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Abstract

Incentive mechanisms that assume agents to be fully rational,
may fail due to the bounded rationality of agents in practice.
It is thus crucial to evaluate to what extent mechanisms can
resist agents’ bounded rationality, termed robustness. In this
paper, we propose a general empirical framework for robust-
ness evaluation. One novelty of our framework is to develop a
robustness formulation that is generally applicable to differ-
ent types of incentive mechanisms and bounded rationality
models. This formulation considers not only the incentives to
agents but also the performance of mechanisms. The other
novelty lies in converting the empirical robustness computa-
tion into a continuum-armed bandit problem, and then devel-
oping an efficient solver that has theoretically guaranteed er-
ror rate upper bound. We also conduct extensive experiments
using various mechanisms to verify the advantages and prac-
ticability of our robustness evaluation framework.

Introduction
Incentive mechanism has been widely adopted to coordinate
a group of self-interested agents, with two common objec-
tives: 1) incentivize agents to follow the strategies desired by
mechanism designers; 2) maximize a certain performance
(e.g. social welfare). Current mechanism design often as-
sumes agents to be fully rational, neglecting the uncertain-
ties in agents’ decision-making processes. However, in many
real-world situations, practical agents are observed to vio-
late this assumption, causing incentive mechanisms to fail
in achieving the two objectives. To overcome this problem,
various bounded rationality models have been built to de-
pict practical agents (Simon 1979; Ortega and Braun 2013;
Wang and Tang 2015). Then, the robustness against bounded
rationality is measured as to what extent incentive mecha-
nisms can resist the uncertainties overlooked in the design
phase (Cabrales and Serrano 2011; Rivas 2015; Liu et al.
2015; Shnayder, Frongillo, and Parkes 2016). It provides
a quantitative indication for the practicability of incentive
mechanisms.

However, there is still a large room for existing studies
on quantitative robustness analysis to improve. Firstly, fo-
cusing only on a specific type of incentive mechanisms and
bounded rationality models, their robustness formulations
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become incompatible (Jurca and Faltings 2007; Liu et al.
2015). A general robustness formulation is thus needed to set
a common ground for the comparison of different incentive
mechanisms and to avoid reinventing the wheel. Secondly,
most studies focus only on the incentive compatibility (IC)
objective, but ignore the performance objective. However,
the performance of an incentive mechanism is also very im-
portant. For example, if an auctioneer cannot gain enough
revenue to cover the cost, there is no point for him to employ
the auction. Thirdly, when computing robustness through
Monte Carlo simulation, existing studies often set an arbi-
trarily large number of simulations. Without the guarantee
of error rate, the reliability of their computation is uncertain.

In this paper, we propose a general framework to reli-
ably compute the robustness of incentive mechanisms. More
specifically, we first propose a general robustness formula-
tion as the maximum bounded rationality level satisfying
the conditions that all agents have the incentive to follow
the desired strategies and the performance is acceptable by
mechanism designers. Since the robustness is formulated us-
ing the expected incentives or performance, the empirical
robustness computation requires us to balance between the
exploration of more bounded rationality levels to more ac-
curately identify the maximum and the exploitation of the
current bounded rationality level to more reliably judge the
conditions mentioned above. We thus develop a continuum-
armed bandit solver to adaptively adjust the exploration and
the simulation scheme according to accumulated simulation
data. We also derive the error rate upper bound for our solver
and prove it to be more efficient than existing methods. To
further validate our solver, we compare with other methods
in a testbed where accurate solutions are known. To illustrate
the applicability of our framework, we apply it to evaluate
the robustness of various popular mechanisms.

Related Work
Existing quantitative studies on the robustness of incen-
tive mechanisms have focused only on one specific type
of incentive mechanisms or bounded rationality models,
so that different robustness formulations have been pro-
posed. For example, targeting on the adverse effects of
agents’ belief error, Jurca and Faltings (2007) propose the
ε-robustness which requires peer-prediction mechanisms al-
ways to keep agents reporting truthfully when agents’ be-
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lief error is smaller than ε. Considering irrational invaders,
Liu et al. (2015) propose another completely different ro-
bustness formulation as the maximum proportion of invaders
such that truthful reporting is still the best strategy for ratio-
nal agents in the Moran process. Lately, considering agents’
biased behaviors, Shnayder et al. (2016) provide yet another
robustness formulation as the basin of attraction of the truth-
ful reporting strategy. Due to the need to incorporate dif-
ferent bounded rationality models, these robustness formu-
lations adopt different standards to compute the robustness
and thus are incompatible. In contrast, our robustness formu-
lation is general and can be readily adopted by researchers
for their interested incentive mechanisms and bounded ra-
tionality models.

