, if t1 chooses
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Figure 1: The iCGSM for Example 1. Notice that the transi-
tions are generated with triples of actions. To improve read-
ability every occurrence of the action idle (i) is omitted.
Moreover, ∗ denotes any tuple of actions for which a transi-
tion is not given explicitly.

l, then she cannot distinguish whether t2 selects r or s, but
she would observe if t2 chose l as well.

After this first step, c can still change her mind. Specifi-
cally, she can change arbitrarily the selection of tracks (e),
request a new choice to the trains (a), or execute their se-
lection (o). The controller c has partial observability, she
cannot distinguish between s2 and s3, i.e. she does not dis-
tinguish r and l of t1 when t2 selects l. Finally, we use
three atoms, one to denote the initial state (p), one for
the preferred selections for t1 (b), and one to mark that
an agreement has been reached amongst the players (d).
More formally, the iCGS M is comprised of the agents
in Ag = {t1, t2, c}, atoms in AP = {p, b, d}, states
in S = {sI , s1, s2, s3, s4, s5, s6, s7} with initial state sI ,
actions in Act1 = {r, l, i}, Act2 = {r, l, s, i}, Acc =
{1, 2, 3, 4, 5, 6, a, e, o, i}. Transitions are given as in Fig. 1,
and we have the following indistinguishability between dif-
ferent states (indistinguishability is reflexive as well): s1 ∼t1
s2, s5 ∼t1 s6, and s2 ∼c s3.

As an example of specifications in ATL∗, consider the
formula ϕ = 〈〈Γ〉〉F (b ∧ ¬pUd), for Γ = {t1, c}. This for-
mula can be read as: controller c and train t1 have a joint
strategy such that eventually one of the preferred selections
for t1 is visited, and then an agreement has to be reached
before visiting the initial state again. Notice that ϕ is true
in M , while for Γ = {c}, it is false as, whenever t1 al-
ways chooses r and t2 always chooses s, then controller
c cannot make b true before d holds. Finally, consider the
ATL formula 〈〈Ag〉〉Fd, whereby all agents aim at reaching
an agreement, thus making the railway work, which can be
seen to be true in M . However, given the undecidability of
the corresponding model checking problem, there is no gen-
eral method to verify specifications like these on any given
iCGS. Hereafter we provide a sound, albeit partial, method
to tackle this problem.
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3 Three-valued Imperfect Information
In this section we introduce a novel generalisation of iCGS
in terms of over- and under-approximations. Then, we de-
velop a three-valued semantics for ATL∗, and show that it
conservatively extends the two-valued semantics of the pre-
vious section. In what follows, for x = may (resp. must),
x = must (resp. may).

Definition 6 (Generalized iCGS). Given sets Ag of agents
and AP of atoms, a generalized iCGS (with imperfect in-
formation) is a tuple M = 〈Ag,AP, S, s0, {Acti}i∈Ag,
dmay , dmust , δmay , δmust , {∼i}i∈Ag, V 〉 such that:

1. S, s0, {Acti}i∈Ag , {∼i}i∈Ag are defined as in Def. 1.
2. dmay and dmust are protocol functions from Ag × S to

2Act \ ∅ such that for every i ∈ Ag and s ∈ S, (i)
dmust(i, s) ⊆ dmay(i, s) ⊆ Acti and (ii) s ∼i s

′ im-
plies dx(i, s) = dx(i, s′).

3. δmay and δmust are transition relations on S×ACT ×S
such that s′ ∈ δx(s,~a) is defined for some s′ ∈ S only if
ai ∈ dx(i, s) for every i ∈ Ag. Moreover, δmust(s,~a) ⊆
δmay(s,~a).

4. V : S × AP → {tt,ff,uu} is the three-valued labelling
function.

Intuitively, must-components are more restrictive than
may-components: must-transitions can be interpreted as
under-approximations of the actual transitions in the
iCGS, while may-transitions can be thought of as over-
approximations. The undefined value uu can be inter-
preted in various ways, for instance, unknown, unspeci-
fied, or inconsistent, depending on the application in hand.
This is standard in multi-valued abstraction based meth-
ods (Shoham and Grumberg 2004; Ball and Kupferman
2006) and we do not discuss this further. We say that the
truth value τ is defined whenever τ 6= uu. In the case
that under- and over-approximations coincide, i.e., dmay =
dmust and δmay = δmust , and the truth value of every atom
is defined, then we have a standard iCGS as per Def. 1. On
the other hand, if each equivalence relation∼i is the identity,
then we have a generalized CGS (with perfect information).

