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Abstract
We investigate the behavior of a simple majority dynamics
on networks of agents whose interaction topology exhibits
a community structure. By leveraging recent advancements
in the analysis of dynamics, we prove that, when the states
of the nodes are randomly initialized, the system rapidly and
stably converges to a configuration in which the communities
maintain internal consensus on different states. This is the
first analytical result on the behavior of dynamics for non-
consensus problems on non-complete topologies, based on
the first symmetry-breaking analysis in such setting.
Our result has several implications in different contexts in
which dynamics are adopted for computational and biological
modeling purposes. In the context of Label Propagation Al-
gorithms, a class of widely used heuristics for community de-
tection, it represents the first theoretical result on the behavior
of a distributed label propagation algorithm with quasi-linear
message complexity. In the context of evolutionary biology,
dynamics such as the Moran process have been used to model
the spread of mutations in genetic populations (Lieberman,
Hauert, and Nowak 2005); our result shows that, when the
probability of adoption of a given mutation by a node of the
evolutionary graph depends super-linearly on the frequency
of the mutation in the neighborhood of the node and the un-
derlying evolutionary graph exhibits a community structure,
there is a non-negligible probability for species differentia-
tion to occur.

Introduction
Dynamics are simple stochastic processes on networks, in
which agents update their own state according to a symmet-
ric function of the state of their neighbors and of their cur-
rent state, with no dependency on time or on the topology
of the network (Mossel and Tamuz 2017; Natale 2017). In
previous decades, in the context of automata networks, this
kind of systems has been investigated from a computability
point of view, attracting the interest of mathematicians and
physicists. Recently it has been subject to a renewed interest
from computer scientists, as new techniques for analyzing
this class of processes have made possible to answer ques-
tions regarding their efficiency and capability as distributed
algorithms (Doerr et al. 2011; Becchetti et al. 2015; 2016;
2017a; Cooper et al. 2015; 2017).
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In this work we consider the 2-CHOICES dynamics (Def-
inition 2), in which at each discrete-time step each agent
samples two random neighbors with replacement and, if the
two have the same state, the agent adopts that state. The
process rapidly converges to consensus, i.e., a configura-
tion where all agents have the same state, if the propor-
tion of agents supporting one state exceeds a given function
of the second eigenvalue of the graph (Cooper et al. 2015;
2017). Their proofs leverage an interesting property of the
2-CHOICES dynamics, i.e., that the expected number of
agents supporting one state can be expressed as a quadratic
form of the transition matrix of a simple random walk on the
underlying graph. This fact allows to relate the behavior of
the process to the eigenspaces of the graph.

Motivated by questions arising in graph clustering and
evolutionary biology, we exploit the aforementioned relation
to show a more fine-grained understanding of the consen-
sus behavior of the 2-CHOICES dynamics. Our new anal-
ysis combines symmetry-breaking techniques (Becchetti et
al. 2016; Clementi et al. 2018) and concentration of proba-
bility arguments with a linear algebraic approach (Cooper et
al. 2015; 2017) to obtain the first symmetry-breaking analy-
sis for dynamics on non-complete topologies.

Informal description of Theorem 1. Let the agents
of a network initially pick a random binary state and
then run the 2-CHOICES dynamics. If the network has
a community structure there is a significant probabil-
ity that it will rapidly converge to an almost-clustered
configuration, where almost all nodes within each
community share the same state, but the predominant
states in the communities are different. In other words,
with constant probability, after a short time the states
of the nodes constitute a labeling which reveals the
clustered structure of the network.

The aforementioned probability for the labeling to reveal
the community structure can be amplified via Community-
Sensitive Labeling (Becchetti et al. 2017a), transforming the
2-CHOICES dynamics into a distributed label propagation
algorithm with quasi-linear message complexity.

We remark that, because of the stochastic and time-
independent behavior of the 2-CHOICES dynamics, the pro-
cess eventually leaves almost-clustered configurations and
reaches a monochromatic configuration in which all agents
have the same state. However, before that happens, we
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prove that the process remains in almost-clustered config-
urations for a time equal to a large-degree polynomial in n.
Hence, the event that the process leaves the almost-clustered
configuration is negligible for most practical applications.
This key transitory property of some stochastic processes,
called metastability (Auletta et al. 2012; Ferraioli and Ven-
tre 2015), has recently attracted a lot of attention in the The-
oretical Computer Science community.

