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Abstract

We describe a new way of reasoning about symmetric colli-
sions for Multi-Agent Path Finding (MAPF) on 4-neighbor
grids. We also introduce a symmetry-breaking constraint to
resolve these conflicts. This specialized technique allows us
to identify and eliminate, in a single step, all permutations of
two currently assigned but incompatible paths. Each such per-
mutation has exactly the same cost as a current path, and each
one results in a new collision between the same two agents.
We show that the addition of symmetry-breaking techniques
can lead to an exponential reduction in the size of the search
space of CBS, a popular framework for MAPF, and report
significant improvements in both runtime and success rate
versus CBSH and EPEA* – two recent and state-of-the-art
MAPF algorithms.

1 Introduction
Multi-Agent Path Finding (MAPF) is the planning problem
of finding a set of paths for a team of agents. Each agent is
required to move from an initial start location to a specified
goal location, while avoiding conflicts with other agents. A
conflict (i.e., collision) happens when two agents stay at the
same vertex or traverse the same edge at the same time. Such
problems appear in a range of application areas, includ-
ing warehouse logistics (Wurman, D’Andrea, and Mountz
2008), office robots (Veloso et al. 2015), aircraft-towing ve-
hicles (Morris et al. 2016) and computer games (Silver 2005;
Ma et al. 2017).

MAPF is known to be NP-hard on general graphs (Yu
and LaValle 2013b; Ma et al. 2016b), planar graphs (Yu
2016) and grids (Banfi, Basilico, and Amigoni 2017). De-
spite these intractability results and due to the substantial in-
terest in applications, numerous optimal MAPF algorithms
have been proposed in recent years. Approaches include re-
ducing MAPF to instances of other well known problems
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Figure 1: Two situations involving symmetric conflicts be-
tween two agents. (a) highlights the problem in general: ev-
ery shortest path for one agent conflicts with every shortest
path for the other agent somewhere in the yellow rectangular
area. (b) shows a cardinal conflict, a related class of conflicts
which requires that all shortest paths for each agent must
pass through a common location at the same timestep: here
location (3, 3) at timestep 3.

(e.g., multi-commodity flow (Yu and LaValle 2013a), sat-
isfiability (Surynek et al. 2016) and Answer Set Program-
ming (Erdem et al. 2013)); solving MAPF with a single inte-
grated A*-search (Standley 2010; Wagner and Choset 2011;
Goldenberg et al. 2014); and solving MAPF with a two-
level search (Sharon et al. 2013; 2015; Boyarski et al. 2015;
Felner et al. 2018), which constructs a plan by keeping track
of constraints between agents at a high level and computing
paths consistent with those constraints at a low level, one
agent at a time. More detailed surveys are given in (Ma et
al. 2016a; Felner et al. 2017).

In this paper, we introduce a new way of reasoning about
symmetric conflicts between two agents for MAPF on 4-
neighbor grids (which are arguably the most common way
of representing the environment for MAPF). Our approach
exploits grid symmetries: equivalences between sets of paths
or path segments which have the same start and goal loca-
tions, the same cost, and which differ only in the order in
which grid actions (up, down, left, right, or wait) appear on
them. Figure 1 shows two examples. All shortest paths for
the two agents conflict somewhere inside the yellow rect-
angular area. The optimal strategy here is for one agent to
wait for the other. We refer to such cases as cardinal rect-
angle conflicts. In this paper, we propose several efficient
algorithms to detect cardinal rectangle conflicts as well as
two other types of conflicts, semi-cardinal rectangle con-
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flicts and non-cardinal rectangle conflicts. We also introduce
barrier constraints that are able to resolve these rectangle
conflicts in a single step and demonstrate, in principle and in
practice, that the addition of barrier constraints can achieve
an exponential reduction in the number of nodes expanded
by Conflict-Based Search (CBS), a popular state-of-the-art
MAPF framework.

2 Preliminaries
A MAPF problem is defined by a graph G = (V,E) and a
set of m agents {a1, . . . , am}. Each agent ai has a start ver-
tex si ∈ V and a goal vertex gi ∈ V . Time is discretized into
timesteps. At each timestep, every agent can either move to
an adjacent vertex or wait at its current vertex. Both move
and wait actions have unit cost unless the agent terminally
waits at its goal vertex, which has zero cost. We call the
tuple 〈ai, aj , v, t〉 a vertex conflict iff agents ai and aj oc-
cupy the same vertex v ∈ V at the same timestep t, and
〈ai, aj , u, v, t〉 an edge conflict iff agents ai and aj traverse
the same edge (u, v) ∈ E in opposite directions at the same
timestep t. Our task is to find a set of conflict-free paths
which move all agents from their start vertices to their goal
vertices while minimizing the sum of their individual path
costs (SIC). In this paper, graph G is always a 4-neighbor
grid whose vertices are unblocked cells and whose edges
connect vertices corresponding to adjacent unblocked cells
in the four main compass directions.

3 Conflict-Based Search
Conflict-Based Search (CBS) (Sharon et al. 2015) is a two-
level search algorithm for MAPF. At the low level, CBS in-
vokes a space-time A* search to find a shortest path for each
agent that satisfies some spatio-temporal constraints added
by the high level. It break ties by preferring the path that has
the fewest conflicts with the paths of other agents. At the
high level, CBS performs a best-first search on a binary con-
straint tree (CT). Each CT node contains a set of paths, one
for each agent, and also a set of spatio-temporal constraints
that are used to coordinate agents and avoid conflicts. The
cost of a CT node is the SIC of its current paths. CBS pro-
ceeds from one CT node to the next, checking for conflicts
and calling its low-level search to replan paths one at a time.
CBS succeeds when the current CT node is conflict-free,
which corresponds to an optimal solution.

