
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Successor Features Based Multi-Agent
RL for Event-Based Decentralized MDPs

Tarun Gupta,1,2 Akshat Kumar,1† Praveen Paruchuri2†
1School of Information Systems, Singapore Management University, Singapore

2Machine Learning Lab, Kohli Center on Intelligent Systems, IIIT Hyderabad, India
{tarung, akshatkumar}@smu.edu.sg, praveen.p@iiit.ac.in

Abstract

Decentralized MDPs (Dec-MDPs) provide a rigorous frame-
work for collaborative multi-agent sequential decision-
making under uncertainty. However, their computational
complexity limits the practical impact. To address this, we
focus on a class of Dec-MDPs consisting of independent col-
laborating agents that are tied together through a global re-
ward function that depends upon their entire histories of states
and actions to accomplish joint tasks. To overcome scalabil-
ity barrier, our main contributions are: (a) We propose a new
actor-critic based Reinforcement Learning (RL) approach for
event-based Dec-MDPs using successor features (SF) which
is a value function representation that decouples the dynam-
ics of the environment from the rewards; (b) We then present
Dec-ESR (Decentralized Event based Successor Representa-
tion) which generalizes learning for event-based Dec-MDPs
using SF within an end-to-end deep RL framework; (c) We
also show that Dec-ESR allows useful transfer of informa-
tion on related but different tasks, hence bootstraps the learn-
ing for faster convergence on new tasks; (d) For validation
purposes, we test our approach on a large multi-agent cover-
age problem which models schedule coordination of agents
in a real urban subway network and achieves better quality
solutions than previous best approaches.

1 Introduction
Sequential multi-agent decision-making allows multiple
agents operating in an uncertain and partially observable en-
vironment to take a coordinated decision towards a long-
term goal (Durfee and Zilberstein 2013). Decentralized par-
tially observable MDPs (Dec-POMDPs) have emerged as
a rich framework for multi-agent planning (Bernstein et al.
2002), and are applicable to several domains such as multi-
agent robotics (Amato et al. 2016) and urban system opti-
mization (Varakantham, Adulyasak, and Jaillet 2014). How-
ever, scalability remains challenging due to NEXP-Hard
complexity even for two agents (Bernstein et al. 2002). To
address such complexity issues, various models are explored
where agent interactions are structured using various condi-
tional and contextual independencies such as transition and
observation independence among agents (Becker et al. 2004;

†Equal advising.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Kumar, Zilberstein, and Toussaint 2011), event-driven in-
teractions (Becker, Zilberstein, and Lesser 2004), collective
interactions among agents (Varakantham, Adulyasak, and
Jaillet 2014; Nguyen, Kumar, and Lau 2017a; 2017b) and
weakly coupled agents (Spaan and Melo 2008; Witwicki and
Durfee 2010).

We focus on multi-agent decision-making problems
where agents are primarily coupled with complex joint-
rewards which may depend upon the entire state-action
trajectory of multiple agents (Becker et al. 2004). Such
event-driven models better capture the asynchronous nature
of agents when executing their policies in the real-world,
and can encode the notion of agents accomplishing high-
level tasks which is crucial for modeling real-world prob-
lems such as multi-agent coverage (Yehoshua and Agmon
2016). Several previous approaches have been developed
for such transition independent decentralized MDP (TIDec-
MDP) model. Dibangoye et al. (2013) develop an occupancy
measure based approach over joint state-space of agents
to compute agent policies. However, they do not explicitly
address event-based rewards. Petrik and Zilberstein (2011)
develop a bilinear programming based approach that can
model event-based rewards, however, it is limited to two
agents only. Gupta, Kumar, and Paruchuri (2018) develop a
nonlinear math programming formulation for TIDec-MDPs
with event-based rewards which work well for problems
with small to medium state-space. For larger problems,
they developed a policy gradient-based multi-agent rein-
forcement learning (MARL) approach for this model. Pol-
icy gradient-based approaches have recently become popu-
lar for general Dec-POMDPs (Dibangoye and Buffet 2018;
Foerster et al. 2017), however, such formulations do not ex-
plicitly take into account event-based rewards which depend
on entire state-action trajectories of multiple agents. In ad-
dition, a key unaddressed problem is that of doing transfer
learning when some aspects of the model change.

In our work, we develop a new actor-critic (Konda and
Tsitsiklis 2003) based MARL method for event-based Dec-
MDPs using successor features (SF) which is a value func-
tion representation that decouples the dynamics of the en-
vironment from the rewards. Previous SF-based approaches
are mainly for single agent problems (Dayan 1993; Kulka-
rni et al. 2016; Barreto et al. 2017); our work extends them
to event-based multi-agent models; (b) We then present

6054

Dec-ESR, which generalizes learning for event-based Dec-
MDPs using SF within an end-to-end deep RL framework.
Previous approach of Gupta, Kumar, and Paruchuri (2018)
is not an end-to-end training approach and requires Monte-
Carlo estimates of probability of events, which suffers from
high variance; (c) Thanks to decoupling of rewards from en-
vironment dynamics using SFs, we also show that the pro-
posed method allows useful transfer of information on re-
lated but different tasks. Therefore, it bootstraps the learn-
ing and makes convergence much faster on new tasks. We
test our approach on a large multi-agent coverage problem,
show its effectiveness against previous approaches, and the
ability to do transfer learning.