Next, we introduce must- and may-strategies.

Definition 7 (Uniform x-Strategy with Perfect Recall). For
x ∈ {may ,must}, a uniform x-strategy with perfect recall
for agent i ∈ Ag is a function fxi : S+ → Acti such that for
every history h, h′ ∈ S+, (i) fxi (h) ∈ dx(i, last(h)); and
(ii) if h ∼i h

′ then fxi (h) = fxi (h′).

Here we distinguish between may and must strategies to
over- and under-approximate the strategic abilities of agents.
Again, the distinction collapses in the case of standard (two-
valued) iCGS.

For x ∈ {may ,must} and a joint strategy F x
Γ = {fxi |

i ∈ Γ}, a path p ∈ Sω is F x
Γ -compatible iff for every j ≥ 1,

pj+1 = δx(pj ,~a) for some joint action ~a such that for every
i ∈ Γ, ai = fxi (p≤j), and for every i /∈ Γ, ai ∈ dx(i, pj).
Then, let out(s, F x

Γ ) be the set of all F x
Γ -compatible paths

starting from s. We report full definitions in Table 1.
Intuitively, when computing the outcomes of a joint

strategy Fmust
Γ from state s, we adopt a “conservative”

stance with respect to the abilities of agents in Γ, by
considering only actions enabled according to the under-
approximated protocol dmust , as well as an “optimistic”
stance about the capabilities of agents in Γ, as given by
the over-approximated protocol dmay and transition δmay .
For out(s, Fmay

Γ ) the reasoning is symmetric (notice that
it might be empty in general). This modelling choice is in
line with similar three-valued semantics for logics of strate-
gies (Ball and Kupferman 2006; Lomuscio and Michaliszyn
2016).

Formally we define the three-valued semantics for ATL∗
as follows.
Definition 8 (Satisfaction). The three-valued satisfaction
relation |=3 for an iCGS M , state s ∈ S, path p ∈ Sω ,
atom q ∈ AP , v ∈ {tt,ff}, and ATL∗ formula φ is defined
as in Table 2. In all other cases the value of φ is uu.

Observe that, in the clauses for ATL∗ operators must-
strategies are used to check the truth of formulas, while
may-strategies appear in the clauses for falsehood. Specif-
ically, to check whether ((M, s) |=3 〈〈Γ〉〉ψ) = tt we con-
sider all paths in out(s, Fmust

Γ ), which are defined by δmay -
transitions. This restricts the choices available to coalition
Γ, while increasing the number of paths in which the for-
mula needs to be satisfied. Similarly, to verify whether
((M, s) |=3 〈〈Γ〉〉ψ) = ff we need to use δmust -transitions
over the paths in out(s, Fmay

Γ ), so as to reduce the number
of candidates witnessing the falsehood of the formula. No-
tice also that, as regards Boolean operators, our semantics
correspond to Kleene’s three-valued logic.

Finally, (M |=3 ϕ) = tt (resp. ff) iff ((M, s0) |=3 ϕ) =
tt (resp. ff). Otherwise, (M |=3 ϕ) = uu.

We conclude this section by proving some auxiliary re-
sults on conservative extensions and the model checking
problem.
Lemma 1 (Conservativeness). Let M be a standard iCGS,
that is, dmay = dmust , δmay = δmust are functions, and the
truth value of every atom is defined. Then, for every formula
φ in ATL∗,

((M, s) |=3 φ) = tt ⇔ (M, s) |=2 φ (1)

((M, s) |=3 φ) = ff ⇔ (M, s) 6|=2 φ (2)

By Lemma 1 the three-valued semantics for ATL∗ is a
conservative extension of its two-valued semantics, as the
two coincide whenever we consider standard iCGS. Thus,
from the results in the previous section it immediately fol-
lows that model checking ATL∗ formulas under the three-
valued semantics, with imperfect information and perfect re-
call is also undecidable. However, for perfect information
we can show the following.
Theorem 1. The model checking problem for generalized
CGS (with perfect information) is 2EXPTIME-complete for
ATL∗ and PTIME-complete for ATL.

In the following section we leverage on the decidable
model checking problem for the three-valued semantics un-
der perfect information to develop a sound, albeit incom-
plete, abstraction-based method to verify imperfect informa-
tion.
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out(s, Fmust
Γ ) = {p ∈ Sω | for all j ≥ 0, pj+1 ∈ δmay(pj , (F

must
Γ (p≤j),~aΓ)) and for all i ∈ Γ, ai ∈ dmay(i, pj)}

out(s, Fmay
Γ ) = {p ∈ Sω | for all j ≥ 0, pj+1 ∈ δmust(pj , (F

may
Γ (p≤j),~aΓ)) and for all i ∈ Γ, ai ∈ dmust(i, pj)}

Table 1: The definitions of out(s, Fmust
Γ ) and out(s, Fmay

Γ ).