Label Propagation Algorithms
Label Propagation Algorithms (LPAs) are a widely used
class of algorithms used for community detection and in-
spired by epidemic processes on networks. The generic pat-
tern of such algorithms can be described as follows: First, a
label taken from a finite set is assigned to each node accord-
ing to some initialization rule; then the nodes are activated
following some activation rule; active nodes interact with
their neighbors and update their labels according to some
local majority-based update rule.

After the first algorithm, known in literature as LPA,
has been proposed and its effectiveness empirically as-
sessed (Raghavan, Albert, and Kumara 2007), a new line
of research started with the goal of improving the quality
of the detected communities and the efficiency of the algo-
rithm (Leung et al. 2009; Liu and Murata 2010; Boldi et al.
2011; Šubelj and Bajec 2011a; 2011b; Xie and Szymanski
2013; Zhang et al. 2017), and to investigate more general
settings, e.g., dynamic networks (Xie, Chen, and Szymanski
2013; Clementi et al. 2015). Many variants with small vari-
ations on initialization rule, activation rule, and local update
rule have been proposed, but they have only been validated
experimentally. On the other hand, there exist only few theo-
retical works. One shows the equivalence of LPA with find-
ing the minima of a generalization of the Ising model, used
in statistical mechanics to describe the spin interaction of
electrons on a crystalline lattice (Tibély and Kertész 2008).
Another is the first and only rigorous analysis of a variant
of LPA on the Stochastic Block Model1 (Kothapalli, Pem-
maraju, and Sardeshmukh 2013): They propose MAX-LPA,
i.e., a synchronous version of LPA that follows a determinis-
tic majority rule, and analyze its behavior on G2n,p,q graphs
with parameters p = Ω(n−1/4+ε) and q = O(p2), i.e., on
graphs that present very dense communities of constant di-
ameter separated by a sparse cut.

The absence of substantial theoretical progress in the
analysis of LPAs is largely due to the lack of techniques
for handling the interplay between the non-linearity of the
local update rules and the topology of the graph. In this
work we look at the 2-CHOICES dynamics as a distributed
label propagation algorithm. The randomized nature of the
2-CHOICES dynamics introduces a major challenge with re-
spect to deterministic rules such as the one of MAX-LPA.

Comparison with our result. Let a and b respectively be
the number of neighbors of each agent in its own commu-
nity and in the other community; let d := a + b. The anal-

1The Stochastic Block Model is a generative model for random
graphs, that produces graphs with community structure.

ysis of MAX-LPA (Kothapalli, Pemmaraju, and Sardesh-
mukh 2013) essentially requires a ≥ n3/4−ε and b ≤ ca2/n,
for some arbitrary constants ε and c. Our analysis requires2

λ ≤ n−1/4, which implies a ≥ n1/2 because of the ex-
tremality of Ramanujan graphs, and b/d ≤ n−1/2. Compared
to the analysis of MAX-LPA, Theorem 1 holds for much
sparser communities at the price of a stricter condition on
the cut. Moreover, given the distributed nature of the two al-
gorithms, MAX-LPA has a message complexity of Ω(m),
with m the number of edges in the graph that is at least n7/4;
instead, the message complexity of the 2-CHOICES dynam-
ics isO(n log n) regardless of the actual density of the edges
on the graph, since the local update rule only looks at 2 la-
bels. Our algorithm performs an implicit sparsification of
the graph, an interesting property for the design of sparse
clustering algorithms (Sun and Zanetti 2017), in particular
for opportunistic network settings (Becchetti et al. 2018).

Evolutionary dynamics
Evolutionary dynamics is the branch of genetics which stud-
ies how populations evolve genetically as a result of the in-
teractions among the individuals (Durrett 2011). The study
of evolutionary dynamics on graphs started with the investi-
gation of the fixation probability of the Moran process (Fig-
ure 1) on different families of graphs, namely the probability
that a new mutation with increased fitness eventually spreads
across all individuals in the population (Lieberman, Hauert,
and Nowak 2005). The Moran process has since then at-
tracted the attention of the computer science community due
to the algorithmic questions associated to its fixation proba-
bility (Giakkoupis 2016; Galanis et al. 2017).