Furthermore, most studies focus only on testing
whether agents are incentivized to take the desired strate-
gies (Cabrales and Serrano 2011; Tumennasan 2013). How-
ever, the performance of an incentive mechanism is also
very important. For example, combinatorial auctions are de-
signed to allocate items among agents to maximize the so-
cial welfare. Agents’ dominant strategy is always to report
their true value about the items. Nevertheless, if agents with
bounded rationality cannot accurately figure out their own
true value (e.g. the type misreporting model (Rivas 2015)),
no matter how the incentive is designed, the social wel-
fare will still be affected. The extensive studies on the ap-
proximation ratio of incentive mechanisms also reflect the
importance of considering performance (Alkalay-Houlihan
and Vetta 2014). Our robustness formulation considers both
incentive compatibility and performance, to accurately indi-
cate the practicability of incentive mechanisms.

Besides, existing studies usually compute the robustness
through running Monte Carlo simulations for an arbitrarily
large number of times (Liu et al. 2015; Shnayder, Frongillo,
and Parkes 2016). For example, in (Shnayder, Frongillo, and
Parkes 2016), the basin of attraction in the multidimensional
strategy space is measured through simply running the sim-
ulation for 100 times. There is no guarantee for the reliabil-
ity of their computation. By contrast, in our framework, the
simulation scheme is always adjusted with the error rate con-
sidered. Moreover, to balance the need to test more bounded
rationality levels to compute the formulated robustness more
accurately and the need to conduct more simulations to get
more reliable simulation results, we model the computation
as a continuum-armed bandit problem and develop a solver
with theoretically guaranteed error rate upper bound and ef-
ficiency.

Robustness Evaluation Framework
Our proposed robustness evaluation framework consists of
three layers, as shown in Fig. 1. The desired error rate
and exploring depth are fed to the continuum-armed ban-
dit solver (CABS) in the first layer as inputs. CABS then
adaptively explores the space of agents’ bounded rationality
levels and develops efficient simulation schemes to exploit
the selected bounded rationality levels. To carry out the sim-
ulation scheme, CABS needs to call the margin calculator
in the second layer repeatedly. The margin calculator quan-
tifies the effects of bounded rationality on incentive mecha-

nisms. The specific formulation of the margin calculator is
determined by the adopted robustness formulation, and dif-
ferent robustness formulations lead to different margin func-
tions. The margin function is computed using the stochastic
samples of agent’s utility and the performance of incentive
mechanisms, which are generated by the agent-mechanism
simulator in the third layer.

Bounded rationality depicts practical agents’ decision-
making process. When participating in a mechanism, agents
decide their actions based on their types and the knowl-
edge about the mechanism and other agents. Mechanism
designers usually assume that: 1) agents accurately know
their types; 2) agents’ knowledge is correct; 3) agents’ util-
ity functions are accurately known by mechanism designers;
4) agents only adopt the utility-maximizing strategy. Un-
der these assumptions, the designed mechanism can incen-
tivize agents to take the desired strategies. However, practi-
cal agents may violate these assumptions, causing their ac-
tions to deviate from the desired strategies. In this paper, we
use bounded rationality to denote the decision-making pro-
cess which violates any of these four assumptions. It is thus
not limited to the scope of the classic definition of bounded
rationality which only considers deviation from utility max-
imization (Simon 1979).

Agent-Mechanism Simulator
The stochastic world model depicts agents’ characteristics,
such as preferences and correlations between each other. In
our framework, we use a joint probability function f(θ) to
denote the overall distribution of agents’ types. Besides, we
introduce a set of conditional probability functions b(θi|θk)
to depict the possible correlations between agents. Note that
many mechanisms (e.g. VCG) are designed without consid-
ering the world model. These mechanisms actually need to
work well in all possible world models. The world model
is required even when these mechanisms are evaluated for
mainly two reasons. Firstly, working well in a particular
world model is a necessary condition for the success of these
mechanisms in all possible world models. Secondly, check-
ing all possible world models with an empirical approach is
infeasible in computation. For simplicity, we limit our ro-
bustness evaluation to a certain world model which models
agents’ characteristics in a specific application.

In our framework, we assume there are n participating
agents. These agents are required to be able to store the gen-
erated types θ, decide their actions a and compute their util-
ity u. When designing our framework, we are not concerned
with the details of bounded rationality models and agents’
decision-making processes. Thereby, we abstract them as a
mapping from agents’ types θ, bounded rationality level γ
and the desired strategies s∗ to agents’ actions a. Note that
the bounded rationality level γ might be interpreted differ-
ently in different bounded rationality models. For example,
in the partial rationality model (Wang and Tang 2015), γ de-
notes the probability of choosing the wrong strategy. In the
logistic quantal response model (Ortega and Lee 2014), γ
equals the level of error which quantifies the importance of
utility. Without loss of generality, we require the bounded
rationality level to be a value γ ∈ [0, 1], where γ = 0 and
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Figure 1: General robustness evaluation framework

γ = 1 denote the cases where agents are fully rational and
irrational, respectively.