Constraints: A constraint is a spatio-temporal restriction
introduced by CBS to resolve situations where the paths of
two agents are in conflict. Specifically, a vertex constraint
〈ai, v, t〉 means that agent ai is prohibited from occupy-
ing vertex v at timestep t. Similarly, an edge constraint
〈ai, u, v, t〉 means that agent ai is prohibited from travers-
ing edge (u, v) at timestep t.

Splits: When CBS expands a CT node N , it checks for
pairwise conflicts among the current paths. If there are none,
then N is a goal CT node and CBS terminates. Otherwise,
CBS chooses one of the conflicts and resolves it by split-
ting N into two child CT nodes. In each child CT node, one
agent from the conflict is forbidden to use the contested ver-
tex or edge by way of an additional constraint. The path of

this agent becomes invalidated and must be replanned by a
low-level search. All other paths remain unchanged. With
two child CT nodes per conflict, CBS guarantees optimality,
exploring both ways of resolving each conflict.

Cardinal, semi-cardinal and non-cardinal conflicts:
Boyarski et al. (2015) categorize conflicts into three differ-
ent types, and they show that prioritizing among conflicts
improves performance. The highest priority is given to car-
dinal conflicts, which they define as follows:

[A conflict] C = 〈ai, aj , v, t〉 is cardinal if all the con-
sistent optimal paths for both [agents] ai and aj include
vertex v at timestep t.

An example of such a conflict is shown in Figure 1(b).
Every possible way of resolving the cardinal conflict
〈a1, a2, (3, 3), 3〉 requires one of the agents to wait for the
other or take a detour. That means, when CBS splits on a car-
dinal conflict, it produces two child CT nodes whose costs
are both strictly higher than the current CT node. In this
work, we show that there exist other types of conflicts which
have the same result when splitting on them but which can-
not be detected using the present definition, such as shown in
the example in Figure 1(a). We therefore introduce a revised
and more general definition:
Definition 1. A conflict C is cardinal iff replanning for any
agent involved in the conflict increases the SIC.

Once all cardinal conflicts are processed, the next highest
priority is given to semi-cardinal conflicts, which Boyarski
et al. (2015) define as:

[A conflict] C = 〈ai, aj , v, t〉 is semi-cardinal if all the
consistent optimal paths of one agent include vertex v
at timestep t, but the other agent has such a path that
does not include v at timestep t.
Similarly, we give a revised and more general definition:

Definition 2. A conflict C is semi-cardinal iff replanning
for one agent involved in the conflict always increases the
SIC while replanning for the other agent does not.

Any conflict which is not cardinal or semi-cardinal is said
to be non-cardinal. These can be processed in any order
after the other conflicts, though a popular strategy involves
choosing the earliest non-cardinal conflict first.

Admissible heuristics: The high-level of CBS consists
of a best-first search that prioritizes for expansion CT nodes
with the smallest SIC. Felner et al. (2018) show that the effi-
ciency of the high-level search can be improved through the
addition of admissible heuristics. The suggested algorithm,
CBSH, proceeds by building a conflict graph, whose ver-
tices represent agents and edges represent cardinal conflicts
of the current paths. It can be shown that the value of the
minimum vertex cover of the conflict graph is an admissible
and consistent lower bound on the cost-to-go. The addition
of heuristics to the high-level search often produces smaller
CTs and decreases the runtime of CBS by a large factor.

4 Inefficiency of CBS and CBSH when
Resolving Cardinal Rectangle Conflicts

In this section, we demonstrate how CBS and CBSH resolve
cardinal rectangle conflicts, and illustrate the large number
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Figure 2: The CT of CBS and CBSH (without the 2 blue CT
nodes for CBSH) when resolving a 1×3 cardinal rectangle
conflict.

Table 1: Number of CT nodes expanded by CBSH on MAPF
instances where 2 agents are involved in one cardinal rect-
angle conflict. The first column and first row are the width
and length of the rectangular area.

1 2 3 4 5 6 7 8 9
1 1 1 2 3 4 5 6 7 8
2 3 7 14 26 46 79 133 221
3 22 53 116 239 472 904 1,692
4 142 392 1,016 2,651 6,828 17,747
5 1,015 2,971 8,525 23,733 65,236
6 7,447 24,275 78,002 254,173
7 62,429 222,524 795,197
8 573,004 >1,518,151

of CT nodes resulting from it.

Figure 2 illustrates the issue. All shortest paths of agents
a1 and a2 cross the 1×3 yellow rectangular area. a1 has 1
shortest path with cost 4 while a2 has 6 shortest paths with
cost 4. Thus, the cost of the root CT node of CBS is 8. How-
ever, each of the 6 combinations of these paths has a vertex
conflict in one of the yellow cells. Consequently, this is a
cardinal rectangle conflict, and the optimal solution cost is
9. The CT of CBS consists of 3 non-goal CT nodes with cost
8 and 4 goal CT nodes with cost 9. The CT of CBSH only
saves the last 2 goal CT nodes (in blue).

When the rectangular area is larger, CBS performs worse.
Sharon et al. (2015) show that, to resolve the 2×2 cardinal
rectangle conflict in Figure 1(a), CBS generates 5 non-goal
CT nodes and 6 goal CT nodes (and, CBSH generates 5 CT
non-goal nodes and 2 CT goal nodes). To illustrate this is-
sue further, we ran CBSH on MAPF instances where two
agents are involved in a cardinal rectangle conflict of differ-
ent sizes. Surprisingly, the number of expanded CT nodes,
as shown in Table 1, is exponential in the length and width
of the rectangular area. For a small 8×9 rectangular area,
CBSH expands already more than 1 million CT nodes and
fails to solve the MAPF instance within 5 minutes.

