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Abstract

To safely and efficiently navigate in complex urban traffic, au-
tonomous vehicles must make responsible predictions in re-
lation to surrounding traffic-agents (vehicles, bicycles, pedes-
trians, etc.). A challenging and critical task is to explore the
movement patterns of different traffic-agents and predict their
future trajectories accurately to help the autonomous vehicle
make reasonable navigation decision. To solve this problem,
we propose a long short-term memory-based (LSTM-based)
realtime traffic prediction algorithm, TrafficPredict. Our ap-
proach uses an instance layer to learn instances’ movements
and interactions and has a category layer to learn the simi-
larities of instances belonging to the same type to refine the
prediction. In order to evaluate its performance, we collected
trajectory datasets in a large city consisting of varying con-
ditions and traffic densities. The dataset includes many chal-
lenging scenarios where vehicles, bicycles, and pedestrians
move among one another. We evaluate the performance of
TrafficPredict on our new dataset and highlight its higher ac-
curacy for trajectory prediction by comparing with prior pre-
diction methods.

Introduction
Autonomous driving is a significant and difficult task that
has the potential to impact people’s day-to-day lives. The
goal is to make a vehicle perceive the environment and
safely and efficiently navigate any traffic situation without
human intervention. Some of the challenges arise in dense
urban environments, where the traffic consists of differ-
ent kinds of traffic-agents, including cars, bicycles, buses,
pedestrians, etc.. These traffic-agents have different shapes,
dynamics, and varying behaviors and can be regarded as an
instance of a heterogeneous multi-agent system. To guaran-
tee the safety of autonomous driving, the system should be
able to analyze the motion patterns of other traffic-agents
and predict their future trajectories so that the autonomous
vehicle can make appropriate navigation decisions.

Driving in an urban environment is much more chal-
lenging than driving on a highway. Urban traffic is riddled
with more uncertainties, complex road conditions, and di-
verse traffic-agents, especially on some cross-roads. Differ-
ent traffic-agents have different motion patterns. At the same
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Figure 1: Heterogeneous urban traffic scenario: We
demonstrate the improved trajectory prediction accuracy of
our method over prior approaches (top). The green solid
lines denote ground truth trajectories (GT), pink solid lines
are for our method (TP) and dashed lines are the predicted
trajectories for other methods (ED, SL, SA). We observe
20% improvement in accuracy using TP. Traffic correspond-
ing point cloud captured by LiDAR of the acquisition car
is shown on the left bottom. Original trajectories of traffic-
agents in the scenario are shown on the right bottom: blue
for cars, green for bicycles, and red for pedestrians.

time, traffic-agents’ behaviors are deeply affected by other
traffic-agents. It is necessary to consider the interaction be-
tween the agent to improve the accuracy of trajectory pre-
diction.

The problem of predicting trajectories for moving agents
has been studied extensively. Some traditional algorithms
are based on motion models like kinematic and dy-
namic models (Toledo-Moreo and Zamora-Izquierdo 2009),
Bayesian filters (Kalman 1960), Gaussian Processes (Ras-
mussen and Williams 2006), etc. These methods do not take
into account interactions between the traffic-agents and the
environment, making it difficult to analyze complicated sce-
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narios or perform long-term predictions. With the success
of LSTM networks in modeling non-linear temporal depen-
dencies (Ma et al. 2017) in sequence learning and genera-
tion tasks, more and more works have been using these net-
works to predict trajectories of human crowds(Alahi et al.
2016) and vehicles trajectories (Lee et al. 2017). The com-
mon limitation of these works is the focus on predicting one
type of group (only pedestrians or cars, for example). These
methods may not work in heterogeneous traffic, where dif-
ferent vehicles and pedestrians coexist and interact with each
other(Chandra et al. 2018b).