Mechanism designers need to know the objective func-
tion G(θ, y) and the desired strategies s∗ before designing
an incentive mechanism M . Thus, we use the mechanism
designer module to store G(θ, y), s∗ and M in our frame-
work. Besides, when designing our framework, we treat the
mechanism M as a black-box mapping from agents’ actions
a into a set of outputs y. This feature ensures the generality
of our framework to incorporate different mechanisms.

Robustness Formulation
Robustness evaluates to what extent a mechanism can re-
sist agents’ bounded rationality. Mechanisms are usually de-
signed to achieve two objectives: 1) incentivizing agents to
follow the desired strategy s∗, i.e. achieving IC, and 2) max-
imizing the demanded objective function G(θ, y). Thus, we
develop a general robustness formulation by measuring the
effects of bounded rationality on these two objectives.

IC requires the mechanism to ensure that all agents can
achieve utility maximization by taking the desired strat-
egy s∗. Bounded rationality causes agents to deviate from
s∗. However, the mechanism should at least not encourage
agents to deviate from s∗. Thus, any agent k should not get a
higher utility when deviating from s∗. Otherwise, the mech-
anism fails. Formally, we define the IC robustness RI as

RI = mink∈{1,...,n},θk,akRa(k, θk, ak) (1)

Ra(k, θk, ak) = max{γ̄|∀γ ∈ [0, γ̄],

EQI(γ) = E[uk(γ, θk, a
∗
k)− uk(γ, θk, ak)] ≥ 0}

Here, the IC margin function QI measures the remaining
advantage of the desired strategy a∗k = s∗k(θk) over another
available action ak.Ra needs to be solved for every possible
agent-type-action combination, and the IC robustness RI is
the minimal value of Ra. In computation, we can use the
symmetry between agents to skip some combinations.

The demanded objective function G(θ, y) quantifies the
benefits of using an incentive mechanism. For example, the
classic VCG mechanism can maximize the social welfare of
item allocation. However, if bounded rationality results in
a lower social welfare than random allocation, it becomes
meaningless to use VCG. Thereby, to ensure the effective-
ness of a mechanism, the performance degradation caused
by bounded rationality should be within an acceptable range.
Formally, we define the performance robustness as
RP = max{γ̄|∀γ ∈ [0, γ̄],EQP (γ) = E[g(γ)− C0] ≥ 0}

(2)
where g(γ) = G(θ, y)|γ denotes the performance when the
bounded rationality level is γ. C0 denotes the minimum per-
formance acceptable to mechanism designers. The perfor-
mance margin function QP indicates the remaining benefits
of a mechanism under the effects of bounded rationality.

If a mechanism works well with bounded rational agents,
both the IC and performance should be ensured. Thus, we
formulate the robustness of mechanism M as

RM = min {RI , RP } (3)
In summary, our robustness formulation adopts a two-level
structure to cover both IC and performance. At the micro-
level of individual agents, the IC robustness keeps the incen-
tive of mechanisms by requiring agents’ utility-maximizing
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strategies always to be s∗. This requirement follows the
robustness studies of Jurca and Faltings on mechanisms
with Bayesian-Nash incentive compatibility (Jurca and Falt-
ings 2007). At the macro-level, our performance robustness
maintains the benefits of adopting a mechanism by limit-
ing the overall adverse effects of bounded rationality into
an acceptable range. This setting shares the same idea as
the extensive studies on the approximation ratio of incentive
mechanisms (Alkalay-Houlihan and Vetta 2014). All in all,
we develop the general robustness formulation by combin-
ing the separate robustness studies on IC and performance.

Continuum-Armed Bandit Solver
Solving the formulated robustness RM relies on computing
the IC robustnessRa(k, θk, ak) and the performance robust-
ness RP . Since Ra and RP have similar forms, we can uni-
formly formulate their computation as solving

R = max{γ̄ ∈ [0, 1]|∀γ ∈ [0, γ̄],EQ(γ) ≥ 0} (4)

whereQ(γ) is equal to eitherQI orQP . Correspondingly,R
denotes Ra or RP . In practice, most of the time, the margin
functionQ(γ) gradually decreases with increasing γ. Hence,
we can assume Q(γ) to be continuous. Furthermore, we de-
note the minimal root of the margin equation EQ(γ) = 0
as γ∗, namely γ∗ = min{γ|EQ(γ) = 0}. In this case, the
desired robustness in Equation 4 satisfies R = γ∗.