5 Cardinal Rectangle Reasoning for Entire
Paths

In this section, we present a simple algorithm for identifying
cardinal rectangle conflicts and introduce a new type of con-
straints, called barrier constraints, to resolve such conflicts
efficiently. We refer to a node S as a three-element tuple
(S.x, S.y, S.t) corresponding to an agent staying in location
(S.x, S.y) at timestep S.t. We refer to a valid path (or path
for short) of an agent as a path (sequences of nodes whose
locations can repeat and whose timesteps are 0, 1, 2, . . . )
from its start location to its goal location that satisfies its
constraints in the CT node but ignores paths of other agents
and an optimal path of an agent as its shortest valid path.

5.1 Identify Cardinal Rectangle Conflicts
Assume that two agents ai and aj have a vertex conflict
〈ai, aj , v, t〉. Let nodes Si, Sj , Gi and Gj be the corre-
sponding start and goal nodes (Figure 3(a)). We define the
rectangular area (or rectangle for short) as the intersec-
tion of the Si-Gi rectangle and the Sj-Gj rectangle, where
Sk-Gk rectangle (k = i, j) represents the rectangle whose
diagonal corners are in location (Sk.x, Sk.y) and location
(Gk.x,Gk.y), respectively. The first two requirements for a
cardinal rectangle conflict are intuitive: (1) both agents fol-
low their Manhattan-optimal paths, i.e., the cost of each path
equals the Manhattan distance from its start node to its goal
node, and (2) the distances from each location inside the
rectangle to the locations of the two start nodes are equal,
which can be simplified to the requirement that both agents
move in the same direction in both dimensions (because we
already know that the distances from location v to the loca-
tion of node Si and the location of node Sj are equal):

|Si.x−Gi.x|+ |Si.y −Gi.y| = Gi.t− Si.t > 0 (1)
|Sj .x−Gj .x|+ |Sj .y −Gj .y| = Gj .t− Sj .t > 0 (2)

(Si.x−Gi.x)(Sj .x−Gj .x) ≥ 0 (3)
(Si.y −Gi.y)(Sj .y −Gj .y) ≥ 0. (4)

However, these two requirements do not guarantee that all
combinations of optimal paths conflict. Figures 3(b) and 3(c)
are two counterexamples where at least one agent has a by-
pass through which the agent can reach its goal node without
entering the rectangle, and thus does not conflict with the
other agent. The difference between these two conflicts and
the cardinal rectangle conflict in Figure 3(a) is that their goal
nodes are located differently compared to their start nodes.
Therefore, the third requirement is that the start and goal
nodes have opposite relative locations in both dimensions:

(Si.x− Sj .x)(Gi.x−Gj .x) ≤ 0 (5)
(Si.y − Sj .y)(Gi.y −Gj .y) ≤ 0. (6)

To sum up, if agents ai and aj have a vertex conflict and their
corresponding start and goal nodes satisfy Equations (1)
to (6), then agents ai and aj are involved in a cardinal rect-
angle conflict.

5.2 Calculate Corner Nodes of the Rectangle
We refer to the four corner nodes of the rectangle as Rs, Rg ,
Ri and Rj , where Rs and Rg are the corner nodes closest
to the start and goal nodes, respectively, and Ri and Rj are
the other corner nodes on the opposite borders of Si and
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(a) Cardinal conflict (b) Semi-cardinal
conflict

(c) Non-cardinal
conflict

(d) Cardinal conflict (e) Semi-cardinal
conflict

(f) No rectangle con-
flict

Figure 3: Some examples of rectangle conflicts. The locations of the start and goal nodes are shown in the figures. Gk.t =
Sk.t + |Gk.x − Sk.x| + |Gk.y − Sk.y|, k = i, j. In (a), (b) and (c), Si.t = Sj .t; in (d) and (e), Si.t = Sj .t − 1; and, in (e),
Si.t = Sj .t− 2.

Sj , respectively (Figure 3(a)). The timestep of each node
is defined as the timestep when an optimal path of agent
ai or aj reaches the location of the node. We analyze all
combinations of relative locations of start and goal nodes
and come up with the following way to calculate them: For
the locations of Rs and Rg:

Rs.x =

 Si.x, Si.x = Gi.x
max{Si.x, Sj .x}, Si.x < Gi.x
min{Si.x, Sj .x}, Si.x > Gi.x

(7)

Rg.x =

 Gi.x, Si.x = Gi.x
min{Gi.x,Gj .x}, Si.x < Gi.x
max{Gi.x,Gj .x}, Si.x > Gi.x.

(8)

We can calculate Rs.y and Rg.y by replacing all x by y in
Equations (7) and (8). Next, for the locations of Ri and Rj , if
(Si.x−Sj .x)(Sj .x−Rg.x) ≥ 0, then Ri.x = Rg.x, Ri.y =
Si.y, Rj .x = Sj .x and Rj .y = Rg.y; else, Ri.x = Si.x,
Ri.y = Rg.y, Rj .x = Rg.x and Rj .y = Sj .y. Finally, for
the timesteps of all corner nodes Rk (k = i, j, s, g), Rk.t =
Si.t+ |Si.x−Rk.x|+ |Si.y −Rk.y|.