However, no simple dynamics has been proposed so far
in the context of evolutionary graph theory for explaining
one of evolution’s fundamental phenomena, namely speci-
ation (Coyne and Orr 2004). Two fundamental classes of
driving forces for speciation can be distinguished: allopatric
speciation and sympatric/parapatric speciation. The former,
which refers to the divergence of species resulting from
geographical isolation, is nowadays considered relatively
well understood (Savolainen et al. 2006); on the contrary,
the latter, namely divergence without complete geographi-
cal isolation, is still controversial (Savolainen et al. 2006;
Bolnick and Fitzpatrick 2007). In several evolutionary set-
tings the spread of a mutation appears nonlinear with re-
spect to the number of interacting individuals carrying the
mutation, exhibiting a drift towards the most frequent phe-
notypes (Coyne and Orr 2004). In this work we look at
the 2-CHOICES dynamics as a quadratic evolutionary dy-
namics on a clustered graph representing sympatric and
parapatric scenarios. We regard the random initialization
of the 2-CHOICES process as two inter-mixed populations
of individuals with different genetic pools. The interactions
for reproduction purposes between the two populations can
be categorized in frequent interactions among individuals
within an equal-size bipartition of the populations, i.e., the

2λ is the maximum eigenvalue, in absolute value and different
from 1, of the transition matrices of the subgraphs induced by the
communities.

6047



Initial population

Select for
reproduction

Select for
reproduction

Select for
death

Replace

Figure 1: Visual representation of the Moran process (adapted from (Lieberman, Hauert, and Nowak 2005)). At each time step
an individual is randomly chosen for reproduction according to its fitness, and a second individual adjacent to it is randomly
chosen for death; the offspring of the first individual then replaces the second. When the underlying network is regular, the
process is equivalent to the VOTER dynamics (Berenbrink et al. 2016).

communities, and less frequent interactions between these
two communities which, in later stages of the differen-
tiation process, may be interpreted as genetic admixture,
i.e. interbreeding between two genetically-diverging popu-
lations (Martin et al. 2013).

Within the aforementioned framework our Theorem 1
provides an analytical evolutionary graph-theoretic proof of
concept on how speciation can emerge from the simple non-
linear underlying dynamics of the evolutionary process at
the population level.

Computational dynamics
Dynamics are rules to update an agent’s state according to
a function which is invariant with respect to time, network
topology, and identity of an agent’s neighbors, and whose
arguments are only the agent’s current state and those of
its neighbors (Mossel and Tamuz 2017; Natale 2017). Sim-
ple models of interaction between pairs of nodes in a net-
work have been studied since the first half of the 20th cen-
tury in statistical mechanics (Liggett 2012) and in the sec-
ond half in diverse sciences, such as economics and so-
ciology, where averaging-based opinion dynamics such as
the DeGroot model have been investigated (French 1956;
Degroot 1974; Jackson 2010). The first study in computer
science of a dynamics from a computational point of view
is that of a synchronous-time version of the VOTER dynam-
ics, where, in each discrete-time round, each node looks at
a random neighbor and copies its opinion (Hassin and Peleg
2001). The VOTER dynamics can be regarded as the sim-
plest dynamics, in the sense that there is arguably no simpler
rule by which nodes may meaningfully update their state as
a function of their neighbors’ states. Examples of other dy-
namics are: UNDECIDED-STATE (Clementi et al. 2018), 3-
MAJORITY (Becchetti et al. 2017a; 2016), 2-MEDIAN (Do-
err et al. 2011), AVERAGING. The AVERAGING dynam-
ics has been employed for solving the Community Detec-
tion task (Becchetti et al. 2017b). However, we remark that
the resulting protocol is not classifiable within LPAs: The
configuration space in not described in terms of the finite
set of labels initially used by nodes, but by rational val-
ues generated from the averaging update rule. Other exam-
ples of problems for which dynamics have been success-
fully employed in order to design an efficient solution are

Noisy Rumor Spreading (Fraigniaud and Natale 2016), Ex-
act Majority (Mertzios et al. 2017), and Clock Synchroniza-
tion (Boczkowski, Korman, and Natale 2017).