Given a solution interval [0, γc], if the margin equation
EQ(γ) = 0 has only one root1, we can convert empirically
solving Equation 4 into a continuum-armed bandit problem.
At each step, we choose an arm γ ∈ [0, γc]. Then, we can
obtain a stochastic signal Q(γ) ∈ [Q,Q] by calling the mar-
gin calculator for one time, where Q and Q denote the max-
imal and minimal values of Q. The reward for selecting γ is
−|EQ(γ)|, and we intend to maximize the accumulated re-
wards. Since selecting γ∗ produces the highest rewards, we
need to find γ∗ as early as possible, which is also aligned
with our objective to efficiently compute the formulated ro-
bustness. Besides, to measure the computation efficiency of
bandits solvers, we define the regret L(T ) as

L(T ) =
∑T
t=1|EQ(γt)| (5)

where T denotes the number of simulation runs. Note that,
since continuum-armed bandit solvers cannot reach the opti-
mal arm within a finite number of simulation runs, we com-
pute the regret instead of directly using the number of sim-
ulation runs to quantify the efficiency. In other words, the
solver is expected to more efficiently approach the region
with smaller |EQ(γ)|, which corresponds to a lower regret.

There have been many solutions to the continuum-armed
bandit problem (Jia and Mannor 2011; Kleinberg 2004).
However, most of these solutions require the reward func-
tion to satisfy certain continuity assumptions (e.g. Lipschitz
continuity). In our framework, these assumptions cannot be
ensured. Thus, we present a new algorithm which only re-
quires the reward function to be continuous. Firstly, we con-
sider a simple multi-armed bandit problem with a finite set

1If this assumption is violated, our solver computes the interval
which contains all the roots of the margin equation.

Algorithm 1: Simulation Scheme-I
Input: A set of m+ 1 arms, ε > 0, and δ > 0

1 Sample arms 2, . . . ,m sequentially, until each arm has

been simulated
(Q−Q)2

2ε2 log(m−1δ ) times;
2 Let the simulation-average of arm i be Q̂i. Compute

j = max{s|Q̂i<s > ε} and k = min{s|Q̂k>s < −ε}.
3 Output j∗ = j − 1, k∗ = k + 1 and mini∈{2,...,m} |Q̂i|.

Algorithm 2: Simulation Scheme-II
Input: A set of m+ 1 arms and δ > 0

1 Initialize ε = Q−Q, j∗ = 1, and k∗ = m+ 1.
2 while j∗ < k∗ − 1 or ε ≥ εl do
3 Run Algorithm 1, and update ε as mini |Q̂i|.
4 Output j∗ and k∗.

of arms {1, . . . ,m+ 1}. Besides, we assume that EQ1 ≥ 0
and EQm+1 ≤ 0 are known. Algorithm 1 is proposed to
solve this problem with a probably approximately correct
guarantee. It takes the error bound ε and the error rate δ as
inputs. The outputs k∗ and j∗ satisfy the following property:

Proposition 1. With probability 1− δ, γ∗ ∈ [γk∗ , γj∗ ].

Proof. According to (Auer, Cesa-Bianchi, and Fischer
2002), we can have Pr(Q̂i − EQi ≥ ε) ≤ δ

m−1 or
Pr(Q̂i − EQi ≤ −ε) ≤ δ

m−1 . Hence, in Algorithm 1,
Pr(EQi≤j∗ > 0) ≥ 1 − δ

m−1 , and Pr(EQi≥k∗ < 0) ≥
1 − δ

m−1 . Since EQ(γ) is continuous and EQ(γ) = 0 has
only one root γ∗, we can conclude that EQ(γ ≤ γ∗) ≥ 0
and EQ(γ ≥ γ∗) ≤ 0. Therefore, Pr(γ∗ ∈ [γk∗ , γj∗ ]) ≥
(1− δ

m−1 )m−1 ≥ 1− δ.

Secondly, as the number of simulation runs increases,
we need to decrease the error bound ε to ensure the ob-
tained interval in Algorithm 1 to converge to the optimal
arm γ∗. Existing solutions to the continuum-armed bandit
problem usually update ε based on the assumed parameters
of the reward function, for example, the Lipschitz constants.
However, these parameters are not available in our frame-
work. Therefore, we propose Algorithm 2 which adjusts ε
according to the minimal value of |Q̂i| (returned by Algo-
rithm 1). Our objective is to greedily decrease [j∗, k∗] to the
utmost. Besides, the smaller ε is, the more simulation runs
are needed. Since the computation capability is limited, we
introduce εl as the lower bound of ε.

Lastly, we propose Algorithm 3 to update the set of
arms. In each level of exploration, our algorithm generates
new arms using bisection. This operation is widely adopted
in existing solutions to the continuum-armed bandit prob-
lem (Bull 2015). It keeps improving the precision of search-
ing for the optimal arm γ∗ by repeatedly zooming in on the
solution interval. In our framework, since γ∗ must be in the
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interval where the values of EQ(γ) at the two ends have dif-
ferent signs, we only conduct the “zooming in” operation at
the two ends of the solution interval [γ1, γ−1]. Then, accord-
ing to the simulation results, the algorithm decides whether
to remove the end arms γ1 and γ−1 to shrink the solution in-
terval. Besides, in Algorithm 3, if An has only two elements
(e.g.A0), we can have γ1 = γ−2 and γ2 = γ−1. In this case,
we can skip line 5 to simplify the computation.