5.3 Add Barrier Constraints
Since all combinations of the optimal paths of the agents
conflict, we resolve the cardinal rectangle conflict by giv-
ing one agent priority within the rectangle and forcing the
other agent to leave it later or take a detour. To integrate
this idea into CBS, we introduce the barrier constraint,
B(ak, Rk, Rg) (k = i, j), which is a set of vertex con-
straints that prohibits agent ak from occupying all loca-
tions along the border of the rectangle that is opposite of
its start node (i.e., from Rk to Rg) at the timestep when
ak would optimally reach the location. For example, in
Figure 3(a), two barrier constraints are B(ai, Ri, Rg) =
{〈ai, (2 + n, 4), 3 + n〉|n = 0, 1} and B(aj , Rj , Rg) =
{〈aj , (3, 2 + n), 2 + n〉|n = 0, 1, 2}. B(ak, Rk, Rg) blocks
all possible paths for ak that reach its goal node Gk via
the rectangle, and thus forces ak to wait or take a detour.
When resolving a cardinal rectangle conflict, we generate
two child CT nodes and add B(ai, Ri, Rg) to one of them
and B(aj , Rj , Rg) to the other one. We now present two ob-
vious properties of barrier constraints.
Property 1. For all combinations of paths of agents ai and
aj with a cardinal rectangle conflict, if one path violates
B(ai, Ri, Rg) and the other path violates B(aj , Rj , Rg),
then the two paths have one or more vertex conflicts within
the rectangle.

Proof. We assume that the vertex conflict between agents
ai and aj that underlies the cardinal rectangle conflict is
〈ai, aj , (C.x,C.y), C.t〉. We then assume Si.x ≤ C.x and
Si.y ≤ C.y without loss of generality (because the prob-
lem is invariant under rotations of axes). According to Equa-
tions (1) to (4),

max{Si.x, Sj .x} ≤ C.x ≤ min{Gi.x,Gj .x} (9)
max{Si.y, Sj .y} ≤ C.y ≤ min{Gi.y,Gj .y} (10)

(C.x− Si.x) + (C.y − Si.y) = (C.x− Sj .x) + (C.y − Sj .y).

(11)

From Equation (11), we know

Si.x+ Si.y = Sj .x+ Sj .y. (12)

We can assume that Si.x ≥ Sj .x without loss of generality
(because the problem is invariant under swaps of the indexes
of agents), which implies Si.y ≤ Sj .y. From Equations (9)
and (10) and the method for calculating rectangle corner
nodes in Section 5.2, we have Rg.x = min{Gi.x,Gj .x} ≥
Si.x, Rg.y = min{Gi.y,Gj .y} ≥ Sj .y, Ri.x = Si.x,
Ri.y = Rg.y, Rj .x = Rg.x and Rj .y = Sj .y. Thus,

Sj .x ≤ Si.x = Ri.x ≤ Rg.x = Rj .x (13)
Si.y ≤ Sj .y = Rj .y ≤ Rg.y = Ri.y. (14)

Consequently, the relative locations of the start, goal and
rectangle corner nodes are exactly the same as given in
Figure 3(a). For every node Ni on the border Ri-Rg (i.e.,
Ri.x ≤ Ni.x ≤ Rg.x,Ni.y = Rg.y, Ni.t = Ri.t+Ni.x−
Ri.x) and every node Nj on the border Rj-Rg (i.e., Nj .x =
Rg.x, Rj .y ≤ Nj .y ≤ Rg.y, Nj .t = Rj .t+Nj .y − Rj .y),
we need to prove that the path from Si to Ni and the path
from Sj to Nj have at least one node in common within
the rectangle. Since Sj .x ≤ Si.x ≤ Ni.x ≤ Nj .x and
Si.y ≤ Sj .y ≤ Nj .y ≤ Ni.y, the Si-Ni rectangle and the
Sj-Nj rectangle consist of a cross shape, which implies that
the path from Si to Ni and the path from Sj to Nj have at
least one location in common within the intersection of the
Si-Ni rectangle and the Sj-Nj rectangle, i.e., this location is
within the rectangle. By the definition of rectangle conflicts,
the two paths traverse this location at the same timestep, i.e.,
they have at least one node in common within the rectan-
gle.

Property 2. If agents ai and aj have a cardinal rectangle
conflict, then the cost of any path of agent ak (k = i, j) that
satisfies B(ak, Rk, Rg) is larger than the cost of an optimal
path of agent ak.
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Proof. We use the same assumptions as in the proof for
Property 1. Then, Equations (13) and (14) also hold here.
According to Equation (5), Si.x = Ri.x ≤ Rg.x =
Gi.x. Any optimal path that connects locations (Si.x, Si.y)
and (Gi.x,Gi.y) has at least one of the nodes {(Ri.x +
n,Ri.y, Ri.t+n)|n = 0, . . . , Rg.x−Ri.x}. But all of these
nodes are constrained by B(ai, Ri, Rg). Therefore, the cost
of any path of agent ai that satisfies B(ai, Ri, Rg) is larger
than the cost of an optimal path of agent ai. The proof for
k = j can be derived analogously using Equation (6) instead
of Equation (5).

Property 1 is important because CBS requires the con-
straints added to child CT nodes to not block any conflict-
free paths, which is why we add constraints that force an
agent to leave the rectangle later rather than enter the it later.

5.4 CBSH-CR
We now present our first algorithm, CBSH with cardinal
rectangle reasoning (CBSH-CR). It is identical to CBSH ex-
cept for the following four modifications.

Perform splits: When the chosen conflict is a cardi-
nal rectangle conflict, CBSH-CR adds B(ai, Ri, Rg) to one
child CT node and B(aj , Rj , Rg) to the other child CT node.
Then, in both child CT nodes, the rectangle conflict is re-
solved by one of the agents increasing its cost.

Classify conflicts: CBSH-CR first classifies vertex/edge
conflicts into cardinal, semi-cardinal and non-cardinal con-
flicts. It then finds cardinal rectangle conflicts among all
semi- and non-cardinal vertex conflicts.

Prioritize conflicts: It follows from Definition 1 and
Properties 1 and 2 that both cardinal rectangle conflicts and
cardinal vertex/edge conflicts are cardinal conflicts. There-
fore, CBSH-CR chooses cardinal conflicts first, then semi-
cardinal conflicts and last non-cardinal conflicts. It breaks
ties by preferring the earliest conflict, where we define Rs.t
as the timestep of a cardinal rectangle conflict.