We now focus on the 2-CHOICES dynamics, which is
the subject of this work. It can arguably be considered the
simplest type of dynamics after the VOTER dynamics and,
until now, it constitutes one of the few processes whose
behavior has been characterized on non-complete topolo-
gies (Cooper, Elsässer, and Radzik 2014; Cooper et al. 2015;
2017). It has been proven that a network of agents, each
with a binary state, will support the initially most frequent
opinion with high probability after a polylogarithmic num-
ber of rounds whenever the initial bias (the advantage of
a state on the other) is greater than a function of the net-
work’s expansion (Cooper, Elsässer, and Radzik 2014). Such
result was later refined with milder assumptions on the ini-
tial bias with respect to the network’s expansion (Cooper et
al. 2015) and generalized to more opinions (Cooper et al.
2017). Moreover, in core-periphery networks, depending on
the strength of the cut between the core and the periphery, a
phase-transition phenomenon occurs (Cruciani et al. 2018):
Either one of the colors rapidly spreads over the rest of the
network, or a metastable phase takes place, in which both
the colors coexist in the network for superpolynomial time.

Notation
Let G = (V,E) be a (2n, d, b)-clustered regular graph
(Definition 1) and let us define a := d − b. Notice that G
is composed by two a-regular communities connected by a
b-regular cut (Figure 2) and that when a > b the graph G
exhibits a well-clustered structure, i.e., each node has more
neighbors in its community than in the other one.

Definition 1 ((Becchetti et al. 2017b)). A (2n, d, b)-
clustered regular graph is a graph G = (V,E) such that:

• V = V1 ∪ V2, V1 ∩ V2 = ∅, and |V1| = |V2| = n;
• every node has degree d;
• every node in V1 has b neighbors in V2 and every node in
V2 has b neighbors in V1.

Each node of G maintains a binary state that we represent
as a color: either red or blue. We denote the vector of states
of all nodes in G at time t as the configuration vector c(t)
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Figure 2: Representation of a (2n, d, b)-clustered regular
graph where a := d − b. Each community induces an a-
regular graph while the cut between the two communities
induces a b-regular bipartite graph.

and we refer to the state of a node u ∈ V at time t as c(t)
u ∈

{red, blue}. We call B(t) the set of nodes colored blue at
time t and R(t) the set of nodes colored red at time t. For
each community i ∈ {1, 2} we define B(t)

i := Vi ∩ B(t)

and R(t)
i := Vi ∩ R(t). We call s(t)

i = |R(t)
i | − |B

(t)
i | the

bias in community i toward color red. Given some initial
configuration c(0), we let the nodes of G run the following
2-CHOICES dynamics.
Definition 2. The 2-CHOICES dynamics is a local syn-
chronous protocol that works as follows: In each round,
each node u chooses two neighbors v, w uniformly at ran-
dom with replacement; if v and w support the same color,
then u updates its own color to their color, otherwise u keeps
its previously supported color.

Notice that the random sequence of configurations
{c(t)}t∈N generated by multiple iterations of the
2-CHOICES dynamics on G is a Markov Chain with
two absorbing states, namely the configurations where all
the nodes support the same color, either red or blue.

Let us now introduce the notion of almost-clustered con-
figuration.
Definition 3. A configuration c(t) is almost-clustered if

|si| ≥ n−O
(

logn
log logn

)
for each i ∈ {1, 2} and the sign of the biases is different,
i.e., s1s2 < 0.

Intuitively, almost-clustered configurations are such that
the vast majority of the nodes in one community is support-
ing one of the two colors, and the vast majority of nodes in
the other community is supporting the other color.

In the rest of the section we introduce the notation used
to describe the spectral properties of the transition matrix of
the underlying graph G: The analysis in expectation of the
process (Lemma 2) exploits such spectral properties and our
main result (Theorem 1) makes assumptions on the spectrum
of the transition matrix of G.