Algorithm 3: Bounded Rationality Level Exploration
Input: δ > 0 and the exploration depth N

1 Initialize δs = 1− (1− δ)1/N , and A0 = {0, γc}.
2 for n = 1, . . . , N do
3 Sort all elements in An−1 in ascending order.

Denote the first two elements by γ1 and γ2.
Denote the last two elements by γ−2 and γ−1.

4 Run Algorithm 2 with δs
2 and {γ1, e12, γ2} as

inputs,
where e12 = γ1+γ2

2 . If k∗ = 1,
An = An−1 ∪ {e12};

otherwise, An = (An−1 − {γ1}) ∪ {e12}.
5 Run Algorithm 2 with δs

2 and {γ−1, e−12, γ−2} as
inputs, where e−12 = γ−1+γ−2

2 .
If k∗ = 1, An = An−1 ∪ {e−12};
otherwise, An = (An−1 − {γ−1}) ∪ {e−12}.

6 Output γL = minAn and γU = maxAn.

In summary, the proposed solver, CABS, takes the error
rate δ and the exploration depth N as inputs. It outputs an
interval [γL, γU ], and we can approximately calculate the ro-
bustness as R ≈ (γL + γU )/2.

Theoretical Analysis
We perform theoretical analysis on the reliability and effi-
ciency of our solver. First, the error rate is ensured by Propo-
sition 2, revealing the high reliability of our framework.

Proposition 2. Pr(R 6∈ [γL, γU ]) ≤ δ.

Proof. Proposition 1 provides the probability guarantee that
Pr(γ∗ ∈ [γ1(n), γ−1(n)]) ≥ (1 − δs/2)2 ≥ 1 − δs under
the assumption: γ∗ ∈ [γ1(n− 1), γ−1(n− 1)]. Here, γ1(n)
and γ−1(n) denote the minimal and maximal values of An
in Algorithm 3. Thus, we can obtain Pr(γL ≤ R ≤ γU ) ≥
(1− δs)N = 1− δ, which concludes Proposition 2.

Then, the regret of our solver is analyzed in Proposition 3.

Proposition 3. If we set εl in Algorithm 2 as 0, with proba-
bility 1− δ, the regret of CABS is O(

√
T ).

Proof. Since the set of arms always has only three elements
in Algorithm 3, the number of simulation runs for arm γi
is Ti = − log(1 − δt) · ∆2/(2Q̂2(γi)), where δt = δs/2
and ∆ = Q−Q. Thus, the total number of simulation runs
satisfies

T =
∑
Ti = − log(1− δt) ·∆2/2 · (

∑K
i=11/Q̂2(γi)) (6)

where K denotes the total number of explored arms. Mean-
while, the regret of our solver can be calculated as

L =
∑K
i=1Ti · |EQ(γi)|

= − log(1− δt) ·∆2/2 ·
∑K
i=1|EQ(γi)|/Q̂2(γi)

(7)

To bridge Q̂(γi) and EQ(γi), we define a new variable xi as

xi = Q̂(γi)− EQ(γi) (8)

Thus, we compute L with the following decomposition:∑K
i=1|EQ(γi)|/Q̂2(γi) ≤∑K

i=11/|Q̂(γi)|+
∑K
i=1|xi|/Q̂

2(γi)
(9)

The first item in the right-hand side of Equation 9 satisfies∑K
i=11/|Q̂(γi)| ≤

√
K
∑K
i=11/EQ(γi)2 (10)

Meanwhile, according to the Chernoff-Hoeffding bound
(Auer, Cesa-Bianchi, and Fischer 2002), with probability
1− δt, we have

xi ≥ −

√
1

2Ti
log

(
1

δt

)
or xi ≤

√
1

2Ti
log

(
1

δt

)
(11)

Hence, with probability 1 − δ, the second item in the right-
hand side of the Equation 9 satisfies∑K

i=1|xi|/Q̂
2(γi) ≤

∑K
i=1

√
(1/2Ti) · log(1/δt)/Q̂

2(γi)

≤ C ·
∑K
i=1/|Q̂(γi)|

≤ C ·
√
K
∑K
i=11/EQ(γi)2 (12)

where C is a finite constant. Besides, Equation 6 ensures∑K
i=11/EQ(γi)

2 = T/Cδ (13)

where Cδ = − log(1−δt) ·∆2. Thus, we can have L ≤ Cδ ·
(1 + C) ·

√
K · T/Cδ , which concludes Proposition 3.