Calculate heuristics: It uses all cardinal conflicts (includ-
ing cardinal rectangle conflicts) to compute the heuristics for
the high-level search.

Now we show that CBSH-CR is complete and optimal.

Lemma 1. For every cost c, there is a finite number of CT
nodes with cost c.

Proof. The number of conflicts within c timesteps is finite,
and, once a conflict is chosen at a CT node N , it never ap-
pears again in the subtree of N . Therefore, the number of
CT nodes is also finite.

Theorem 2. CBSH-CR is complete and optimal.

Proof. The proof is similar to the proof for the optimality
and completeness of CBS (Sharon et al. 2015). The low-
level search always returns an optimal path, the high-level
search always chooses a CT node with minimum f -value
to expand, and the expansion does not lose any conflict-
free paths (Property 1). Therefore, the first chosen CT node
whose paths are conflict-free has a set of conflict-free paths
with minimum SIC (i.e., CBSH-CR is optimal). Besides, the
f -value of CT nodes are non-decreasing in expansion order.

It follows from Lemma 1 that, if there exist solutions, a so-
lution must be found after expanding a finite number of CT
nodes whose costs are no more than the optimal cost (i.e.,
CBSH-CR is complete).

6 Rectangle Reasoning for Entire Paths
Reasoning about cardinal rectangle conflicts does not elimi-
nate all symmetric conflicts on grids for CBS. For instance,
the conflict in Figure 3(b) is not a cardinal rectangle conflict
because agent aj has an optimal bypass outside of the rect-
angle. However, if location (2, 5) at timestep 4 and location
(3, 5) at timestep 5 are occupied by other agents, whenever
the low-level search of CBS replans agent aj’s path, it al-
ways returns a path that conflicts with agent ai’s path, be-
cause the low-level search uses the number of conflicts with
other agents as the tie-breaking rule. Therefore, CBS again
generates many CT nodes before finally finding conflict-free
paths. We refer to such cases as semi-cardinal rectangle con-
flicts. Similarly, we refer to cases with symmetric conflicts
where both agents have bypasses as non-cardinal rectangle
conflicts, like the case in Figure 3(c). Together with cardinal
rectangle conflicts, we refer to these three types of conflicts
as rectangle conflicts.

We now show how to identify and classify rectangle con-
flicts. If agents ai and aj have a vertex conflict, then they are
involved in a rectangle conflict iff their start and goal nodes
satisfy Equations (1) to (4). Moreover, if they also satisfy
Equations (5) and (6), it is cardinal; if they also satisfy only
one of these equations, it is semi-cardinal; and if they sat-
isfy neither equation, it is non-cardinal. Property 1 holds for
all types of rectangle conflicts. It follows from the proof for
Property 2 that, when resolving a semi-cardinal rectangle
conflict by barrier constraints, at least one of the child CT
nodes has to increase its SIC. But for a non-cardinal rectan-
gle conflict, both child CT nodes may not change their SICs.

6.1 CBSH-R
We now introduce the second algorithm, CBSH with rectan-
gle reasoning (CBSH-R). It is identical to CBSH-CR except
for the following three modifications.

Perform splits: CBSH-R uses barrier constraints to re-
solve all rectangle conflicts (not only cardinal ones).

Classify conflicts: After classifying all vertex/edge con-
flicts, CBSH-R checks all semi- and non-cardinal vertex
conflicts to identify and classify rectangle conflicts. If a
semi-/non-cardinal rectangle conflict has been resolved in
one of the ancestors of the current CT node, it ignores this
rectangle conflict, otherwise it could always choose to re-
solve the same rectangle conflict and thus be in a cycle for-
ever. A semi-/non-cardinal rectangle conflict can be found
multiple times in a CT branch because its barrier constraint
does not disallow all optimal paths that traverse locations in-
side the rectangle. For example, in Figure 3(c), both agents
ai and aj have optimal paths that contains node Rs but do
not contain nodes that are constrained by B(ai, Ri, Rg) and
B(aj , Rj , Rg), respectively. So, after adding barrier con-
straints, a vertex conflict could still happen between two op-
timal paths within the rectangle and then it is identified as a
semi-/non-cardinal rectangle conflict again.
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(a) (b)

Figure 4: Rectangle conflicts between path segments. In Fig-
ure (b), a2 follows the red solid arrow but waits at (1, 4) or
(2, 4) for one timestep because of constraints.

Prioritize conflicts: CBSH-R uses the same conflict pri-
oritization as CBSH-CR, except that it adds a tie-breaking
rule for semi-/non-cardinal rectangle conflicts. Since our
reasoning method ignores obstacles and constraints inside
the rectangle, it is possible that both child CT nodes increase
their costs when CBSH-R resolves a semi-/non-cardinal
rectangle conflict using barrier constraints. Therefore, for
all semi-cardinal conflicts, it prefers semi-cardinal rectangle
conflicts to semi-cardinal vertex/edge conflicts. Similarly,
for all non-cardinal conflicts, it prefers non-cardinal rectan-
gle conflicts to non-cardinal vertex/edge conflicts. The sec-
ondary tie-breaking rule is still to prefer the earliest conflict,
where we define Rs.t as the timestep of a rectangle conflict.
Theorem 3. CBSH-R is complete and optimal.

Proof. Since all chosen rectangle conflicts are different in
any CT branch, Lemma 1 still holds. Property 1 also holds
for semi-/non-cardinal rectangle conflicts. Therefore, we can
directly use the proof for Theorem 2 without changes.