((M, s) |=3 q) = v iff V (s, q) = v
((M, s) |=3 ¬ϕ) = v iff ((M, s) |=3 ϕ) = ¬v
((M, s) |=3 ϕ ∧ ϕ′) = tt iff ((M, s) |=3 ϕ) = tt and ((M, s) |=3 ϕ′) = tt
((M, s) |=3 ϕ ∧ ϕ′) = ff iff ((M, s) |=3 ϕ) = ff or ((M, s) |=3 ϕ′) = ff
((M, s) |=3 〈〈Γ〉〉ψ) = tt iff for some Fmust

Γ , for all p ∈ out(s, Fmust
Γ ), ((M,p) |=3 ψ) = tt

((M, s) |=3 〈〈Γ〉〉ψ) = ff iff for every Fmay
Γ , for some p ∈ out(s, Fmay

Γ ), ((M,p) |=3 ψ) = ff
((M,p) |=3 ϕ) = v iff ((M,p1) |=3 ϕ) = v
((M,p) |=3 ¬ψ) = v iff ((M,p) |=3 ψ) = ¬v
((M,p) |=3 ψ ∧ ψ′) = tt iff ((M,p) |=3 ψ) = tt and ((M,p) |=3 ψ′) = tt
((M,p) |=3 ψ ∧ ψ′) = ff iff ((M,p) |=3 ψ) = ff or ((M,p) |=3 ψ′) = ff
((M,p) |=3 Xψ) = v iff ((M,p≥2) |=3 ψ) = v
((M,p) |=3 ψUψ′) = tt iff for some k ≥ 1, ((M,p≥k) |=3 ψ′) = tt, and for all j, 1 ≤ j < k ⇒ ((M,p≥j) |=3 ψ) = tt
((M,p) |=3 ψUψ′) = ff iff for all k ≥ 1, ((M,p≥k) |=3 ψ′) = ff ,

or for some j ≥ 1, ((M,p≥j) |=3 ψ) = ff , and for all j′, 1 ≤ j′ ≤ j ⇒ ((M,p≥j′) |=3 ψ′) = ff

Table 2: The three-valued satisfaction relation for ATL∗.

4 Abstraction
We now define perfect information, three-valued abstrac-
tions for iCGS. Then, we show that defined truth values
for ATL∗ formulas transfer from such abstractions to the
original iCGS with imperfect information. Since the model
checking problem on the former is decidable (as per Theo-
rem 1), this preservation result can be used to define a sound,
albeit partial, verification procedure under imperfect infor-
mation and perfect recall.

To begin with, given a coalition Γ ⊆ Ag of agents, de-
fine the common knowledge relation∼C

Γ as the reflexive and
transitive closure (

⋃
i∈Γ ∼i)

∗ of the union of indistinguisha-
bility relations ∼i for i ∈ Γ (Fagin et al. 1995). That is,
s ∼C

Γ s′ iff s′ is reachable from s by a sequence s1, . . . , sn
of states such that (i) s1 = s, (ii) sn = s′, and (iii) for ev-
ery j < n, sj ∼i sj+1 for some i ∈ Γ. Clearly, ∼C

Γ is an
equivalence relation. Now, let [s]Γ = {s′ ∈ S | s′ ∼Γ s}
be the equivalence class of s according to ∼Γ. The relation
∼Γ is extended to histories in a synchronous, pointwise way,
i.e., given h, h′ ∈ S+, h ∼Γ h′ iff (i) |h| = |h′| and (ii)
for all j ≤ |h|, hj ∼Γ h′j . So, we introduce the notation
[h]Γ = {h′ ∈ S+ | h′ ∼Γ h}.