The lowest regret achieved by existing continuum-armed
bandit algorithms is O(

√
T ) (Bull 2015; Auer, Ortner, and

Szepesvári 2007). However, these algorithm rely on a very
strong assumption that the reward function has quadratic
global maxima. By contrast, with a weak assumption that
EQ(γ) is continuous, the regret of CABS also reaches
O(
√
T ). This reveals the great advantage of our solver in

computing the robustness. In addition to the regret analy-
sis, by assuming Algorithm 2 always reaches the error lower
bound εl, we can know the worst time complexity of CABS
is O(N/εl · log(2/δs)).

Experiments
We first validate the reliability and efficiency of our frame-
work in a hypothetical testbed where accurate results are
known, and then illustrate its generality and applicability
on five popular peer prediction mechanisms and the widely-
adopted procurement mechanisms in crowdsourcing.
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(a) (b)

Figure 2: (a) Accurate EQ(γ) v.s. results of CABS; (b) Av-
erage regrets comparison of different algorithms

Hypothetical Testbed
For the hypothetical testbed, we consider a simple scenario
where only one agent exists. Suppose agent’s type θ fol-
lows the uniform distribution U [0.1, 10]. Given θ, agent’s
action a follows the beta distribution Be(θ, t), where t =
1− 2 log(1− γ). The performance measurement g is set as
g(γ) = a, and the performance robustness RP is calculated
using our framework. In this case, EQ(γ) can be theoreti-
cally calculated as 1− C0 + t

9.9 log t+0.1
t+10 . Figure 2a shows

the computation results of CABS when C0 = 0.5. The ex-
plored bounded rationality levels and the computed averages
are represented as squares. The solid line denotes the accu-
rate value of EQ(γ). The error bounds computed with Algo-
rithm 2 are marked with bars. We can observe that the error
bar becomes shorter as |EQ| approaches 0. This reveals the
adaptive strategy of CABS to minimize the number of sim-
ulations according to EQ. As a matter of fact, this adaptive
strategy is the foundation for the high efficiency of CABS.

Furthermore, we compare the average regrets of differ-
ent algorithms in Figure 2b. UCB-1 is a famous bandit al-
gorithm which requires a finite set of arms (Auer, Cesa-
Bianchi, and Fischer 2002). To be consistent with our solver,
we evenly divide (0, 1] into 512 intervals and set the inter-
val endpoints as arms. ATB is a newly proposed continuum-
armed bandit algorithm (Bull 2015). It also repeatedly
zooms in on the solution interval according to the simula-
tion results. Monte Carlo simulation is widely adopted for
robustness computation in the literature (Liu et al. 2015;
Shnayder, Frongillo, and Parkes 2016). Given a finite set of
arms, it sequentially carries out an arbitrarily large number
of simulations on each arm. To ensure the computation ac-
curacy, we set the needed simulation runs as 5000. From
Figure 2b, we can conclude that the performance of CABS
on regret is far better than the other three algorithms. Note
that the average regret of ATB is almost unchanged from
T = 1000. The reason for this observation is that the “zoom-
ing in” operation of ATB is very costly. ATB even cannot bi-
sect (0, 1] within 15,000 simulation runs. Besides, the initial
average regret of CABS is high because we set γc as 2 in
Algorithm 3, forcing CABS to test the worst case (γ = 1) at
first.

Besides, we can measure the error rate of CABS as
Pr(R 6∈ [γL, γU ]). According to Proposition 2, the error

Table 1: Empirically measured error rate in 200 runs

C0 0.5 0.6 0.7
δ 0.99 0.9 0.99 0.9 0.99 0.9

Error Rate 0.02 0.005 0.035 0.005 0.075 0.0

rate of CABS is not larger than δ. To validate this point,
we empirically compute the error rate for different values of
C0 by running CABS for 200 times. From the results listed
in Table 1, we can see that the empirical error rate is far
lower than δ. This is because the solution bound calculation
in Algorithm 1 (line 2) and the error rate allocation in Algo-
rithm 3 (line 1) are both very conservative. In the following
experiments, we keep δ as 0.2 to ensure the reliability of the
evaluation results.

Peer Prediction Mechanisms
Peer prediction mechanisms are widely adopted to elicit
truthful information from self-interest agents. In the basic
settings of peer prediction, each agent i privately receives a
signal θi at first. All the signals are identically and indepen-
dently conditioned on the phenomenon type h, meaning that
all agents share the same conditional probability function
Pr(θ|h). Then, according to the observed signal θi, agent i
updates its belief about other agents’ signals bi(−i)(θ−i|θi).
Based on θi and bi(−i), agent i decides its report (action)
ai and obtains the reward ui from the mechanism. Differ-
ent peer prediction mechanisms lead to different mappings
from a = (a1, . . . , an) to u = (u1, . . . , un). We consider
five popular and distinct peer prediction mechanisms:

1) OA (Von Ahn and Dabbish 2004). For agent i, a reference
agent j is selected. If these two agents have the same re-
port, ui = 1. Otherwise, ui = 0.