7 Rectangle Reasoning for Path Segments
Our rectangle reasoning methods so far ignore obstacles and
constraints, so they can reason only about the rectangle con-
flicts for entire paths. In some cases, however, rectangle con-
flicts exist for path segments but not entire paths, such as the
cardinal rectangle conflict in Figure 4(a). Since the paths are
not Manhattan-optimal, our rectangle reasoning methods so
far fail to identify the rectangle conflict. Therefore, in this
section, we discuss a rectangle reasoning method for path
segments using MDDs.

7.1 Identify Rectangle Conflicts using MDDs
A Multi-Valued Decision Diagram (MDD) (Sharon et al.
2013) MDDi for agent ai is a directed acyclic graph that
consists of all optimal paths of agent ai. The nodes at depth
t in MDDi correspond to all possible locations at timestep
t in these paths. If MDDi has only one node (x, y, t) at
depth t, we call this node a singleton, and all optimal paths
of agent ai traverse location (x, y) at timestep t. CBSH uses
singletons in MDDs to classify cardinal, semi-cardinal and
non-cardinal vertex/edge conflicts.

MDDs offer information about the impact of obstacles
in the grid and constraints imposed on an agent, and thus
help us to reason about its path segments. We extend rectan-
gle reasoning to reasoning about rectangle conflicts between
two path segments, each of which starts at a singleton (called

Algorithm 1: Identify rectangle conflicts for path seg-
ments.

Input: A semi/non-cardinal vertex conflict 〈ai, aj , v, t〉.
// Collect start and goal node candidates.

1 NS
i ← singletons in MDDi no later than timestep t;

2 NG
i ← singletons in MDDi no earlier than timestep t;

3 NS
j ← singletons in MDDj no later than timestep t;

4 NG
j ← singletons in MDDj no earlier than timestep t;

5 type′ ← Not-Rectangle; area′ ← 0;
// Try all combinations.

6 foreach Si ∈ NS
i , Sj ∈ NS

j , Gi ∈ NG
i , Gj ∈ NG

j do
7 if isRectangle(Si, Sj , Gi, Gj) then
8 {Ri, Rj , Rs, Rg} ← getVertices(Si, Sj , Gi, Gj);
9 type← classifyRect(Ri, Rj , Rg, Si, Sj , Gi, Gj);

10 area← |Ri.x−Rj .x| × |Ri.y −Rj .y|;
11 if type′ = Not-Rectangle or type is better than type′

or (type = type′ and area > area′) then
12 type′ ← type; area′ ← area;
13 {R′i, R′j , R′s, R′g} ← {Ri, Rj , Rs, Rg};

14 if type′ 6= Not-Rectangle and no ancestor CT node has
chosen rectangle conflict {R′i, R′j , R′s, R′g} before then

15 return type′ and {R′i, R′j , R′s, R′g};
16 return Not-Rectangle;

its start node) and ends at another singleton (called its goal
node). If we find a rectangle conflict for a combination of
start and goal nodes, we can impose barrier constraints.

Algorithm 1 shows the pseudo-code. It first treats all sin-
gletons as start and goal node candidates (Lines 1-4) and
then tries all combinations to find rectangle conflicts. If mul-
tiple rectangle conflicts are identified, it prefers one of the
highest priority type and breaks ties by preferring a con-
flict with the largest rectangle area (Line 11). Line 14 pro-
hibits choosing the same rectangle conflict more than once
in any CT branch. We discuss details of the three functions
on Lines 7, 8 and 9 in Section 7.3.

7.2 Add Modified Barrier Constraints
When reasoning about entire paths, all paths of agent ai al-
ways traverse its start node Si. However, path segments do
not necessarily traverse its start node Si. In this case, barrier
constraints may disallow pairs of conflict-free paths and thus
lose the completeness and optimality guarantees.

Figure 4(b) provides a counterexample where a CT node
N has the set of constraints listed in the figure. The con-
straints force agent a2 to wait for at least one timestep before
reaching its goal location. It can either wait before entering
the rectangle, which leads to a conflict with agent a1, or en-
ter the rectangle without waiting and wait later, which might
avoid conflicts with agent a1. However, all optimal paths
of agent a2 in N (whose costs are 6) have to wait for one
timestep before entering the rectangle (see MDD2 shown
in the figure). Therefore, node S2 = (2, 4, 2) is a single-
ton, and agents a1 and a2 have a cardinal rectangle conflict.
If this conflict is resolved using barrier constraints, the CT
subtree of N disallows the pair of conflict-free paths where
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agent a1 directly follows the blue arrow (which traverses
node (3, 5, 4) constrained by B(a1, R1, Rg)) and agent a2
follows the dotted red arrow but waits at location (4, 4)
for 2 timesteps (which traverses node (4, 4, 4) constrained
by B(a2, R2, Rg)). Barrier constraints fail here because the
constrained node (4, 4, 4) is not in MDD2 and thus agent
a2 could have a path with a larger cost that does not traverse
node S2 but traverses node (4, 4, 4).

Therefore, we add a barrier constraint only for nodes that
are in the current MDD of the agent. We call this a modi-
fied barrier constraint B′(ak, Rk, Rg) = {〈ak, (x, y), t〉 ∈
B(ak, Rk, Rg)|(x, y, t) ∈MDDk} (k = i, j), and its prop-
erties are discussed in Section 7.3.

7.3 CBSH-RM
Our last algorithm is CBSH with rectangle reasoning by
MDDs (CBSH-RM), which reasons about rectangle con-
flicts between path segments. It uses Algorithm 1 to iden-
tify and classify rectangle conflicts and uses modified barrier
constraints to resolve them.

Previously, all start nodes were at timestep 0, and thus
their distances to the rectangle were equal. However, now
we allow start nodes to be at different timesteps, e.g., S1 =
(5, 2, 1) and S2 = (5, 3, 2) in Figure 4(a). We thus need
to modify how to identify rectangle conflicts, calculate rect-
angle corner nodes and classify rectangle conflicts, corre-
sponding to the three functions on Lines 7, 8 and 9 of Algo-
rithm 1, respectively.