Main Results: For the task of trajectory prediction in het-
erogeneous traffic, we propose a novel LSTM-based algo-
rithm, TrafficPredict. Given a sequence of trajectory data,
we construct a 4D Graph, where two dimensions are for in-
stances and their interactions, one dimension is for time se-
ries, and one dimension is for high-level categorization. In
this graph, all the valid instances and categories of traffic-
agents are denoted as nodes, and all the relationships in
spatial and temporal space is represented as edges. Sequen-
tial movement information and interaction information are
stored and transferred by these nodes and edges. Our LSTM
network architecture is constructed on the 4D Graph, which
can be divided into two main layers: one is the instance layer
and the other is the category layer. The former is designed to
capture dynamic properties and and interactions between the
traffic-agents at a micro level. The latter aims to conclude the
behavior similarities of instances of the same category using
a macroscopic view and guide the prediction for instances in
turn. We also use a self attention mechanism in the category
layer to capture the historical movement patterns and high-
light the category difference. Our method is the first to inte-
grate the trajectory prediction for different kinds of traffic-
agents in one unified framework.

To better expedite research progress on prediction and
navigation in challenging scenarios for autonomous driving,
we provide a new trajectory dataset for complex urban traf-
fic with heterogeneous traffic-agents during rush hours. Sce-
nario and data sample of our dataset is shown in Fig. 1. In
practice, TrafficPredict takes about a fraction of a second on
a single CPU core and exhibits 20% accuracy improvement
over prior prediction schemes. The novel components of our
work include:

• Propose a new approach for trajectory prediction in het-
erogeneous traffic.

• Collect a new trajectory dataset in urban traffic with much
interaction between different categories of traffic-agents.

• Our method has smaller prediction error compared with
other state-of-art approaches.

The rest of the paper is organized as follows. We give a
brief overview of related prior work in Section 2. In Section
3, we define the problem and give details of our prediction
algorithm. We introduce our new traffic dataset and show the
performance of our methods in Section 4.

Related Work
Classical methods for trajectory prediction
The problem of trajectory prediction or path predic-
tion has been extensively studied. There are many clas-
sical approaches, including Bayesian networks (Lefèvre,
Laugier, and J.Ibañez-Guzmán 2011), Monte Carlo Simu-
lation (Danielsson, Petersson, and Eidehall 2007), Hidden
Markov Models (HMM) (Firl et al. 2012), Kalman Fil-
ters (Kalman 1960), linear and non-linear Gaussian Pro-
cess regression models (Rasmussen and Williams 2006), etc.
These methods focus on analyzing the inherent regularities
of objects themselves based on their previous movements.
They can be used in simple traffic scenarios in which there
are few interactions among cars, but these methods may not
work well when different kinds of vehicles and pedestrians
appear at the same time.

Behavior modeling and interactions
There is considerable work on human behavior and interac-
tions. The Social Force model (Helbing and Molnar 1995)
presents a pedestrian motion model with attractive and re-
pulsive forces, which has been extended by (Yamaguchi et
al. 2011). Some similar methods have also been proposed
that use continuum dynamics (Treuille, Cooper, and Popović
2006), Gaussian processes (Wang, Fleet, and Hertzmann
2008), etc. Bera et al. (2016; 2017) combine an Ensemble
Kalman Filter and human motion model to predict the tra-
jectories for crowds. These methods are useful for analyz-
ing motions of pedestrians in different scenarios, such as
shopping malls, squares, and pedestrian streets. There are
also some approaches to classify group emotions or identify
driver behaviors (Cheung et al. 2018). To extend these meth-
ods to general traffic scenarios, (Ma, Manocha, and Wang
2018) predicts the trajectories of multiple traffic-agents by
considering kinematic and dynamic constraints. However,
this model assumes perfect sensing and shape and dynam-
ics information for all of the traffic agents.

RNN networks for sequence prediction
In recent years, the concept of the deep neural network
(DNN) has received a huge amount of attention due to its
good performance in many areas (Goodfellow et al. 2016).
Recurrent neural network (RNN) is one of the DNN archi-
tectures and is widely used for sequence generation in many
domains, including speech recognition (Graves and Jaitly
2014), machine translation (Chung et al. 2015), and im-
age captioning (Vinyals et al. 2015). Many methods based
on long short-term Memory (LSTM), one variant of RNN,
have been proposed for maneuver classification (Khos-
roshahi 2017) and trajectory prediction (Altché and Fortelle
2017). Some methods (Kim et al. 2017; Park et al. 2018;
Lee et al. 2017) produce the probabilistic information about
the future locations of vehicles over an occupancy grid map
or samples by making use of an encoder-decoder struc-
ture. However, these sampling-based methods suffer from
inherent inaccuracies due to discretization limits. Another
method (Deo and Trivedi 2018) presents a model that out-
puts the multi-modal distribution and then generates trajec-
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Figure 2: Our 4D Graph for a traffic sequence. (a) Icons for instances and categories are shown on the left table. (b) The instance
layer of the 4D Graph with spatial edges as solid lines and temporal edges as dashed lines. (c) The category layer with temporal
edges of super nodes drawn by dashed lines.