2 Model Definition
We define an n-agent transition independent Dec-MDP
(TIDec-MDP) using the tuple 〈S,A, P,R〉 (Becker et al.
2004):

• Factored state space defined as S =×ni=1S
i, where Si is

the state space for agent i.

• Factored action spaceA=×ni=1A
i, whereAi is the action

space for agent i.

• Given the joint state s = 〈si〉ni=1 and joint-action a =
〈ai〉ni=1, the transition to next state s has probability
P (s|s, a)=×ni=1P

i(si|si, ai), where P i is agent i’s local
state transition function. This factorization of the transi-
tion function results in the transition independence prop-
erty of the model.

• Local observability: Each agent fully observes its own lo-
cal state sit at each time step t. Agent i does not observe
the local state of any other agent during execution time.

• Local rewards: Each agent has its own local reward func-
tion ri(si, ai), and the global reward is additively defined
as r(s, a)=

∑n
i=1 r

i(si, ai).

The above model defines a set of n-independent MDPs as
agent’s transition, observation, and the reward functions are
all independent. We next describe how joint-rewards are de-
fined that depend on the actions of multiple agents. Such
event-based joint-rewards are the key to defining a rich class
of non-linear interactions among agents that can model sev-
eral practical scenarios.

Event-Driven Interactions: We now introduce further
structure into the global reward function using detailed treat-
ment presented in Becker et al. (2004). To define it, we need
to introduce the notion of an occurrence of an event during
the execution of a local policy.

Definition 1. A history Φi denotes a valid local state-action
execution sequence [si1, a

i
1, s

i
2, a

i
2, . . .] for an agent i, start-

ing with the local initial state for that agent (subscripts de-
note time). A primitive event for an agent i, e= (ŝi, ai, ŝi′),
is a tuple that includes the agent’s local state, an action,
and an outcome state. An event E={e1, . . . , eh} is a set of
primitive events.

Definition 2. A primitive event e=(ŝi, ai, ŝi′) occurs in his-
tory Φi, denoted Φi |= e, iff the triplet (ŝi, ai, ŝi′) appears

as a subsequence of Φi. An event E occurs in the history Φi,
denoted Φi |= E iff ∃e ∈ E : Φi |= e

Events are used to signify the accomplishment of some task
by an agent. Although a single local state-action transition
may be sufficient to signify the completion of a task, we
generally need a set of primitive events to account for the
uncertainty in the domain as well as the fact that tasks could
be accomplished in many different ways.

Definition 3. A primitive event e is proper if it can occur
at most once in each possible history of a given MDP. An
event E is proper if it consists of mutually exclusive proper
primitive events w.r.t. a given MDP. That is:

∀Φi ¬∃j 6= k : (ej ∈ E ∧ ek ∈ E ∧ Φi |= ej ∧ Φi |= ek)

Becker et al. show how non-proper events can be cast as
proper events using techniques such as making time part of
the state or including additional bits in the state to memo-
rize the occurrence of some primitive events. We limit the
discussion in this paper to proper events because they are
sufficient to express the desired behavior and because they
simplify the discussion.

Joint Reward: The joint reward structure can be viewed
as a list of multiple constraints between the agents that de-
scribe how interactions between their local policies affect
the global value of the system. Let Φ1 through Φn denote
histories for all the agents. A constraint k exists among a
subset of agents Gk (|Gk| ≥ 2). It is defined as a tuple
〈〈Ejk〉j∈Gk

, ck〉. Semantically, the constraint k specifies that
if at least one agent involved in Gk satisfies its part of the
constraint, then the global reward ck is given. Formally, con-
straint 〈〈Ejk〉j∈Gk

, ck〉 specifies that the reward ck is added
to the global value iff Φj |= Ejk for at least one agent
j ∈ Gk. Let ρ be the set of all constraints; the same logic
is followed for each constraint k ∈ ρ.

Policy and Joint Value function: A joint-policy π =
(π1, . . . , πn) is a set of individual policies for each
agent. For TIDec-MDPs, the optimal local policy depends
on agent’s local observed state (Goldman and Zilberstein
2004). We represent agent i’s stochastic policy as mapping
from local state to a distribution over actions or πi(ai|si).
We have fixed-horizon histories, say H . Given local poli-
cies πi, the probability P (e;πi) of a proper, primitive event
e = (ŝi, ai, ŝi′) occurring during any execution of πi is:

P (e;πi) =

H∑
t=1

P (sit= ŝi;πi)πi(ai|ŝi)P i(ŝi′|ŝi, ai) (1)

As all primitive events in a proper event E are mutually
exclusive, we have P (E;πi) =

∑
e∈E P (e;πi). Given the

starting state si1 for an agent i, ρ as the set of constraints, the
global value function is defined as:

GV (s1;π) =

n∑
i=1

V i(si1;πi) + JV (ρ;π) (2)

where V i is the value function of agent i’s local MDP and

6055

the joint value function JV (ρ;π) is defined as:

JV (ρ;π) =
∑
k∈ρ

ck

[
1−

∏
j∈Gk

(
1− P (Ejk;πj)

)]
(3)