2) MRZ (Miller, Resnick, and Zeckhauser 2005). For agent
i, a reference agent j is selected. ui is determined by
W (Pr(aj |ai)), where W (·) denotes the scoring func-
tion. Three best known MRZ mechanisms are developed
using quadratic, spherical and logarithmic scoring func-
tions, respectively.

3) JF09 (Jurca, Faltings, and others 2009). For agent i, there
are three or more reference agents. ui can be computed
according to Proposition 4.2 in (Jurca, Faltings, and oth-
ers 2009).

4) RF15 (Radanovic and Faltings 2015). For agent i, there
is a group of similar peers. Given the fractions zp(ai) and
zg(ai) of peers and global population respectively report-
ing the same as agent i, ui = log(zp/zg).

5) DGMS (Shnayder et al. 2016). Agents i and j have many
tasks. They also have at least one overlapping tasks. The
rewards for overlapping tasks are computed with the re-
porting patterns on the non-overlapping tasks considered.
ui is the sum of rewards across all tasks.

To reconcile the requirements of different mechanisms,
we focus on a basic scenario where h only has two states,
0 and 1. Correspondingly, θ also only has two states, and
Pr(θ = 0|h = 0) = 0.8, Pr(θ = 1|h = 1) = 0.8.
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Table 2: The decision conditions used by JF09

Pr(QL) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Cond A − − − − − + + − −
Cond B − − + + − − − − −

(a) (b)

Figure 3: Robustness of peer prediction mechanisms

For bounded rationality models, we consider the malicious
bad-mouthing agents that intentionally report 0 (Du, Huang,
and others 2013). The robustness reveals the maximum ra-
tio of bad-mouthing agents at which truthful reporting is
still encouraged.2 Besides, we change Pr(h = 0) from
0.1 to 0.9 in our experiment to generate different world
models. This makes our experiments more informative than
(Shnayder, Frongillo, and Parkes 2016) which only consid-
ers Pr(h = 0) = 0.5. This also reveals the convenience of
our framework to analyze different cases.

Figure 3 shows the robustness comparison between the
aforementioned five peer prediction mechanisms. For OA,
if Pr(h = 0) ≥ 0.8, then Pr(θj = 1|θi = 1) ≤ 0.5
and the mechanism will totally lose its effectiveness. This
observation is consistent with the fact that the simple OA
cannot always ensure IC. For MRZ, the three rules have
similar robustness performance. By giving high incentives
to rare signals, they obtain far better performance than OA
for large Pr(h = 0) cases. Nevertheless, they also sacri-
fice a little performance in small Pr(h = 0) cases. JF09
utilizes two conditions to decide the payment, and their val-
ues are listed in Table 2. When the two conditions are kept
negative, JF09 has similar robusntess as MRZs. The chang-
ing of two conditions will bring fluctuation in robustness.
Sometimes, the robustness of JF09 can even be worse than
MRZs, which is consistent with the analysis in (Shnayder,
Frongillo, and Parkes 2016). Through introducing new in-
formation from global population, RF15 can enhance the
incentives for agents to report the truthful information for
rare signals3. However, if the number of peers is smaller, the
performance of RF15 may become extremely poor, which
confirms the conclusion in (Shnayder, Frongillo, and Parkes
2016). For DGMS, if we evaluate its robustness by compar-
ing the action on shared tasks, the reward function defined in
(Shnayder et al. 2016) is similar as OA, which leads to a sim-
ilar robustness as OA in Figure 3. If the robustness is tested

2Peer prediction mechanisms only focus on incentivizing
agents to report truthfully. Thus, RP is not considered.

3When Pr(h = 0) is large, θ = 1 will become the minority.

via comparing the report strategy shared across all tasks, the
robustness is always very good. This is because the strategy
information of agents is introduced into the reward function
in DGMS. The above analysis reveals that the evaluation re-
sults of our framework are reasonable, which verifies the ap-
plicability of our robustness formulation and computation to
practical incentive mechanisms. Besides, there is an interest-
ing phenomenon that all mechanisms show similar robust-
ness performance for Pr(h = 0) = 0.5. This is because our
symmetrical settings of Pr(θ|h) ensure h and θ both have
the same probability for 0 and 1 at this middle point.