Identify rectangle conflicts: The start and goal nodes of
a rectangle conflict have to satisfy not only Equations (1)
to (4) but also

(Si.x− Sj .x)(Si.y − Sj .y)(Si.x−Gi.x)(Si.y −Gi.y) ≤ 0.
(15)

This guarantees that the start nodes are on different borders
of the rectangle since, otherwise, adding modified barrier
constraints might lose a pair of paths that allow both agents
to reach the constrained border without waiting, such as in
the example of Figure 3(f). We also require that Si 6= Sj ,
otherwise the two agents have a cardinal vertex conflict at
node Si and CBS constraints can resolve it in a single step.

Calculate rectangle corner nodes: The method in Sec-
tion 5.2 can miscalculate Ri and Rj when Si.x = Sj .x,
such as in Figures 3(d) and 3(e). Instead, we calculate Ri

and Rj with the following method when Si.x = Sj .x:
If (Si.y − Sj .y)(Sj .y − Rg) ≤ 0, then Ri.x = Rg.x,
Ri.y = Si.y, Rj .x = Sj .x and Rj .y = Rg.y; otherwise,
Ri.x = Si.x, Ri.y = Rg.y, Rj .x = Rg.x and Rj .y = Sj .y.

Classify rectangle conflicts: Similarly, Equations (5)
and (6) misclassify rectangle conflicts when Si.x = Sj .x
or Si.y = Sj .y. Instead, we classify rectangle conflicts us-
ing the corner nodes of their rectangles. Since we always
add modified barrier constraints along two adjacent borders
of the rectangle, we only need to compare the length and
width of the rectangle with those of the Si-Gi and Sj-Gj
rectangles. Consider the two equations:

Rk.x−Rg.x = Sk.x−Gk.x (16)
Rk.y −Rg.y = Sk.y −Gk.y. (17)

If one holds for k = i and the other one holds for k = j,
the rectangle conflict is cardinal; if only one of them holds
for k = i or k = j, it is semi-cardinal; otherwise, it is non-
cardinal.

Lemma 4. If agents ai and aj have a rectangle conflict, any
path of agent ak (k = i, j) that traverses a node constrained
by B′(ak, Rk, Rg) also traverses its start node Sk.

Proof. Let Nk be a node constrained by B′(ak, Rk, Rg).
Thus node Nk is in MDDk. Then, any node before timestep
Nk.t on any path of agent ak that traverses node Nk is also
in MDDk. Since node Sk is a singleton of MDDk, any
path of agent ak that traverses node Nk also traverses its
start node Sk.

Property 3. For all combinations of paths of agents ai
and aj with a rectangle conflict, if one path violates
B′(ai, Ri, Rg) and the other path violates B′(aj , Rj , Rg),
then the two paths have one or more vertex conflicts within
the rectangle.

Proof. By Lemma 4, we need to prove that any path of agent
ai from its start node Si to one of the nodes constrained
by B′(ai, Ri, Rg) and any path of agent aj from its start
node Sj to one of the nodes constrained by B′(aj , Rj , Rg)
have at least one node in common within the rectangle. This
holds by applying the proof for Property 1 after replacing
Equations (11) and (12) by Equation (15) and replacing the
method for calculating rectangle corner nodes in Section 5.2
by the method in this section.

Property 4. If agents ai and aj have a rectangle conflict
and one of the Equations (16) and (17) holds for k (k = i, j),
the cost of any path of agent ak that satisfies B′(ak, Rk, Rg)
is larger than the cost of an optimal path of agent ak.

Proof. Since nodes Sk and Gk are singletons, all optimal
paths contain these two nodes. If one of Equations (16)
and (17) holds, any path from node Sk to node Gk traverses
at least one node constrained by B′(ak, Rk, Rg). So, all op-
timal paths violate B′(ak, Rk, Rg). Therefore, the cost of
any path of agent ak that satisfies B′(ak, Rk, Rg) is larger
than the cost of an optimal path of agent ak.

Theorem 5. CBSH-RM is complete and optimal.

Proof. The proof for Theorem 3 applies after replacing
Properties 1 and 2 by Properties 3 and 4, respectively.

8 Experimental Results
In this section, we compare CBSH-CR, CBSH-R and
CBSH-RM with CBSH on grids with randomly blocked
cells and benchmark grids. Previous research found that A*-
based solvers usually run faster than CBS-based solvers on
sparse grids, where many rectangle conflicts exist (Sharon et
al. 2015). Therefore, we compare our algorithms also with
EPEA* (Goldenberg et al. 2014), a state-of-the-art A*-based
solver. Following Boyarski et al. (2015), we enhance EPEA*
with Independence Detection (ID) (Standley 2010), which
identifies independent groups of agents and runs the solver
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(a) Success rate on 0%-blocked (b) Runtime on 0%-blocked (c) Success rate on 10%-blocked (d) Runtime on 10%-blocked

Figure 5: Results on 20×20 grids with 0% and 10% blocked cells. (a) and (c) plot the success rates within 5 minutes. (b) and
(d) plot the runtimes, where the runtime limit of 5 minutes is included in the average for unsolved instances. Many parts of the
blue lines in (a) and (b) are hidden by the yellow lines.

(a) Success rate on den520d (b) Runtime on den520d (c) Success rate on lak503d (d) Runtime on lak503d

Figure 6: Results on the game grids den520d and lak503d. (a) and (c) plot the success rates within 5 minutes. (b) and (d) plot
the runtimes, where the runtime limit of 5 minutes is included in the average for unsolved instances.