The joint value function uses the fact that the probability of
at least one event happening is one minus the probability
that none of the events happen. Our goal is to compute the
joint-policy π that optimizes the global value function (2).
Expressiveness: As per the above constraint semantics,
global reward ck is given if at least one event in a constraint
occur. Similarly, the global reward can be given at the oc-
currence of all events, at most x events, exactly x events.
The global and joint value function for all event semantics
is shown in the longer version of the paper.
Brief Domain Definition: We experiment on a multi-agent
coverage domain (Yehoshua and Agmon 2016; Galceran and
Carreras 2013) under uncertainty and partial observability.
The multi-agent coverage problem involves multiple agents
inspecting locations on multiple lines within a mass rapid
transit (MRT) network. Agents get local rewards for success-
fully inspecting locations. Shared locations correspond to in-
terchange stations where multiple lines meet. Thus, shared
locations can be inspected by multiple agents. The joint re-
ward is modeled using at least one event semantics where at
least one agent must successfully inspect a shared location
once every hour (or at some pre-specified interval) for the
joint reward to be added to the global value function. Thus,
agents are also incentivized to coordinate with each other
to avoid multiple agents inspecting the same shared location
within a fixed time interval (say an hour).
Recent Work: Gupta, Kumar, and Paruchuri show how
to calculate and backpropagate gradients for event-based
TIDec-MDPs. Given the start state s1 at time step 1 for
all the agents; each agent i’s policy parameterized using θi
(which represents NN parameters), the goal here is to com-
pute the gradient of global-value function (2):

∇θiGV (s1;π)

=∇θiV i(si1;πi)+
∑
k∈ρi

ck∇θiP (Eik)
∏

j∈Gk\{i}

(
1− P (Ejk)

)
(4)

where ρi denotes the set of joint-rewards in which agent
i participates. The gradient of local MDP value function
∇θiV i(si1;πi) can be computed using REINFORCE with
baseline method as explained in Sutton et al. (1999). The
gradient of proper event can be computed as:

∇θiP (E;πi) =
1

|ξ|

∑
e∈E

∑
Φi∈ξ:Φi|=e

[t(e,Φi)∑
t′=1

∇θi log π
i(at′ |st′)

]
ξ is the set of complete state-action samples from

Pπ(si1:H+1, a
i
1:H); and t(e,Φi) denotes the time at which

event e occurs in Φi. Given sample set ξ for each agent, we
can also empirically compute the probability estimates of
primitive events e, and use them to compute empirical esti-
mate of events P (Ejk), which can be used in (4).

2.1 Markov Modeling of Event Probabilities
Becker et al. and Gupta, Kumar, and Paruchuri use P (E;πi)
in the joint value function (Eq. 3) to evaluate the probabil-
ity of events, which does not follow the Markov property.
P (E;πi) is estimated using Monte-Carlo estimation, how-
ever like all Monte-Carlo methods it tends to be slow to
learn (high variance) and inconvenient to implement online
as explained in (Sutton et al. 1999). Moreover, the value of
P (E;πi) does not provide any information about experi-
ences of previous state-action trajectories while doing RL.
That is, it cannot be used as a critic for bootstrapping (updat-
ing a state from the estimated values of subsequent states),
but can only be used as a baseline for the state being updated.
Our Contribution: Our first contribution to tackle above
problems is that we compute Pπ

i

t (E | sit, ait), that is the
probability of occurence of event E, given action ait is
taken in state sit by agent i at time t following policy
πi. Pπ

i

t (E | sit, ait) follows the Markov property as shown
below, and can be easily trained with dynamic program-
ming using TD (Temporal Difference) learning. Therefore,
it serves as a true bootstrapping critic and allows actor critic
to be more sample efficient via TD updates at every step.
Definition 4. Consider a proper event E which consists of
multiple proper primitive events. Given an experience tu-
ple (sit, a

i
t, s

i
t+1), we define an indicator function for agent

i, ϕiE(sit, a
i
t, s

i
t+1) which is 1 iff (sit, a

i
t, s

i
t+1) is one of the

primitive events of E and otherwise 0. Formally,

ϕiE(sit, a
i
t, s

i
t+1) =

{
1 (sit, a

i
t, s

i
t+1) ∈ E

0 otherwise

}
(5)

We next define how Pπ
i

t (E|sit, ait) can be written in a recur-
sive manner:

Pπ
i

t (E | sit, ait) = Esit+1|sit,ait

[
ϕiE(sit, a

i
t, s

i
t+1)+

ϕ̃iE(sit,a
i
t,s

i
t+1)

∑
ait+1

πi(ait+1|sit+1)Pπ
i

t+1(E|sit+1,a
i
t+1)

]
(6)

where ϕ̃iE(sit,a
i
t,s

i
t+1) = 1 − ϕiE(sit, a

i
t, s

i
t+1). Notice that

since our primitive events are proper, only one of the primi-
tive events e ∈ E can happen in any given history Φi. There-
fore, the above equation considers if (sit, a

i
t, s

i
t+1) occurs

in history Φi, that is ϕiE(sit, a
i
t, s

i
t+1) = 1, then all future

expectation will be zero using ϕ̃iE(sit, a
i
t, s

i
t+1). Given the

starting state si1 for an agent i, ρ as the set of constraints, the
global value function GV (s1;π) is now defined as:

= Es1,a1

[n∑
i=1

Qπ
i

1 (si1, a
i
1)+JV (ρ; s1,a1,π)

]
(7)

where Qπ
i

1 (si1, a
i
1) is the Q value function of agent i when

action ai1 is taken in state si1 under policy πi. The joint value
JV (ρ; s1,a1,π) function now becomes:

= Es1,a1

∑
k∈ρ

ck

[
1−

∏
j∈Gk

(
1− Pπj

1 (Ejk|s
j
1,a

j
1)
)]