Let P = 1
dA be the transition matrix of a simple random

walk on G, where we denote with d the degree of the nodes
and with A the adjacency matrix of G. Note that the transi-
tion matrix P can be decomposed as follows:

P =

(
P1,1 P1,2

P2,1 P2,2

)
= A+B =

(
P1,1 0

0 P2,2

)
+

(
0 P1,2

P2,1 0

)
,

where A is the transition matrix of the communities if we
disconnect them, while B is the transition matrix of the
bipartite graph connecting the two communities. Note that
since the cut is regular B is symmetric and P ᵀ

1,2 = P2,1.
We denote with λ1 ≥ . . . ≥ λn the eigenvalues of the

transition matrix of the subgraph induced by the first com-
munity P̄1,1 := d

aP1,1 and with µ1 ≥ . . . ≥ µn the eigenval-
ues of the transition matrix of the subgraph induced by the
second community P̄2,2 := d

aP2,2. Since both P̄1,1 and P̄2,2

are stochastic matrices we have that λ1 = µ1 = 1. We con-
sider the case in which both the subgraphs induced by the
communities are connected and not bipartite; thus it holds
that λ2 < 1, µ2 < 1 and that λn > −1, µn > −1.

We define λ := max(|λ2|, |λn|, |µ2|, |µn|). The value
of λ is a representative of the second largest eigenvalues
for both the subgraphs induced by the communities and is
closely related to the third largest eigenvalue of P .

In addition to the analysis in expectation, we also provide
concentration bounds for the behavior of the process. In this
context, we say that an event E happens with high proba-
bility (for short, w.h.p.) if P (E) ≥ 1 − O(n−γ), for some
constant γ > 0.

Analysis of the 2-CHOICES dynamics
In this section we give a high-level overview of the main
steps and ideas used for the analysis of the process.

LetG be a clustered regular graph (Definition 1). Let each
node in G initially pick a color c

(0)
u ∈ {red, blue} uni-

formly at random and independently from the other nodes.
Then let the nodes of G run the 2-CHOICES dynamics (Def-
inition 2).

The variance in the initialization suggests that with some
constant probability the distribution of the two colors will
be slightly asymmetric w.r.t. the two communities, i.e., the
first community will have a bias toward a color, while the
second community will have a bias toward the other color.
Without loss of generality, we consider the case in which
s1 is positive and s2 is negative, i.e., the first community is
unbalanced toward color red while the second community is
unbalanced toward color blue.

Roughly speaking, we show that when the initialization is
“lucky”, i.e., the biases in the two communities are toward
different colors, there is a significant probability that the pro-
cess will rapidly make the distribution more and more asym-
metric until converging to an almost-clustered configuration
(Definition 3), i.e., a configuration in which, apart from a
small number of outliers, the nodes in the two communities
support different colors. This behavior of the 2-CHOICES
dynamics is formalized in the following theorem.

Theorem 1 (Constant probability of clustering). Let G =
(V,E) be a connected (2n, d, b)-clustered regular graph
such that b

d = O(n−1/2) and λ = O(n−1/4). Let c ∈ N
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be any constant; let us define the two following events about
the 2-CHOICES dynamics on G:
ξ: “Starting from a random initialization the pro-
cess reaches an almost-clustered configuration within
O(log n) rounds.”
ξc: “Starting from an almost-clustered configuration
the process stays in almost-clustered configurations for
nc rounds.”

For two suitable positive constants γ1 and γ2 it holds that

P (ξ) ≥ γ1 and P (ξc) ≥ 1− n−γ2 .
Proof. The proof is divided in the following steps:

1. The bias in each community is initially |si| = Θ(
√
n),

for each i ∈ {1, 2}, and the sign of the biases is different,
with constant probability (Lemma 1);

2. The bias in each community becomes |si| =
Θ(
√
n log n), for each i ∈ {1, 2}, in O(log log n)

rounds and the sign of the biases is preserved, with
constant probability (Lemma 4);

3. The bias in each community becomes |si| ≥ n −
O(log n), for each i ∈ {1, 2}, in O(log n) rounds and
the sign of the biases is preserved, with high probability
(Lemma 5);

4. The process enters an almost-clustered configuration in
one single round and lies in the set of almost-clustered
configurations for the next nc rounds, with high probabil-
ity (Lemma 6).

For lack of space the proofs of the lemmas used in Theo-
rem 1 are omitted, but they can be found in the full version
of the paper that is publicly available online.

Before starting with the proof, let us introduce some extra
notation. Let bd ≤ c1 · n−1/2 for some positive constant c1,
i.e., let every node in each community have at most c1 neigh-
bors in the opposite community for every

√
n neighbors in

their own. Let λ ≤ c2 ·n−1/4, for some positive constant c2;
note that the hypothesis on λ implies that the subgraph in-
duced by each community is a good expander. Let us define
the constant h := 4(2

√
2c1 + c22).