Now, we introduce abstractions for iCGS.
Definition 9 (Abstract CGS). Given an iCGS
M = 〈Ag,AP, S, s0, {Acti}i∈Ag, d, δ, {∼i}i∈Ag, V 〉 and
a coalition Γ ⊆ Ag, the abstract (generalized) CGS MΓ =
〈Ag,AP, SΓ, [s0]Γ, {Acti}i∈Ag, d

may
Γ , dmust

Γ , δmay
Γ , δmust

Γ ,
VΓ〉 is defined such that:
1. SΓ = {[s]Γ | s ∈ S} is the set of equivalence classes for

all states s ∈ S, with initial state [s0]Γ;
2. for every t, t′ ∈ SΓ and joint action ~a, t′ ∈ δmay

Γ (t,~a) iff
for some s ∈ t and s′ ∈ t′, δ(s,~a) = s′;

3. for every t, t′ ∈ SΓ and joint action ~a, t′ ∈ δmust
Γ (t,~a)

iff for all s ∈ t there is s′ ∈ t′ such that δ(s,~a) = s′;
4. for x ∈ {may ,must}, t ∈ SΓ, and i ∈ Ag, dxΓ(i, t) =
{ai ∈ Acti | δxΓ(t, (ai,~ai)) is defined for some ~ai};

5. for v ∈ {tt,ff}, p ∈ AP , and t ∈ SΓ, VΓ(t, p) = v iff
V (s, p) = v for all s ∈ t; otherwise, VΓ(t, p) = uu.

We now show that the abstraction of an iCGS is indeed
a generalized CGS (with perfect information) as defined in
Def. 6. In particular, the indistinguishability relation for ev-
ery i ∈ Ag is assumed to be the identity relation.

Lemma 2. For every coalition Γ ⊆ Ag, any abstractionMΓ

of an iCGS M is a generalized CGS.

We can now state the main theoretical result in this sec-
tion, namely if a Γ-formula has a defined truth value in an
abstract CGS MΓ, built on an iCGS M , then the Γ-formula
has the same truth value in M .

Theorem 2. Given an iCGS M , state s, and coalition Γ ⊆
Ag, for every Γ-formula φ in ATL∗, we have that

((MΓ, [s]Γ) |=3 φ) = tt ⇒ (M, s) |=2 φ (3)

((MΓ, [s]Γ) |=3 φ) = ff ⇒ (M, s) 6|=2 φ (4)

By Theorem 2 a defined answer to the model checking
problem w.r.t. abstract, generalized CGS (with perfect in-
formation), which is decidable, can be tranferred to the con-
crete, two-valued iCGS (with imperfect information), whose
model checking problem is undecidable in general. Obvi-
ously, if the returned value is undefined (uu), then no con-
clusive answer can be drawn.

We illustrate the abstraction procedure with our Train
Gate Controller scenario in Example 1.
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Figure 2: The abstract CGS for the iCGS in Example 1,
where must-transitions are depicted with continuous lines
while may-transitions are both the continuous and dashed
lines.

Example 2. In Fig. 2 we show the abstract CGS obtained
from the iCGS for the Train Gate Controller scenario in Ex-
ample 1 by considering the formula ϕ = 〈〈Γ〉〉F (b ∧ ¬pUd)
for Γ = {t1, c}. Specifically, the abstraction MΓ includes
five abstract states according to the equivalence relation
∼C
{t1,c}. Notice that formula ϕ is undefined in MΓ due to

the undefined value of atom b in the abstract state a1.

5 Refinement
By Theorem 2 if a formula is undefined on abstraction MΓ,
then no conclusion can be drawn on the model checking
problem for M . In this section we provide a refinement pro-
cedure taking as input a “failure” state sf in MΓ and a Γ-
formula ϕ such that ϕ is undefined in sf , and returning a
refined CGS Mr

Γ, whose state space is smaller than M in
general, and for which we are able to prove Theorem 3, a
preservation result similar to Theorem 2. In what follows we
assume that failure states are identified manually. We leave
their automatic generation for further work.

The algorithm Refinement(MΓ,M, sf ) is described in
Fig. 3a. Intuitively, we look at incoming transitions into sf .
For concrete states s and s′ in sf , if the Γ-component of
actions ending respectively in s and s′ are different, any
uniform strategy for Γ will visit either s or s′. As a result,
the abstract state sf can be split “safely” into an s- and an
s′-component. More precisely, the procedure Refinement()
begins by initializing as true the values of a matrix m that
stores the relation outlined above between the concrete states
in sf (line 1). Then, the algorithm calls the subroutine
Check1(MΓ,M, sf ,m) in Fig. 3b, which updates the val-
ues in m by considering the concrete transition function δ in
M . In particular, at each iteration Check1() considers one
predecessor tf of sf (line 1). Then, two other loops con-
sider pairs of states s and s′ in the abstract state sf and pairs
of states t and t′ in the predecessor tf (lines 2-3). If s and