6056

ψπi

t (sit, a) ∀a ∈ Ai

α

β

sit φ(sit)
φ(sit, am, s

i
t+1)

φ(sit, a1, s
i
t+1)

φ(sit+1)

Decoder (α̃)

Decoder (α̃)

γπ(a | sit) ∀a ∈ Ai
Ψπi

Ei
1
(sit, a) ∀a ∈ Ai

〈r(sit, a, sit+1)〉 ∀a ∈ Ai

θ

sit+1

α

wi

Ψπi

Ei
k
(sit, a) ∀a ∈ Ai ∀k ∈ ρi

Figure 1: Dec-ESR Model Architecture for agent i: (1) State Feature Encoder fα, (2) Feature Encoder fβ , (3) Feature
Decoder fα̃ which produces the input reconstruction sit from state features, (4) A linear regressor to predict instantaneous
rewards r(sit, a, s

i
t+1) ∀a ∈ Ai, (5) A successor features network fγ and, (6) A policy neural network fθ. The same architecture

is used for all agents.

Our Actor-Critic Approach: We follow an actor-critic
(AC) based policy gradient approach (Konda and Tsitsiklis
2003). The joint-policy π is parameterized using θ. The pa-
rameters are adjusted to maximize the objective GV (s1;π)
by taking steps in the direction of ∇θGV (s1;π). In the AC
approach, the policy π is termed as an actor. We can estimate
Qπ

i

t (the action-value function) and Pπ
i

t (event probabili-
ties) for each agent i using empirical returns, but it has high
variance. To remedy this, AC methods often use a function
approximator forQπ

i

t and Pπ
i

t , which we denote as the local
and event critic respectively. The critic can be learned from
empirical returns using TD learning. Pπ

i

t (E|sit, ait) serves as
an excellent event-based critic for bootstrapping the policy
gradient for joint value function, as empirically noted.

3 Successor Features
We will next define successor features (SFs) and show how
we can use an AC method based on both local and event
based critic using SFs to get better global rewards, and also
to transfer knowledge across related but different tasks.

3.1 Successor Features for MDPs
Successor features for MDPs have been introduced multi-
ple times in (Dayan 1993; Barreto et al. 2017; Kulkarni
et al. 2016) and therefore, we will present them briefly.
Assume that an agent i experiences the following tu-
ple (sit, a

i
t, s

i
t+1, r

i
t+1). Let us assume that the function

φit(s
i
t, a

i
t, s

i
t+1) ∈ <d gives d-dimensional features such that

φit(s
i
t, a

i
t, s

i
t+1) · wi = rit+1, where wi ∈ <d. For a given

policy of the agent πi, the Qπ
i

t function is given as:

Qπ
i

t (sit, a
i
t)

= Esit+1:H+1,a
i
t+1:H

[
rit+1 + rit+2 + . . .+ riH+1 | sit, ait

]
= Esit+1:H+1,a

i
t+1:H

[
φit + φit+1 + . . . | sit, ait

]ᵀ
wi

= ψπ
i

t (sit, a
i
t)

ᵀwi

whereψπ
i

t (sit, a
i
t) are the successor features of (sit, a

i
t) under

policy πi. Successor features decomposes the value function
into two components — a reward predictor and a successor
map. The successor map ψπ

i

t (sit, a
i
t) represents the expected

future state occupancy from an action taken in any given
state and the reward predictor maps transitions to scalar re-
wards. The value function of a state can be computed as
the inner product between the successor map and the reward
weights. This decomposition is at the core of transfer learn-
ing in our Dec-ESR approach where ψπ

i

t (sit, a
i
t) will serve

as the local critic function.

3.2 Successor Features for Events
We next show how to compute SFs for events using the defi-
nition in (6). The probability that the event E happens given
the current state sit and action ait, that is Pπ

i

t (E|sit, ait):

= E
[
ϕiE(sit, a

i
t, s

i
t+1) + ϕiE(sit+1, a

i
t+1, s

i
t+2) + .. | sit, ait

]
= Ψπi

E (sit, a
i
t)

where the expectation E is over samples sit+1:H+1, a
i
t+1:H

and the indicator function ϕiE(sit, a
i
t, s

i
t+1) gives 1 iff

(st, at, st+1) ∈ E, otherwise zero. We call Ψπi

E (sit, a
i
t) the

successor features of event E, given (sit, a
i
t) under policy

πi. In our Dec-ESR approach, Ψπi

E (sit, a
i
t) will serve as

the event based critic function. Notice that since our prim-
itive events are proper, the summation

[
ϕiE(sit, a

i
t, s

i
t+1) +

ϕiE(sit+1, a
i
t+1, s

i
t+2) + . . . | sit, ait

]
would be either zero

or one. Therefore, the successor feature Ψπi

E (sit, a
i
t) should

give us the probability of event E happening given the cur-
rent state and action. We will drop the superscript denoting
agent i to simplify the notation in the next two subsections.