We start the analysis of the process by looking at the ini-
tialization phase. In particular, in Lemma 1 we show that
there is a probability at least constant that the initialization
is “lucky”, i.e., that the biases in the two communities are
Θ(
√
n) toward different colors. This is true because the Bi-

nomial distribution, i.e., the initial distribution of the colors
in the graph, is well approximated by a Gaussian distribu-
tion, and the latter has a constant probability to deviate from
the mean by the standard deviation. The Central Limit The-
orem establishes the approximation of the distribution and
we are able to quantify it using the Berry-Esseen Theorem.

Lemma 1 (Lucky initialization). Let G = (V,E) be a
(2n, d, b)-clustered regular graph and let each node u ∈ V
choose a color c(0)

u ∈ {red, blue} uniformly at random and
independently from the others. Let c1 and c2 be two positive
constants. Then, there exists a constant γ1 such that

P
(
s

(0)
1 ≥ h

√
n ∧ −s(0)

2 ≥ h
√
n
)
≥ γ1.

Then, considering a configuration c(t) at a generic time
t, we look at the expected evolution of the process observ-
ing the behavior of one single community, but also taking
into account the influence of the other. Informally, Lemma 2
gives a bound to the number of nodes that will support the
minority color in each community at the next round as a
function of all the parameters involved in the process: the
number of nodes supporting the minority color in each com-
munity at the current round; the number of nodes supporting
the same color in the other community at the current round;
the expansion of the communities λ ≤ c2 · n−1/4; the cut
density b

d ≤ c1 · n
−1/2.

The proof of Lemma 2 leverages the fact that the expected
number of nodes supporting a given color can be expressed
as a quadratic form of the transition matrix of a simple ran-
dom walk on the graph, allowing to relate the behavior of the
process to the expansion of the communities, as exploited
in (Cooper et al. 2015; 2017).

Lemma 2 (Expected decrease of the minority color). Let G
be a (2n, d, b)-clustered regular graph. For any configura-
tion c(t) we have that

E
[
|B(t+1)

1 |
∣∣∣ c(t)

]
< |B(t)

1 |
[
1− s1

2n +
c22√
n

+

+ 2c1√
n

√
|B(t)

2 |
|B(t)

1 |

(
1
2 −

s1
2n +

c22√
n

+
c21|B

(t)
2 |

n|B(t)
1 |

)]
and

E
[
|R(t+1)

2 |
∣∣∣ c(t)

]
< |R(t)

2 |
[
1 + s2

2n +
c22√
n

+

+ 2c1√
n

√
|R(t)

1 |
|R(t)

2 |

(
1
2 + s2

2n +
c22√
n

+
c21|R

(t)
1 |

n|R(t)
2 |

)]
.

It follows from Lemma 2 that the asymmetry in the color-
ing of the nodes in the two communities continues to grow
in expectation. In fact, when in a certain range of values, the
bias in the first community increases in expectation at each
round while the bias in the second community decreases in
expectation at each round, since the minority color in each
community decreases. With Lemma 3 we prove that the in-
crease of the bias in the first community and the decrease of
the bias in the second community we have shown in expec-
tation in Lemma 2 is multiplicative w.h.p. whenever s1 satis-
fies s1 ∈ [h

√
n, n2 ] and s2 satisfies s2 ∈ [−n2 ,−h

√
n]. With

the use of concentration of probability arguments, namely a
multiplicative form of the Chernoff bounds (Dubhashi and
Panconesi 2009, Lemma 1.1), we show that the number of
nodes with the minority color in each community decreases
and we use this fact to prove Lemma 3.

Lemma 3 (Probability of multiplicative growth of the bias).
Let c(t) be a configuration such that h

√
n ≤ s1 ≤ n

2 and
h
√
n ≤ −s2 ≤ n

2 . Then, it holds that

P
(
s

(t+1)
1 ≥ (1 + 1/16) s1

∣∣∣ c(t)
)
≥ 1− e−2s21/322n

and

P
(
s

(t+1)
2 ≤ (1 + 1/16) s2

∣∣∣ c(t)
)
≥ 1− e−2s22/322n.
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Now we know that there is a constant probability that the
initialization of the process starts is “lucky” (Lemma 1); we
also know that the bias in the first community will increase
in expectation and the bias in the second community will de-
crease in expectation (Lemma 2); moreover, when in a given
range, we know that the biases will follow their expected
behavior with high probability (Lemma 3).