Table 2: Results on 20×20 grids. The first “Ins” column
shows the number of instances solved by both CBSH and
CBSH-RM, and the following columns show results on
these instances. Similarly, the second “Ins” column shows
the number of instances solved by CBSH-CR, CBSH-R
and CBSH-RM, and the following columns show results on
these instances.

m Ins Runtime (s) CT Nodes Ins Runtime (s) CT Nodes
CBSH RM CBSH RM CR R RM CR R RM

0%

30 46 6.2 0.02 29,506 87 49 0.06 0.03 0.02 222 89 82
40 40 2.1 0.02 10,889 105 50 2.2 2.1 2.1 11,282 11,029 10,140
50 27 14.8 1.4 92,627 5,925 39 0.6 1.6 1.1 3,454 6,770 4,327
60 9 28.4 2.9 169,916 16,194 26 11.0 9.6 7.5 54,300 45,691 37,210

10
%

20 50 2.1 0.002 9,567 8 50 0.002 0.002 0.002 10 9 8
30 50 4.5 2.2 19,322 8,702 50 1.8 2.0 2.2 7,250 7,962 8,702
40 43 17.7 4.4 96,121 21,384 46 8.2 6.0 4.1 37,425 28,686 20,232
50 16 19.0 16.4 97,553 79,975 20 14.4 11.1 14.8 70,517 56,762 73,624

for each group. We ran experiments on a 2.80 GHz Intel
Core i7-7700 laptop with 8 GB RAM with a runtime limit
of 5 minutes. For every grid and every number of agents, we
average over 50 instances with random start and goal loca-
tions.

8.1 Results on Small Grids
Figure 5 presents the success rates and runtimes of all al-
gorithms on a 20×20 empty grid and a 20×20 grid with
10% randomly blocked cells. On both grids, many opti-
mal paths are Manhattan-optimal. As expected, EPEA* runs
faster than CBSH on sparse grids (with no blocked cells and

few agents). The success rates of EPEA* drop dramatically
as grids get denser. The success rates of CBSH, however, has
higher success rates on the non-empty grid than the empty
grid when the number of agents is at most 40, indicating that
rectangle conflicts significantly slow down CBSH on sparse
grids. The three new algorithms run significantly faster than
CBSH and EPEA* on both grids. In particular, CBSH-R and
CBSH-RM perform similarly, and both of them run faster
than CBSH-CR, especially on the empty grid with many
agents. This observation implies that these instances have
many semi- or non-cardinal rectangle conflicts.

Table 2 provides additional details. It first compares
CBSH-RM with CBSH by showing their runtimes and num-
bers of expanded CT nodes on instances solved by both
algorithms, i.e., instances that are relatively easy to solve.
CBSH-RM wins on both metrics in all cases, by factors of
up to three orders of magnitude, and its overhead due to rea-
soning with rectangle conflicts appears negligible. CBSH-
RM improves CBSH by two techniques, using barrier con-
straints to resolve rectangle conflicts and using cardinal rect-
angle conflicts to calculate heuristics. In order to see the
improvements of the two techniques independently, we also
compare CBSH and CBSH-RM with two modified versions
of CBSH-RM where one of the two techniques is turned
off. The results show that using cardinal rectangle conflicts
to calculate heuristics speeds up CBSH, and using barrier
constraints to resolve rectangle conflicts speeds up CBSH
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more. The combination of the two techniques, i.e., CBSH-
RM, runs faster than all of them.

Table 2 also compares CBSH-CR, CBSH-R and CBSH-
RM on both metrics on instances solved by all three algo-
rithms. All of them perform similarly. In a few instances,
CBSH-CR even expands fewer CT nodes than CBSH-R and
CBSH-RM, because our reasoning methods ignore blocked
cells and constraints inside the rectangles. So, sometimes
rectangle conflicts do not have many symmetries and are
faster to solve with CBS constraints than with barrier con-
straints.

8.2 Results on Large Grids
We also compare the algorithms on two standard benchmark
game grids, den520d and lak503d, from (Sturtevant 2012).
Figures 6(a) and 6(b) present the success rates and run-
times on map den520d, a 257×256 grid with 28,178 empty
cells and 37,614 blocked cells. This grid has a large open
space and many large obstacles around the open space. Thus,
many optimal paths are not Manhattan-optimal. Therefore,
although CBSH-CR and CBSH-R run faster than CBSH,
EPEA* runs faster than all of them. However, CBSH-RM,
which reasons about rectangle conflicts between path seg-
ments, runs faster than CBSH, CBSH-CR and CBSH-R as
well as, in most cases, EPEA*.

Figures 6(c) and 6(d) present the success rates and run-
times on map lak503d, a 192×192 grid with 17,953 empty
cells and 18,911 blocked cells. This grid also has large open
spaces. But it has many narrow corridors as well, which
A*-based solvers cannot handle efficiently. EPEA*, CBSH,
CBSH-CR and CBSH-R perform similarly, while CBSH-
RM runs faster than all of them.

9 Conclusions and Future Work
In this paper, we introduced a new way of reasoning about
a special class of symmetric conflicts, called rectangle con-
flicts, between two agents in grid-based MAPF problems.
We demonstrated the poor performance of CBS and CBSH
when resolving them. We then proposed three methods,
CBSH-CR, CBSH-R and CBSH-RM, for identifying such
conflicts and resolving them efficiently. Experimental re-
sults showed that all three proposed algorithms improve sig-
nificantly on CBSH and, among them, CBSH-RM runs the
fastest and also runs faster than the A*-based MAPF solver
EPEA*.

We suggest the following future research directions:
(1) Generalize the symmetry reasoning methods to gen-
eral graphs; (2) study symmetric conflicts among multiple
agents; and (3) apply symmetry reasoning methods to sub-
optimal MAPF solvers.
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