3.3 Dec-ESR
In this section, we will present Dec-ESR : Decentralized
Event based Successor Representation, which generalizes

6057

learning for event-based Dec-MDPs using SF within an end-
to-end deep reinforcement learning framework. First, we
will describe the neural network (NN) architecture for each
agent i shown in Figure 1. For large state spaces, represent-
ing and learning the SR can become intractable; therefore,
we use a state feature encoder which is a non-linear function
approximation parameterized by α to represent and learn a
D-dimensional feature vector φ(st) and φ(st+1) to further
learn a d-dimensional feature vector φt(st, a, st+1) ∀a ∈ A
which is the output of a deep NN parameterized by β.

fα : st → φ(st) ∈ <D

fβ : 〈φ(st), φ(st+1)〉 → φt(st, a, st+1) ∈ <d ∀a ∈ A
For a feature vector φt(st, at, st+1), we define a feature-
based SR as the expected future occupancy of the features
and denote it by ψt(st, at). We approximate our local critic
i.e. ψt(st, a) ∀a ∈ A by NN parameterized by γ. We also
approximate our event based critic for all events of the agent
i.e. ΨE(st, at) by same NN parameterized by γ.

fγ : st → 〈ψt(st, a),ΨE(st, a)〉 ∈ <d ∀a ∈ A ∀E
Finally, we also approximate the immediate reward
R(st, at, st+1) as a linear function of the feature vector
φt(st, at, st+1) as R(st, at, st+1) ≈ φt(st, at, st+1).w. We
have another neural network which uses non-linear function
approximation to learn the policy parameterized by θ.

fθ : st → π(st, a) ∀a ∈ A s.t.
∑
a∈A

π(st, a) = 1

The SF for the optimal policy in the non-linear function ap-
proximation case can then be obtained from the following
Bellman equations:

ψt(st, at) = Est+1|st,at

[
φt(st, at, st+1)

+
∑
at+1

π(at+1|st+1)ψt+1(st+1, at+1)
]

(8)

ΨE(st, at) = Est+1|st,at

[
ϕE(st, at, st+1)

+ ϕ̃E(st,at,st+1)
∑
at+1

π(at+1|st+1)ΨE(st+1, at+1)
]

(9)

where the terminal cases for time horizon H are defined
as ΨE(sH , aH) = ϕE(sH , aH , sH+1) and ψH(sH , aH) =
φH(sH , aH , sH+1).

3.4 Learning
We use centralized learning to learn decentralized poli-
cies for all agents. The centralized training of decentral-
ized policies is a standard paradigm for multi-agent planning
(Oliehoek, Spaan, and Vlassis 2008; Kraemer and Banerjee
2016; Foerster et al. 2017). The parameters (α, α̃, β, γ, w, θ)
can be learned online through stochastic gradient descent.
The loss function for α and α̃ is given by:

L1(α, α̃) = (φ(st)− st)2

For learning w, the weights for the reward approximation
function, we use the following squared loss function:

L2(w,α, β) = (r(st, at, st+1)− φt(st, at, st+1).w)
2

An ideal φt(st, at, st+1) should be: (1) A good discrimina-
tor for the states; this condition is handled by using a decoder
which produces the input reconstruction st by minimizing
equation L1(α, α̃) and (2) A good predictor for reward sig-
nal r(st, at, st+1); this condition is handled by minimizing
equation L2(w,α, β). For training parameter γ, we define
the following loss functions derived from (8) and (9).

L3(γ, β, θ) = Est+1|st,at

[
φt(st, at, st+1)

+
∑
at+1

π(at+1|st+1)ψprt+1(st+1, at+1)− ψt(st, at)
]2

L4(γ,β,θ)=Est+1|st,at

[
ϕE(st,at,st+1)+ϕ̃E(st,at,st+1)×∑

at+1

π(at+1|st+1)Ψpr
E (st+1, at+1)−ΨE(st, at)

]2
The usage of ψprt+1(st+1, at+1) and Ψpr

E (st+1, at+1) denotes
previously cached values, which are set to current values pe-
riodically. This is essential for stable Q-learning with func-
tion approximations (Mnih et al. 2015). Finally, let L5(θ)
denotes the loss for the policy network. We will derive this
loss function in the next section. The composite loss func-
tion is the sum of the five loss functions given above:

L(α, α̃, β, γ, θ, w) =

5∑
p=1

Lp(.) (10)

For optimizing the composite loss function in equation 10,
with respect to the parameters (w,α, α̃, β, γ, θ), we itera-
tively update (w,α, α̃, β), γ and θ. That is, we learn a fea-
ture representation by minimizing L1(α, α̃) + L2(w,α, β);
then given (w,α, α̃, β), we find the optimal γ by minimiz-
ing L3(γ, β, θ) + L4(γ, β, θ). Since the SFs ψt(st, at) and
ΨE(st, at) depend on φt(st, at, st+1) and ϕE(st, at, st+1)
respectively, learning the former while refining the latter
can clearly lead to undesirable solutions. Therefore itera-
tion is important to ensure that the successor branch does
not back-propagate gradients to affect α and β. Finally given
(w,α, α̃, β, γ) for all agents, we find the optimal θ by opti-
mizing L5(θ). Algorithm 1 in the longer version of the paper
highlights the learning algorithm in greater detail.

4 Policy Gradient
In this section, we show how to backpropagate gradients to
optimize the policy loss function and in turn optimize the
global value function defined in (7).

L5(θ) = ∇θGV (s1;π)

= ∇θ Es1,a1|π

[n∑
i=1

Qπ
i

1 (si1, a
i
1) + JV (ρ; s1,a1,π)

]
The policy gradient for local Q-value function
Esi1,ai1|πi [Qπ

i

1 (si1, a
i
1)] with respect to policy parame-

ters of agent i has been computed in Asadi et al. (2017) and

6058

(a) 〈GainA, GainB〉 = 〈28%, 18.9%〉 (b) 〈GainA, GainB〉 = 〈42.8%, 28.7%〉 (c) 〈GainA, GainB〉 = 〈49.8%, 32.5%〉

Figure 2: Solution quality comparisons between GKP, Dec-ESR and No Event Critic (NEC) approach. GainA and GainB are
% quality improvement by Dec-ESR over GKP and NEC respectively upon convergence. Shaded regions are one standard
deviation over 5 runs.

we will discuss it briefly. The complete derivation can be
seen in the longer version of the paper.