Then we need to show that the asymmetry in the coloring
of the two communities will rapidly increase up to a config-
uration such that |si| = Θ(

√
n log n), for each i ∈ {1, 2},

while the sign of the biases is preserved. More formally,
with Lemma 4 we prove the internal symmetry breaking of
each community. This is possible by applying Lemma 1, and
by iterating the application of Lemma 3 for O(log log n)
rounds, i.e., until the bias is large enough; finally we han-
dle the stochastic dependency between the two biases during
their respective increases in opposite directions.

Lemma 4 (Clustering – Symmetry Breaking). Starting from
an initial configuration where each node u ∈ V chooses a
color c(0)

u ∈ {red, blue} uniformly at random and indepen-
dently from the others, it holds that, with constant probabil-
ity, withinO(log log n) rounds the process reaches a config-
uration c(t) such that

s
(t)
1 ≥

√
n log n and − s(t)

2 ≥
√
n log n.

Once the internal symmetry of each community is broken,
we show that, with high probability, both biases keep in-
creasing while preserving their sign until they rapidly reach
a configuration in which the minority color in each com-
munity has at most logarithmic size. This behavior is for-
mally proved in Lemma 5, again through the application of
Lemma 2 and Lemma 3.

Lemma 5 (Convergence). Starting from a configuration c(t)

such that |si| ≥
√
n log n, for each i ∈ {1, 2}, there exist

two rounds τ1, τ2 = O(log n) such that

|s(τ1)
1 | ≥ n− log n and |s(τ2)

2 | ≥ n− log n

and the sign of the biases is preserved, with high probability.

Finally, with Lemma 6 we show that the number
of wrongly colored nodes in each community drops to
O(log n/ log log n) in one single round (by approximating
it with a Poisson random variable through an application
of Le Cam’s Theorem) and then, with high probability, the
process enters a metastable phase in which the only possi-
ble configurations are almost-clustered; this will last for any
polynomial number of rounds. In other words, even if a few
nodes in each community will continue to change color, al-
most all the nodes in one community will support one color
while almost all the nodes in the other community will sup-
port the other color. Note that this quantity is tight: It is pos-
sible to prove that, within any polynomial number of rounds,
there will be a round in which at least Ω(log n/ log log n)
nodes in each community will have the wrong color.

Lemma 6 (Metastability). Let c ∈ N be any constant. Start-
ing from a configuration c(t) such that |si| ≥ n − log n for

each i ∈ {1, 2}, for the next nc rounds the process lies in the
set of configurations such that

|si| ≥ n−O
(

logn
log logn

)
and the sign of the bias is preserved, with high probability.

More formally, through Lemma 5 and Lemma 6 we can
finally prove that P (ξ) ≥ γ1 and P (ξc) ≥ 1 − n−γ2 for
any constant c, concluding the proof of Theorem 1.

Distributed Label Propagation Algorithm via
Community-Sensitive Labeling

We showed that, starting from a random initialization, the
2-CHOICES dynamics reaches an almost-clustered config-
uration within O(log n) rounds with constant probability.
This result is tight, given that there is constant probability
that the two communities converge to the same color. Sim-
ilarly to Lemma 1, it holds that with constant probability
both the biases are unbalanced toward the same color, i.e.,
s

(0)
1 ≥ h

√
n and s(0)

2 ≥ h
√
n. It means that a suitable vari-

ant of Lemma 4 shows that there is constant probability that
within O(log log n) rounds the process reaches a configura-
tion such that s(t)

1 ≥
√
n log n and s

(t)
2 ≥

√
n log n. Then,

Lemma 5 and Lemma 6 show that the system gets quickly
stuck in a configuration where almost all nodes have the
same color. This is a proof that, given the symmetric na-
ture of the process, we need some luck in the initialization
to reach an almost-clustered configuration.