s′ are indistinguishable for some agent i ∈ Γ and i performs
the same action in the transitions from t and t′ to s and s′ re-
spectively (lines 4-6), then we update the value of the corre-
sponding cell in m to false (line 6). The subroutine reported
in Check1() carries out the first round of updates on m. Fur-
ther updates in the Refinement() algorithm are performed
by the subroutine Check2(MΓ, sf ,m, update) reported in
Fig. 3c, which considers the “indirect” binding that some
concrete states may have in an abstract state. Specifically,
given the states s and s′ in the abstract state sf that have
true as value in m (lines 2-3), we need to consider the rela-
tion that s and s′ have with the other states in sf (lines 4-6):
if the values in m for both states related with some other
state t are false, then we update the value of cell m[s, s′] to
false as well. Subroutine Check2() is called repeatedly in
algorithm Refinement() as long as guard update remains
true. When update becomes false, we proceed to check
whether there is at least an element true in m (line 8). If
this is the case, we assign the related concrete states s and
s′ to two different, new abstract states v and w (line 10). Fi-
nally, we populate the new abstract states v and w with the
other concrete states in the old abstract state sf (which is
removed) according to matrix m (lines 12-14).

Hereafter we present the formal definition of the re-
fined CGS Mr

Γ as obtained by the application of the
Refinement() algorithm.

Definition 10 (Refined CGS). Given an abstract
CGS MΓ = 〈Ag,AP, SΓ, s0, {Acti}i∈Ag, d

may
Γ , dmust

Γ ,
δmay
Γ , δmust

Γ , VΓ〉, its refinement Mr
Γ = 〈Ag,AP, Sr

Γ, s
r
0,

{Acti}i∈Ag, d
may
Γ , dmust

Γ , δmay
Γ , δmust

Γ , V r
Γ 〉 as obtained by

an application of algorithm Refinement(MΓ,M, sf ) is
defined as follows:

1. Sr
Γ is the set SΓ of states in MΓ, possibly without the

“failure” state sf , but with the new states added by
Refinement(). Then, sr0 is the state in Sr

Γ such that
s0 ∈ sr0, for s0 ∈M .

2. For x ∈ {may ,must}, the transitions relations δxΓ and
the protocol functions dxΓ are defined as in Def. 9. In par-
ticular,

(a) for every t, t′ ∈ Sr
Γ and joint action ~a, t′ ∈ δmay

Γ (t,~a)
iff for some s ∈ t and s′ ∈ t′, δ(s,~a) = s′;

(b) for every t, t′ ∈ Sr
Γ and joint action ~a, t′ ∈ δmust

Γ (t,~a)
iff for all s ∈ t there is s′ ∈ t′ such that δ(s,~a) = s′;

(c) for every t ∈ Sr
Γ, and i ∈ Ag, dxΓ(i, t) = {ai ∈ Acti |

δxΓ(t, (ai,~ai)) is defined for some ~ai}.
3. For v ∈ {tt,ff}, p ∈ AP , and t ∈ Sr

Γ, V r
Γ (t, p) = v iff

V (s, p) = v for all s ∈ t; otherwise, VΓ(s, p) = uu.

By Def. 10 the components of the refined CGS Mr
Γ co-

incide with those in abstraction MΓ, except possibly as re-
gards the “failure” state sf and new states introduced by
Refinement(). On the new states, the transition relations
and protocol functions are defined in analogy with MΓ.

We now show a property of the refined CGS Mr
Γ, which

will be useful to prove the main preservation result Theo-
rem 3. Intuitively, must strategies in Mr

Γ respect uniformity
on the set of their outcomes.
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Algorithm Refinement(MΓ,M, sf ) :

1 f o r s, s′ ∈ sf ,m[s, s′] = true;
2 Check1(MΓ,M, sf ,m);
3 update = true;
4 whi le update = true
5 Check2(MΓ, sf ,m, update);
6 split = false;
7 whi le s, s′ ∈ sf and split = false
8 i f m[s, s′] = true t h e n
9 remove(sf , SΓ);

10 add(v, SΓ); add(w, SΓ); add(s, v); add(s′, w);
11 split = true;
12 f o r t ∈ sf
13 i f m[s, t] = true t h e n add(t, w);
14 e l s e add(t, v);

(a)

Algorithm Check1(MΓ,M, sf ,m) :

1 f o r tf ∈ Pre(sf )
2 f o r s, s′ ∈ sf
3 f o r t, t′ ∈ tf
4 i f δ(t,~a) = s and δ(t′,~b) = s′ t h e n
5 f o r i ∈ Γ

6 i f s ∼i s
′ and ~ai = ~bi t h e n m[s, s′] = false;

(b)

Algorithm Check2(MΓ, sf ,m, update) :

1 update = false;
2 f o r s, s′ ∈ sf
3 i f m[s, s′] = true t h e n
4 f o r t ∈ sf
5 i f m[s, t] = false and m[s′, t] = false t h e n
6 m[s, s′] = false;
7 update = true;

(c)

Figure 3: The Refinement procedure (3a) with its auxiliary
subroutines Check1 and Check2 (3b and 3c respectively).