∇θiEsi1,ai1|πi

[
Qπ

i

1 (si1, a
i
1)
]

=

H∑
t=1

Esit
[∑
a∈Ai

(
ψπ

i

t (sit, a).wi
)
∇θiπi(a|sit)

]
(11)

Equation 11 computes the gradient by summing over all ac-
tions, rather than just the sampled actions. This helps in re-
ducing variance while performing gradient updates. We now
show how to backpropagate gradients through the joint value
function with respect to policy parameters of agent i, i.e. θi.
Theorem 1. The policy gradient for joint-value function
Es1,a1|π

[
JV (ρ; s1,a1,π)

]
with respect to policy param-

eters of agent i is given by:

∇θiEs1,a1|π

[
JV (ρ; s1,a1,π)

]
=
∑
k∈ρi

ck

[
gπ

i

k (si1,a
i
1)+hπ

i

k (si1,a
i
1)
]
qπ
−i

k (s−i1 ,a−i1) (12)

where ρi is the set of constraints in which agent i partici-
pates. The functions g, h, and q are defined as follows:

gπ
i

k (si1,a
i
1) = Esi1,ai1

[
∇θi log πi(ai1|si1)Ψπi

Ei
k
(si1, a

i
1)
]

qπ
−i

k (s−i1 ,a−i1) = E sj1,a
j
1

j∈Gk\{i}

[∏
j∈Gk\{i}

(
1−Ψπj

Ej
k

(sj1, a
j
1)
)]

hπ
i

k (si1,a
i
1) = ∇θiΨπi

Ei
k
(si1, a

i
1) (13)

The proof is in the longer version of the paper. We will next
focus on the gradient ∇θiΨπi

Ei
k
(si1, a

i
1) from Equation 13:

∇θiΨπi

Ei
k
(si1, a

i
1) =

H∑
T=2

E

[(
T−1∏
r=1

ϕ̃iEi
k
(sir, a

i
r, s

i
r+1)

)
×

Ψπi

Ei
k
(siT , a

i
T)∇θi log πi(aiT |siT)

]
(14)

where the expectation E is over the samples
si2:T , a

i
2:T |si1, ai1. A detailed proof is available in pa-

per’s longer version. We have therefore shown how to
compute the gradient of joint value function using samples.

5 Transfer Learning
Taylor and Stone (2009) defines transfer learning as improv-
ing learning performance in a related, but different, target
task based on experience gained in learning to perform the
source task. In our case, we focus on target tasks such that
the dynamics of the environment does not change, however
different rewards (joint or local rewards) may change. In the
multi-agent coverage domain, this is motivated by the fact
that the rewards for inspection of a station may change on
different occasions (e.g., sports stadium station will need to
be inspected with higher priority during sport events than on
non-event days). Despite the change in rewards, the transi-
tion function of agents may not change as the MRT network
is fixed.

Next, we discuss what and how to transfer. We examine
the sample efficiency of adapting a trained SR model on
multiple novel tasks where the reward signal changes. Using
SFs, the local Q function is decomposed into two compo-
nents: a reward predictor w and a successor map ψ(st, at).
The successor map acts as a local critic for MDP and repre-
sents the expected future occupancy. The event-based critic
ΨE(st, at) represents the probability of event E when ac-
tion at is taken in state st. Since our target tasks differ from
the source task in terms of the reward signal, we can transfer
the learned critic functions and therefore, we can quickly re-
optimize the new policy with better gradient updates in (11)
and (13) based on more informed critic signal, than start-
ing learning from scratch. For transferring this knowledge,
we start the learning for new policy with learned parameters
(α, α̃, β, γ, w).

Taylor and Stone defined many metrics to measure the
benefits of transfer as follows: (1) Asymptotic Performance:
The final average global reward accumulated by the new
joint policy is improved via transfer against learning from
scratch; (2) Total Reward: The total average global reward
accumulated by the joint policy (i.e., the area under the
learning curve) may be improved if it uses learned param-
eters from old policy, compared to learning without trans-
fer; (3) Time to Threshold: The learning time needed by the
new joint policy to achieve a pre-specified performance level
may be reduced via knowledge transfer. In our case, we use
the approach proposed by Gupta, Kumar, and Paruchuri as a
baseline performance level.

6059

(a) Only Joint-Reward Changes (b) Both Joint and Local Reward Changes

Figure 3: Transfer Learning: Convergence and Quality comparisons between using transfer (Dec-ESR-TRF) against learning
from scratch (Dec-ESR-SCR) in Dec-ESR approach. GKP is used as a baseline algorithm. Shaded regions are one standard
deviation over 5 runs.