Procurement in Crowdsourcing
In crowdsourcing, given a limited budget, how to procure
an enough number of workers is usually a challenging prob-
lem (Singer 2010; Singla and Krause 2013). In the litera-
ture, two kinds of procurement mechanisms have been pro-
posed to solve this problem: the procurement auction re-
quires workers (agents) to report their desired wages, and
the mechanism will decide the wage according to these re-
ports (e.g. BFM (Singer 2010)); the posted-price auction re-
quires the mechanism to provide a take-it-or-leave-it wage
offer to workers, and workers only need to decide whether to
accept this wage (e.g. BP-UCB (Singla and Krause 2013)).
The posted-price auction minimizes workers’ thinking ef-
forts, which prevents possible errors in agents’ decision-
making process. However, to recruit more workers with the
given budget, the mechanism needs to learn workers’ prefer-
ences through continuous interactions with them. This learn-
ing process may make the wage too high or too low at the
beginning, which can lead to a loss in the number of employ-
ees. By contrast, the procurement auction collects full infor-
mation, and can thus achieve better performance. It relies on
workers’ truthful reports, and truthful reporting is always the
dominant strategy for rational workers.

In the literature, the difference between these two ap-
proaches is only qualitatively discussed as above. From
mechanism designers’ point of view, if agents are fully ra-
tional, there is no point to utilize BP-UCB which will neces-
sarily cause less workers to be enrolled. Actually, an implicit
benefit of minimizing agents’ thinking efforts is to make the
mechanism more robust against agents’ bounded rationality.
Thus, we use our formulation to study robustness of BFM,
which can provide a quantitative evaluation to help decide
which mechanism to choose. This experiment illustrates the
practical usability of our robustness formulation, which can-
not be achieved by existing quantitative robustness studies.
Specifically, we assume workers’ true desired wage θ fol-
lows Be(ψ1, ψ2). Besides, worker’s bounded rational re-
port a = θ + (1 − θ) · δ, where δ ∼ Be(1,−1.5 log(γ))
and γ ∈ [0, 1] can be regarded as workers’ bounded ra-
tional level4. Moreover, since truthful reporting is always
the dominant strategy in BFM, RI ≡ 1. This is because
dominant strategy mechanisms need to ensure that the de-
sired strategy a∗i = s∗i (θi) has advantages over another
available action ai no matter what actions is taken by other

4Here, we use a simple model for illustration. More practical
decision-making models can be utilized in further studies.
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Table 3: The Robustness of BFM Against Biased Workers

n 300 350 400 450 500 550
θ ∼ Be(0.5, 0.5) 0.89 0.77 0.63 0.55 0.53 0.43
θ ∼ Be(1.0, 1.0) 1.00 1.00 0.90 0.80 0.72 0.70
θ ∼ Be(2.0, 2.0) 1.00 1.00 1.00 1.00 1.00 0.97

agents, namely ui(θ, y|a∗i , a−i) ≥ ui(θ, y|ai, a−i). Thus,
ui(θ, y|a∗i , γ) ≥ ui(θ, y|ai, γ) always holds in Equation 1,
which leads to RI ≡ 1. In this case, we only focus on
RP . The performance measurement g is set as the number
of recruited workers, and the performance of BP-UCB in
the same settings is employed as C0. The robustness mea-
surement reveals the maximum bounded rationality level of
workers at which BFM performs better than BP-UCB.

Table 3 shows the robustness evaluation results for BFM
in different parameter settings. Here, n denotes the num-
ber of participating workers, and the total budget is set as
75. From the table, we can find that the robustness of BFM
degrades as the number of workers increases. Actually, the
performance of BFM changes a little when more workers
come in. The main reason for this phenomenon lies in the
increase of the performance of BP-UCB which is used as
C0. In BP-UCB, the learning process keeps the same for a
fixed θ distribution. Thus, more workers can make the ad-
verse effects of the learning process less obvious, resulting
in a better overall performance. Meanwhile, it is an obvious
phenomenon that the robustness increases when the distribu-
tion of θ changes from Be(0.5, 0.5) to Be(2.0, 2.0). Similar
as the previous phenomenon, this is also caused by the vari-
ation in C0. These reasonable evaluation results validate the
soundness of our robustness formulation.

Conclusions
Robustness against bounded rationality indicates the prac-
ticability of an incentive mechanism. To develop a general
robustness evaluation framework, we first propose a gen-
eral robustness formulation which is applicable for differ-
ent types of incentive mechanisms and bounded rationality
models. Then, an efficient continuum-armed bandit solver
is built to compute the formulated robustness with the the-
oretically guaranteed error rate upper bound. Experimental
results validate the error rate upper bound and the advan-
tage of our solver on efficiency. The generality and sound-
ness of our robustness formulation and solver are illustrated
by applying our framework to five peer prediction mecha-
nisms and the procurement mechanisms in crowdsourcing.
Currently, our framework cannot efficiently handle the case
where the bounded rationality leads to multiple possible ac-
tions at one time. In future, we will investigate optimization
methods to automatically look for the worst action.
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