In order to get an algorithm that works w.h.p. we sketch
how to use the results of the previous sections to build
a Community-Sensitive Labeling (Becchetti et al. 2018)
within Θ(log n) rounds. A Community-Sensitive Labeling
(CSL) is made up by a labeling of the nodes and a predicate
that can be applied to pairs of labels; it holds that, for all but
a small number of outliers, the predicate is satisfied if the
nodes belong to the same community, and it is not satisfied
if the nodes belong to different communities.

Theorem 2 (LPA via CSL). Let G = (V,E) be a con-
nected and nonbipartite (2n, d, b)-clustered regular graph
such that b

d = O(n−1/2) and λ = O(n−1/4). Let c(0) be
the initial configuration, where each node u ∈ V picks a
vector of colors c

(0)
u ∈ {red, blue}` sampled uniformly at

random and independently from the other nodes, such that
` = c log n for some positive constant c. Consider the re-
sulting vector after Θ(log n) rounds of independent parallel
runs of the 2-CHOICES dynamics, each one working on a
different component of the vector: For all the pairs of nodes
but a polylogarithmic number, it holds that the vectors of
nodes in the same community are equal while the vectors of
nodes in different communities are different.

Sketch of proof. As for the first part of the predicate, it is
a simple application of Theorem 1. Indeed, at least one
of the Θ(log n) runs of the 2-CHOICES dynamics ends
in an almost-clustered configuration with probability 1 −
γ−Θ(logn) = 1 − n−Θ(1). As for the second part we show
that no matter if the process reaches an almost-clustering,
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nodes in the same community will have the same color with
high probability. This is consequence of Lemma 5 and of the
following one, which we can prove by applying a general
tool for Markov Chains (Clementi et al. 2018, Lemma 4.5).

Lemma 7 (Consensus – Symmetry Breaking). Starting from
any initial configuration c(0), within O(log n) rounds the
system reaches a configuration c(t) such that

|s(t)
1 | ≥

√
n log n and |s(t)

2 | ≥
√
n log n,

with high probability.

Thus, most pairs of nodes can locally distinguish if they
are in the same community with high probability by check-
ing whether their vectors differ on any component.

Conclusions and future work
We focused on providing a proof of concept of how spec-
tral techniques and concentration of probability results can
be combined to provide a rigorous analysis of the behavior
of dynamics converging to metastable configurations that re-
flect structural properties of the network. In turns, we iden-
tified two important implications of our result, which we
discussed in the Introduction and we briefly recall here. In
the context of graph clustering, it constitute the first analyt-
ical result on a distributed label propagation algorithm with
quasi-linear message complexity, contributing to a deeper
understanding of such class of widely applied heuristics to
detect communities in networks. In the framework of evo-
lutionary biology, it provides a simplistic model of how
species differentiation may occur as the result of the inter-
play between the local interaction rule at the population level
and the underlying topology that describes such interaction.

A limitation of our approach is the restriction to regular
topologies. The regularity assumption greatly simplifies the
calculations, which are still quite involved. However, it has
been shown in (Cooper et al. 2015) that a similar analysis
can be performed for general topologies. Thus, it should be
possible to extend our analysis to the irregular case, at the
price of a much greater amount of technicalities. For exam-
ple, it should be possible to prove a generalization of our
result to the class of (2n, d, b, γ)-clustered graphs investi-
gated in (Becchetti et al. 2017b), which relaxes the class of
(2n, d, b)-clustered graphs by assuming that each node has
d± γd neighbors of which b± γd belongs to the other com-
munity. In fact it is possible to bound the second eigenvalue
of the graph in a way which approximates (depending on
γ) the (2n, d, b)-clustered graphs case considered here us-
ing (Becchetti et al. 2017b, Lemma C.2). Another impor-
tant issue is to get a denser cut, at least parametrized w.r.t.
the number of edges inside each community. This cannot be
achieved by slightly changing the analysis of this paper, but
requires a different approach, since it is possible to show
that the technique used in Lemma 2 brings to a sparse cut.
Finally, an interesting direction is the use of domination ar-
guments, perhaps based on coupling techniques, to general-
ize our result to more general dynamics which interpolates
between the quadratic 2-CHOICES dynamics and the linear
VOTER dynamics (Berenbrink et al. 2017). In particular, this

latter direction would have more general implications in the
practical contexts discussed in this work, namely label prop-
agation algorithms and evolutionary dynamics.
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