tories. Nevertheless, most of these methods require clear
road lanes and simple driving scenarios without other types
of traffic-agents passing through. Based on images, (Chan-
dra et al. 2018a) models the interactions between different
traffic-agents by a LSTM-CNN hybrid network for trajec-
tory prediction. Taking into account the human-human in-
teractions, some approaches (Alahi et al. 2016; Gupta et al.
2018; Vemula, Muelling, and Oh 2017) use LSTM for pre-
dicting trajectories of pedestrians in a crowd and they show
good performance on public crowd datasets. However, these
methods are also limited in terms of trajectory prediction in
complex traffic scenarios where the interactions are among
not only pedestrians but also heterogeneous traffic-agents.

Traffic datasets

There are several datasets related to traffic scenes.
Cityscapes (Cordts et al. 2016) contains 2D semantic,
instance-wise, dense pixel annotations for 30 classes. Apol-
loScape (Huang et al. 2018) is a large-scale comprehensive
dataset of street views that contains higher scene complexi-
ties, 2D/3D annotations and pose information, lane markings
and video frames. However these two dataset do not provide
trajectories information. The Simulation (NGSIM) dataset
(Administration 2005) has trajectory data for cars, but the
scene is limited to highways with similar simple road con-
ditions. KITTI (Geiger et al. 2013) is a dataset for different
computer vision tasks such as stereo, optical flow, 2D/3D
object detection, and tracking. However, the total time of the
dataset with tracklets is about 22 minutes. In addition, there
are few intersection between vehicles, pedestrians and cy-
clists in KITTI, which makes it insufficient for exploring the
motion patterns of traffic-agents in challenging traffic con-
ditions. There are some pedestrian trajectory datasets like
ETH (Pellegrini et al. 2009), UCY (Lerner, Chrysanthou,
and Lischinski 2007), etc., but such datasets only focus on
human crowds without any vehicles.

TrafficPredict
In this section, we present our novel algorithm to predict the
trajectories of different traffic-agents.

Problem Definition
We assume each scene is preprocessed to get the categories
and spatial coordinates of traffic-agents. At any time t, the
feature of the ith traffic-agent At

i can be denoted as f ti =
(xti, y

t
i , c

t
i), where the first two items are coordinates in the

x-axis and y-axis respectively, and the last item is the cate-
gory of the traffic-agent. In our dataset, we currently take
into account three types of traffic-agents, ci ∈ {1, 2, 3},
where 1 stands for pedestrians, 2 represents bicycles and 3
denotes cars. Our approach can be easily extended to take
into account more agent types. Our task is to observe fea-
tures of all the traffic-agents in the time interval [1 : Tobs]
and then predict their discrete positions at [Tobs+1 : Tpred].

4D Graph Generation
In urban traffic scenarios where various traffic-agents are
interacting with others, each instance has its own state in
relation to the interaction with others at any time and they
also have continuous information in time series. Considering
traffic-agents as instance nodes and relationships as edges,
we can construct a graph in the instance layer, shown in
Fig.2 (b). The edge between two instance nodes in one frame
is called spatial edge (Jain et al. 2016; Vemula, Muelling,
and Oh 2017), which can transfer the interaction informa-
tion between two traffic-agents in spatial space. The edge
between the same instance in adjacent frames is the tempo-
ral edge, which is able to pass the historic information frame
by frame in temporal space. The feature of the spatial edge
(At

i, A
t
j) for At

i can be computed as f tij = (xtij , y
t
ij , c

t
ij),

where xtij = xtj − xti, y
t
ij = ytj − yti stands for the rela-

tive position from At
j to At

i, c
t
ij is an unique encoding for

(At
i, A

t
j). When traffic-agent Aj considers the spatial edge,

the spatial edge is represented as (At
j , A

t
i). The feature of

the temporal edge (At
i, A

t+1
i ) is computed in the same way.