6 Experiments
For testing the scalability of our Dec-ESR approach, we
experimented with the multi-agent coverage problem intro-
duced by Gupta, Kumar, and Paruchuri (2018). We refer to
their approach as GKP. Domain details and other experimen-
tal settings are provided in the longer version of the paper.
Levels of difficulty: The state space of multi-agent cov-
erage problem is exponential in the number of locations
and therefore, we evaluate all the models with three lev-
els of task difficulty, i.e. 〈Easy,Medium,Hard〉. The cat-
egories 〈Easy,Medium,Hard〉 include 〈3, 4, 5〉MRT lines,
〈50, 90, 140〉 stations, and 〈5, 10, 15〉 stations being shared
as an interchange station by 〈3, 4, 5〉 lines respectively. In-
creasing number of shared locations is the key to increasing
the complexity of the multi-agent interactions via their joint-
actions of visiting these locations. We tested 6 instances in
each category with rewards sampled from same distribution
for each category. Each line has a single agent able to move
among locations on the line.
Figure Description: The x axis of each subfigure in Fig-
ure 2 and Figure 3 shows the number of iterations used for
training. The y axis of each figure shows solution quality for
the 〈Easy,Medium,Hard〉 categories in terms of average
global reward accumulated by all the agents. The results are
averaged over all 6 instances of each category. The results
for each individual instance in each category can be seen in
the longer version of the paper.
Comparison against previous approach: We tested our
critic based DSR approach against the deep RL based GKP
approach. Fig. 2 shows that our actor-critic based approach
produces much higher solution quality than GKP and the
GainA i.e. the % improvement by Dec-ESR over GKP com-
puted after 5000 iterations is 28% for Easy settings, 42.8%
for Medium settings and close to 50% for Hard settings.
Ablations: Since we use both local and event-based critic
functions, we perform ablation experiments to validate the
importance of event-based critic in our DSR approach. For
this purpose, we ran GKP using actor-critic for local MDPs
of agents (using Q function) but without any event-based
critic. We denote this approach by No Event Critic (NEC)
as shown in Fig. 2. The figure shows that even though NEC
produces slightly higher solution quality than GKP, the critic
based DSR approach still gives 〈18.9%, 28.7%, 32.5%〉 gain
over NEC for 〈Easy,Medium,Hard〉 categories respec-
tively. This highlights the importance of an event-based true
bootstrapping critic in our approach.
Transfer Learning: In this section we use experiments to

assess whether the proposed approach can indeed promote
transfer on large scale domains. For this purpose, we per-
form two sets of experiments: (1) Change in Joint Reward
(Figure 3a): In this experiment, we changed the joint re-
wards ck ∀k ∈ ρ for all shared locations on the MRT map
for all the instances; (2) Change in both Joint and Local Re-
ward (Figure 3b): In this experiment, we changed both the
joint reward for all shared locations as well as the local re-
wards r(s, a, s′) for all locations on the MRT map for all
agents for all the instances. For both sets of experiments, we
trained the policy for changed reward signal from scratch
without any transfer of information and also trained using
transfer of learned parameters (α, α̃, β, γ, w). As a baseline,
we used GKP approach to evaluate Time to Threshold metric
as discussed before.

Figure 3 shows the results for all the metrics discussed
in Section 5: (1) Asymptotic Performance: The final aver-
age global reward accumulated by the new joint Dec-ESR-
TRF policy when learned using transfer was around 5%
higher than learning from scratch; (2) Time to Threshold:
The time taken for the Dec-ESR-TRF policy (policy learned
with transfer) to converge (number of iterations after which
the given policy stabilizes i.e. less than epsilon change in
average global reward in successive 100 iterations) is lesser
than 700 iterations when just the joint reward is changed and
around 1000 iterations when both local and joint rewards are
changed against a convergence time of 3000 iterations for
Dec-ESR-SCR policy when learning from scratch. Also, the
time taken for the Dec-ESR-TRF policy to reach the GKP
threshold is faster when trained using transfer against learn-
ing from scratch. This highlights the importance of using
successor features in our Dec-ESR approach as the new pol-
icy for changed reward signal can be quickly reoptimized
with significantly fewer observations than learning the pol-
icy from scratch.

Synthetic Map: We evaluate the scalability of our Dec-ESR
approach by introducing more agents. To address this, we
created a synthetic MRT map having 〈10, 20, 30〉 lines with
〈10, 20, 30〉 agents in 〈Easy,Medium,Hard〉 category. The
number of shared locations are set as 〈5, 10, 15〉 respectively.
Each shared locations can be visited by any agent in the
synthetic map which increases the complexity of the multi-
agent interactions significantly. Every other experimental
setting is same as in our current experiments. The results
in Table 1 show that our end-to-end approach can scale to
a large state-space of individual agents as well as to a large
number of agents. The results are averaged over 3 instances
in each category.

6060

Easy Medium Hard

Gain A 37.95% 40.93% 52%
Gain B 22.86% 29.56% 28.77%

Table 1: Solution quality on large synthetic MRT map. The
〈Gain A,Gain B〉 refers to % improvement in solution qual-
ity of Dec-ESR approach over GKP and No Event Critic
(NEC) approaches respectively.

7 Conclusion
We developed a new actor-critic method for event-based
Dec-MDPs based on successor features (SFs). The approach
used an event-based critic to bootstrap the learning and pro-
duces higher solution quality than the previous best ap-
proach. Thanks to SFs which decouple environment dynam-
ics from rewards, we are able to transfer knowledge from
source to target tasks where only the reward signal in tar-
get task changes. This approach achieves significantly faster
convergence on target tasks than learning from scratch.

Acknowledgements
We thank anonymous reviewers for their helpful feedback.
This research was supported by the Singapore Ministry of
Education (MOE) Academic Research Fund (AcRF) Tier 1.