Lemma 3. In Mr
Γ for every joint strategy Fmust

Γ , for all
p, p̂ ∈ out(t, Fmust

Γ ), all p′ ∈ p, p̂′ ∈ p̂, and all i ∈ Γ,
j ∈ N, if p′≤j ∼i p̂

′
≤j then fmust

i (p≤j) = fmust
i (p̂≤j).

By Lemma 3 we can prove the main preservation result of
this section. In particular, the lemma is used in the inductive
step for strategy operators.
Theorem 3. Given an iCGS M , state s, coalition Γ, its ab-
stract CGS MΓ with refinement Mr

Γ, and state srΓ 3 s, for
every Γ-formula φ in ATL∗,

((Mr
Γ, s

r
Γ) |=3 φ) = tt ⇒ (M, s) |=2 φ (5)

((Mr
Γ, s

r
Γ) |=3 φ) = ff ⇒ (M, s) 6|=2 φ (6)

By Theorem 3 defined truth values are preserved from the
refined CGS to the original iCGS, similarly to Theorem 2.
Example 3. In Fig. 4 we present a refinement of the ab-
stract CGS in Fig. 2. In this new model we split the state
a1 in two new abstract states a1

1 and a2
1 according to the

Refinement() algorithm in Fig. 3a. By doing so, formula
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Figure 4: Example of split of abstract CGS in Fig. 2.

ϕ = 〈〈{t1, c}〉〉F (b ∧ ¬pUd) becomes true as atom b be-
comes defined in a1

1 and a2
1. So, by Theorem 3 formula ϕ is

true in the original iCGS M as well.
By combining the results in Section 3, 4, and 5 we can

outline a method to verify strategic properties of Multi-
Agent Systems under the assumptions of imperfect informa-
tion and perfect recall. Given an iCGSM and a Γ-formula φ
in ATL∗, we first build the abstract, three-valued CGS MΓ

as per Def. 9. We can model check φ on MΓ, as the corre-
sponding decision problem is decidable by Theorem 1, and
then tranfer any defined answer to the original iCGS M in
virtue of Theorem 2. In case of an undefined answer, we can
apply the refinement procedure in Section 5 iteratively: if
the value of φ or any of its subformulas is undefined at some
state sf in MΓ, we can apply the refinement algorithm so as
to obtain a refined CGS Mr

Γ: any defined value for φ on Mr
Γ

transfers to M by Theorem 3. The refinement step can be it-
erated as long as φ stays undefined. Since the verification of
ATL∗ under imperfect information and perfect recall is un-
decidable in general (Dima and Tiplea 2011), the procedure
here outlined is obviously partial and there is no guarantee
of termination with a defined answer. However, partial re-
sults can be useful in cases of interest, like the Train Gate
Controller scenario illustrated in Example 1, 2, and 3.

6 Conclusions
As we discussed in the introduction one of the key issues in
employing logics for strategic reasoning, such as ATL and
ATL∗, in the context of Multi-agent Systems is that their
model checking problem is undecidable under perfect recall
and incomplete information. Yet, this is one of the most nat-
ural and compelling setup in applications. Finding appropri-
ate approximations remains an open problem at present.

In this paper we have put forward a notion of abstrac-
tion between different classes of systems to overcome this
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difficulty. Specifically, we showed that iCGS with imper-
fect information admit a (perfect information) abstraction
which preserves satisfaction back to the original model,
when checked under a three-valued semantics. This enabled
us to give an incomplete but sound procedure for the original
model checking problem, which is undecidable in general.

In future work we intend to build a toolkit to generate ab-
stractions and refinements automatically, perhaps in combi-
nation with refinement techniques built on interpolants (Ball
and Kupferman 2006). Moreover, we plan to extend the
abstraction and refinement techniques here developed to
more expressive languages for strategic reasoning including
Strategy Logic (Chatterjee, Henzinger, and Piterman 2007;
Mogavero et al. 2014).
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