It is normally observed that the same kind of traffic-
agents have similar behavior characteristics. For example,
the pedestrians have not only similar velocities but also simi-
lar reactions to other nearby traffic-agents. These similarities
will be directly reflected in their trajectories. We construct a
super node Ct

u, u ∈ {1, 2, 3} for each kind of traffic-agent
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to learn the similarities of their trajectories and then utilize
that super node to refine the prediction for instances. Fig.2
(c) shows the graph in the category layer. All instances of
the same type are integrated into one group and each group
has an edge oriented toward the corresponding super node.
After summarizing the motion similarities, the super node
passes the guidance through an oriented edge to the group of
instances. There are also temporal edges between the same
super node in sequential frames. This category layer is spe-
cially designed for heterogeneous traffic and can make full
use of the data to extract valuable information to improve
the prediction results. This layer is very flexible and can be
easily degenerated to situations when several categories dis-
appear in some frames.

Finally, we get the 4D Graph for a traffic sequence with
two dimensions for traffic-agents and their interactions, one
dimension for time series, and one dimension for high-level
categories. By this 4D Graph, we construct an information
network for the entire traffic. All the information can be
delivered and utilized through the nodes and edges of the
graph.

Model Architecture
Our TrafficPredict algorithm is based on the 4D Graph,
which consists of two main layers: the instance layer and
the category layer. Details are given below.

Instance Layer The instance layer aims to capture the
movement pattern of instances in traffic. For each instance
node Ai, we have an LSTM, represented as Li. Because dif-
ferent kinds of traffic-agents have different dynamic proper-
ties and motion rules, only instances of the same type share
the same parameters. There are three types of traffic-agents
in our dataset: vehicles, bicycles, and pedestrians. Therefore,
we have three different LSTMs for instance nodes. We also
distribute LSTM Lij for each edge (Ai, Aj) of the graph.
All the spatial edges share the same parameters and all the
temporal edges are classified into three types according to
corresponding node type.

For edge LSTM Lij at any time t, we embed the fea-
ture f tij into a fixed vector etij , which is used as the input
to LSTM:

etij = φ(f tij ;W
e
spa), (1)

htij = LSTM(ht−1ij ; etij ;W
r
spa), (2)

where φ(·) is an embedding function, htij is the hidden state
also the output of LSTM Lij , and W e

spa are the embedding
weights, and W r

spa are LSTM cell weights, which contains
the movement pattern of the instance itself. LSTMs for tem-
poral edges Lii are defined in a similar way with parameters
W e

tem and W r
tem.

Each instance node may connect with several other in-
stance nodes via spatial edges. However, each of the other
instances has different impacts on the node’s behavior. We
use a soft attention mechanism (Vemula, Muelling, and Oh
2017) to distribute various weights for all the spatial edges
of one instance node:

w(htij) = softmax(
m√
de
Dot(Wih

t
ii,Wijh

t
ij)), (3)
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Figure 3: Architecture of the network for one super node in
the category layer.

whereWi andWij are embedding weights,Dot(·) is the dot
product, and m√

de
is a scaling factor (Vaswani et al. 2017).

The final weights are ratios of w(htij) to the sum. The out-
put vector Ht

i is computed as a weighted sum of htij . Ht
i

stands for the influence exhibited on an instance’s trajectory
by surrounding traffic-agents and htii denotes the informa-
tion passing by temporal edges. We concatenate them and
embed the result into a fixed vector ati. The node features
f ti and ati can finally concatenate with each other to feed the
instance LSTM Li.

eti = φ(f ti ;W
e
ins), (4)

ati = φ(concat(htii, H
t
i );W

a
ins), (5)

h1ti = LSTM(h2t−1i ; concat(eti, a
t
i);W

r
ins), (6)

where W e
ins and W a

ins are the embedding weights, W r
ins is

the LSTM cell weight for the instance node, h1ti is the first
hidden state of the instance LSTM. h2t−1i is the final hidden
state of the instance LSTM in the last frame, which will be
described in next section.