References
Amato, C.; Konidaris, G.; Anders, A.; Cruz, G.; How, J. P.; and
Kaelbling, L. P. 2016. Policy search for multi-robot coordina-
tion under uncertainty. International Journal of Robotics Research
35(14):1760–1778.
Asadi, K.; Allen, C.; Roderick, M.; Mohamed, A.-r.; Konidaris,
G.; and Littman, M. 2017. Mean actor critic. arXiv preprint
arXiv:1709.00503.
Barreto, A.; Dabney, W.; Munos, R.; Hunt, J. J.; Schaul, T.; van
Hasselt, H. P.; and Silver, D. 2017. Successor features for trans-
fer in reinforcement learning. In Advances in neural information
processing systems, 4055–4065.
Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. V. 2004.
Solving transition independent decentralized Markov decision pro-
cesses. Journal of Artificial Intelligence Research 22:423–455.
Becker, R.; Zilberstein, S.; and Lesser, V. 2004. Decentral-
ized Markov decision processes with event-driven interactions. In
Proceedings of the 3rd International Conference on Autonomous
Agents and Multiagent Systems, 302–309.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein, S.
2002. The complexity of decentralized control of Markov decision
processes. Mathematics of Operations Research 27:819–840.
Dayan, P. 1993. Improving generalization for temporal differ-
ence learning: The successor representation. Neural Computation
5(4):613–624.
Dibangoye, J. S., and Buffet, O. 2018. Learning to act in decen-
tralized partially observable MDPs. In International Conference
on Machine Learning, 1241–1250.
Dibangoye, J. S.; Amato, C.; Doniec, A.; and Charpillet, F. 2013.
Producing efficient error-bounded solutions for transition indepen-
dent decentralized MDPs. In International conference on Au-
tonomous Agents and Multi-Agent Systems, 539–546.

Durfee, E., and Zilberstein, S. 2013. Multiagent planning, control,
and execution. In Weiss, G., ed., Multiagent Systems. Cambridge,
MA, USA: MIT Press. chapter 11, 485–546.
Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and Whiteson,
S. 2017. Counterfactual multi-agent policy gradients. In Arxiv.
Galceran, E., and Carreras, M. 2013. A survey on coverage
path planning for robotics. Robotics and Autonomous Systems
61(12):1258–1276.
Goldman, C. V., and Zilberstein, S. 2004. Decentralized control
of cooperative systems: Categorization and complexity analysis. J.
Artif. Intell. Res. 22:143–174.
Gupta, T.; Kumar, A.; and Paruchuri, P. 2018. Planning and learn-
ing for decentralized mdps with event driven rewards. In AAAI
Conference on Artificial Intelligence, 6186–6194.
Konda, V. R., and Tsitsiklis, J. N. 2003. On actor-critic algorithms.
SIAM Journal on Control and Optimization 42(4):1143–1166.
Kraemer, L., and Banerjee, B. 2016. Multi-agent reinforcement
learning as a rehearsal for decentralized planning. Neurocomputing
190:82–94.
Kulkarni, T. D.; Saeedi, A.; Gautam, S.; and Gershman, S. J.
2016. Deep successor reinforcement learning. arXiv preprint
arXiv:1606.02396.
Kumar, A.; Zilberstein, S.; and Toussaint, M. 2011. Scalable mul-
tiagent planning using probabilistic inference. In Proceedings of
the Twenty-Second International Joint Conference on Artificial In-
telligence, 2140–2146.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; et al. 2015. Human-level control through deep rein-
forcement learning. Nature 518(7540):529.
Nguyen, D. T.; Kumar, A.; and Lau, H. C. 2017a. Collective multi-
agent sequential decision making under uncertainty. In AAAI Con-
ference on Artificial Intelligence, 3036–3043.
Nguyen, D. T.; Kumar, A.; and Lau, H. C. 2017b. Policy gra-
dient with value function approximation for collective multiagent
planning. In Neural Information Processing Systems.
Oliehoek, F. A.; Spaan, M. T.; and Vlassis, N. 2008. Optimal and
approximate q-value functions for decentralized pomdps. Journal
of Artificial Intelligence Research 32:289–353.
Petrik, M., and Zilberstein, S. 2011. Robust approximate bilinear
programming for value function approximation. Journal of Ma-
chine Learning Research 12:3027–3063.
Spaan, M. T. J., and Melo, F. S. 2008. Interaction-driven Markov
games for decentralized multiagent planning under uncertainty. In
International Conference on Autonomous Agents and Multi Agent
Systems, 525–532.
Sutton, R. S.; McAllester, D.; Singh, S.; and Mansour, Y. 1999.
Policy gradient methods for reinforcement learning with function
approximation. In International Conference on Neural Information
Processing Systems, 1057–1063.
Taylor, M. E., and Stone, P. 2009. Transfer learning for reinforce-
ment learning domains: A survey. JMLR 10:1633–1685.
Varakantham, P.; Adulyasak, Y.; and Jaillet, P. 2014. Decentral-
ized stochastic planning with anonymity in interactions. In AAAI
Conference on Artificial Intelligence, 2505–2512.
Witwicki, S. J., and Durfee, E. H. 2010. Influence-based policy ab-
straction for weakly-coupled Dec-POMDPs. In International Con-
ference on Automated Planning and Scheduling, 185–192.
Yehoshua, R., and Agmon, N. 2016. Multi-robot adversarial cover-
age. In European Conference on Artificial Intelligence, 1493–1501.

6061