Category Layer Usually traffic-agents of the same cate-
gory have similar dynamic properties, including the speed,
acceleration, steering, etc., and similar reactions to other
kinds of traffic-agents or the whole environment. If we can
learn the movement patterns from the same category of in-
stances, we can better predict trajectories for the entire in-
stances. The category layer is based on the graph in Fig. 2(c).
There are four important components: the super node for
a specified category, the directed edge from a group of in-
stances to the super node, the directed edge from the super
node to instances, and the temporal edges for super nodes.

Taking one super node with three instances as the exam-
ple, the architecture in the category layer is shown in Fig. 3.
Assume there are n instances belonging to the same cate-
gory in the current frame. We have already gotten the hid-
den state h1 and the cell state c from the instance LSTM,
which are the input for the category layer. Because the cell
state c contains the historical trajectory information of the
instance, self-attention mechanism (Vaswani et al. 2017) is
used on c by softmax operation to explore the pattern of the
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Figure 4: Scenarios used for data collection: (a) Normal
lanes with various traffic-agents. (b) Crossroads with differ-
ent traffic-agents.

internal sequence. At time t, the movement feature d for the
mth instance in the category is captured as follows.

dtm = h1tm
⊗

softmax(ctm), (7)

Then, we obtain the feature F t
u for the corresponding su-

per node Ct
u by computing the average of all the instances’

movement feature of the category.

F t
u =

1

n

n∑
m=1

dtm, (8)

F t
u captures valid trajectory information from instances

and learn the internal movement law of the category. Equa-
tion (7)-(8) show the process of transferring information on
the directed edge from a group of instances to the super
node.

The feature F t
uu of the temporal edge of super node is

computed by F t
u − F t−1

u . Take W e
st as embedding weights

and W r
st as the LSTM cell weights. The LSTM of the tem-

poral edge between the same super node in adjacent frames
can be computed as follows.

etuu = φ(F t
uu;W

e
st), (9)

htuu = LSTM(ht−1uu ; etuu;W
r
st), (10)

Next, we integrate the information from the group of in-
stances and the temporal edge as the input to the super node.
We embed the feature F t

u into fixed-length vectors and then
concatenate with htuu together. The hidden state htu of super
node can be gotten by follows.

etu = φ(F t
u;W

e
sup), (11)

htu = LSTM(ht−1u ; concat(etu;h
t
uu);W

k
sup), (12)

Finally, we describe the process of transferring guidance on
the directed edge from the super node to instances. For the
mth instance in the group, the hidden state of the super node
is concatenated with the first hidden state h1tm and then em-
bedded into a vector with the same length of h1tm. The sec-
ond hidden state h2tm is the final output of the instance node.

h2tm = φ(concat((h1tm;htu);W
r
s )), (13)

where W r
s is the embedding weights. By the network of the

category layer, we use the similarity inside the same type of
instances to refine the prediction of trajectories for instances.

Table 1: The acquisition time, total frames, total instances
(count ID), average instances per frame, acquisition devices
of NGSIM, KITTI (with tracklets) and our dataset.

Count NGSIM KITTI Our Dataset
duration (min) 45 22 155
frames (×103) 11.2 13.1 93.0

total (×103)
pedestrian 0 0.09 16.2

bicycle 0 0.04 5.5
vehicle 2.91 0.93 60.1

average (1/f)
pedestrian 0 1.3 1.6

bicycle 0 0.24 1.9
vehicle 845 3.4 12.9

device
camera yes yes yes

lidar no yes yes
GPS no yes yes

Position estimation We assume the position of the traffic-
agent in next frame meets a bivariate Gaussian distribution
as (Alahi et al. 2016) with parameters including the mean
µt
i = (µx, µy)

t
i, standard deviation σt

i = (σx, σy)
t
i and cor-

relation coefficient ρti. The corresponding position can be
represented as follows.

(xti, y
t
i) ∼ N (µt

i, σ
t
i , ρ

t
i), (14)

The second hidden state of traffic-agents at any time is
used to to predict these parameters by linear projection.

[µt
i, σ

t
i , ρ

t
i] = φ(h2t−1i ;Wf ), (15)

The loss function is defined by the negative log-Likelihood
Li.

Li(Wspa,Wtem,Wins,Wst,Wsup,Ws,Wf )

= −
Tpred∑

t=Tobs+1

log(P (xti, y
t
i |µt

i, σ
t
i , ρ

t
i)),

(16)

We train the model by minimizing the loss for all the tra-
jectories in the training dataset. We jointly back-propagated
through instance nodes, super nodes and spatial and tempo-
ral edges to update all the parameters to minimize the loss at
each time-step.

Experiments
Dataset
We use Apollo acquisition car (BaiduApollo 2018) to col-
lect traffic data, including camera-based images and LiDAR-
based point clouds, and generate trajectories by detection
and tracking.

Our new dataset is a large-scale dataset for urban streets,
which focuses on trajectories of heterogeneous traffic-agents
for planning, prediction and simulation tasks. Our acquisi-
tion car runs in urban areas in rush hours in those scenar-
ios shown in Fig. 4. The data is generated from a variety of
sensors, including LiDAR (Velodyne HDL-64E S3), radar
(Continental ARS408-21), camera, high definition maps and
a localization system at 10HZ. We provide camera images
and trajectory files in the dataset. The perception output
information includes the timestamp, and the traffic-agent’s
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Table 2: The average displacement error and the final displacement error of the prior methods (ED, SL, SA) and variants of our
method (TP) on our new dataset. For each evaluation metric, we show the values on pedestrians, bicycles, vehicles, and all the
traffic-agents. We set the observation time as 2 seconds and the prediction time as 3 seconds for these measurements.

Metric Methods ED SL SA TP-NoCL TP-NoSA TrafficPredict

Avg. disp. error

pedestrian 0.121 0.135 0.112 0.125 0.118 0.091
bicycle 0.112 0.142 0.111 0.115 0.110 0.083
vehicle 0.122 0.147 0.108 0.101 0.096 0.080

total 0.120 0.145 0.110 0.113 0.108 0.085

Final disp. error

pedestrian 0.255 0.173 0.160 0.188 0.178 0.150
bicycle 0.190 0.184 0.170 0.193 0.169 0.139
vehicle 0.195 0.202 0.189 0.172 0.150 0.131

total 0.214 0.198 0.178 0.187 0.165 0.141

ID, category, position, velocity, heading angle, and bound-
ing polygon. The dataset includes RGB videos with 100K
1920× 1080 images and around 1000km trajectories for all
kinds of moving traffic agents. A comparison of NGSIM,
KITTI (with tracklets), and our dataset is shown in Table. 1.
Because NGSIM has a very large, top-down view, it has a
large number of vehicles per frame. In this paper, each pe-
riod of sequential sequences of the dataset was isometrically
normalized for experiments. Our new dataset has been re-
leased over the WWW (Apolloscape 2018).

Evaluation Metrics and Baselines
We use the following metrics (Pellegrini et al. 2009; Vemula,
Muelling, and Oh 2017) to measure the performance of algo-
rithms used for predicting the trajectories of traffic-agents.

1. Average displacement error: The mean Euclidean dis-
tance over all the predicted positions and real positions
during the prediction time.

2. Final displacement error: The mean Euclidean distance
between the final predicted positions and the correspond-
ing true locations.

We compare our approach with these methods below:

• RNN ED (ED): An RNN encoder-decoder model, which
is widely used in motion and trajectory prediction for ve-
hicles.

• Social LSTM (SL): An LSTM-based network with so-
cial pooling of hidden states (Alahi et al. 2016). The
model performs better than traditional methods, including
the linear model, the Social force model, and Interacting
Gaussian Processes.

• Social Attention (SA): An attention-based S-RNN archi-
tecture (Vemula, Muelling, and Oh 2017), which learn the
relative influence in the crowd and predict pedestrian tra-
jectories.

• TrafficPredict-NoCL (TP-NoCL): The proposed method
without the category layer.

• TrafficPredict-NoSA (TP-NoSA): The proposed method
without the self-attention mechanism of the category
layer.

Implementation Details
In our evaluation benchmarks, the dimension of hidden state
of spatial and temporal edge cell is set to 128 and that of
node cell is 64 (for both instance layer and category layer).
We also apply the fixed input dimension of 64 and attention
layer of 64. During training, Adam (Kingma and Ba 2014)
optimization is applied with β1=0.9 and β2=0.999. Learning
rate is scheduled as 0.001 and a staircase weight decay is ap-
plied. The model is trained on a single Tesla K40 GPU with
a batch size of 8. For the training stability, we clip the gra-
dients with the range -10 to 10. During the computation of
predicted trajectories, we observe trajectories of 2 seconds
and predict the future trajectories in next 3 seconds.

Analysis
The performance of all the prior methods and our algorithm
on heterogeneous traffic datasets is shown in Table. 2. We
compute the average displacement error and the final dis-
placement error for all the instances and we also count the
error for pedestrians, bicycles and vehicles, respectively. The
social attention (SA) model considers the spatial relations of
instances and has smaller error than RNN ED and Social
LSTM. Our method without category layer (TP-NoCL) not
only considers the interactions between instances but also
distinguishes between instances by using different LSTMs.
Its error is similar to SA. By adding the category layer with-
out self attention, the prediction results of TP-NoSA are
more accurate in terms of both metrics. The accuracy im-
provement becomes is more evident after we use the self-
attention mechanism in the design of category layer. Our al-
gorithm, TrafficPredict, performs better in terms of all the
metrics with about 20% improvement of accuracy. It means
the category layer has learned the inbuilt movement patterns
for traffic-agents of the same type and provides good guid-
ance for prediction. The combination of the instance layer
and the category layer makes our algorithm more applicable
in heterogeneous traffic conditions.

We illustrate some prediction results on corresponding 2D
images in Fig. 5. The scenario in the image captured by the
front-facing camera does not show the entire scenario. How-
ever, it is more intrinsic to project the trajectory results on
the image. In most heterogeneous traffic scenarios, our al-
gorithm computes a reasonably accurate predicted trajectory
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Figure 5: Illustration of our TrafficPredict (TP) method on camera-based images. There are six scenarios with different road
conditions and traffic situations. We only show the trajectories of several instances in each scenario. The ground truth (GT) is
drawn in green and the prediction results of other methods (ED,SL,SA) are shown with different dashed lines. The prediction
trajectories of our TP algorithm (pink lines) are the closest to ground truth in most of the cases.

(a) (b)

Figure 6: Illustration of some prediction results by our
method. The ground truth of trajectories of vehicles, bicy-
cles and pedestrians are drawn by blue, green and red re-
spectively. Predicted locations are all represented by yellow
stars. For each instance, first five discrete points are observed
positions, but there are some overlaps in the illustration of
pedestrian trajectories.

and is close to the ground truth. If we have prior trajectories
over a longer duration, the prediction accuracy increases.

When traffic-agents are moving on straight lanes, it is easy
to predict their trajectories because almost all the traffic-
agents are moving in straight direction. It is more chal-
lenging to provide accurate prediction in cross roads, as the
agents are turning. Fig. 5 shows 2D experimental results of
two sequences in cross areas. There are some overlaps on
trajectories. In these scenarios, there are many curves with
high curvature because of left turn. Our algorithm can com-
pute accurate predicted trajectories in these cases.

Conclusion
In this paper, we have presented a novel LSTM-based algo-
rithm, TrafficPredict, for predicting trajectories for hetero-
geneous traffic-agents in urban environment. We use a in-

stance layer to capture the trajectories and interactions for
instances and use a category layer to summarize the simi-
larities of movement pattern of instances belong to the same
type and guide the prediction algorithm. All the information
in spatial and temporal space can be leveraged and trans-
ferred in our designed 4D Graph. Our method outperforms
previous state-of-the-art approaches in improving the accu-
racy of trajectory prediction on our new collected dataset for
heterogeneous traffic. We have evaluated our algorithm in
traffic datasets corresponding to urban dense scenarios and
observe good accuracy. Our algorithm is realtime and makes
no assumption about the traffic conditions or the number of
agents.

Our approach has some limitations. Its accuracy varies
based on traffic conditions and the duration of past trajec-
tories. In the future, we will consider more constraints, like
the lane direction, the traffic signals and traffic rules, etc. to
further improve the accuracy of trajectory prediction. Fur-
thermore, we would like to evaluate the performance in more
dense scenarios.
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Lefèvre, S.; Laugier, C.; and Ibañez-Guzmán, J. 2011. Ex-
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