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Abstract

Human social behavior is structured by relationships. We
form teams, groups, tribes, and alliances at all scales of hu-
man life. These structures guide multi-agent cooperation and
competition, but when we observe others these underlying re-
lationships are typically unobservable and hence must be in-
ferred. Humans make these inferences intuitively and flexibly,
often making rapid generalizations about the latent relation-
ships that underlie behavior from just sparse and noisy ob-
servations. Rapid and accurate inferences are important for
determining who to cooperate with, who to compete with,
and how to cooperate in order to compete. Towards the goal
of building machine-learning algorithms with human-like so-
cial intelligence, we develop a generative model of multi-
agent action understanding based on a novel representation
for these latent relationships called Composable Team Hier-
archies (CTH). This representation is grounded in the formal-
ism of stochastic games and multi-agent reinforcement learn-
ing. We use CTH as a target for Bayesian inference yielding a
new algorithm for understanding behavior in groups that can
both infer hidden relationships as well as predict future ac-
tions for multiple agents interacting together. Our algorithm
rapidly recovers an underlying causal model of how agents re-
late in spatial stochastic games from just a few observations.
The patterns of inference made by this algorithm closely cor-
respond with human judgments and the algorithm makes the
same rapid generalizations that people do.

Introduction
Cooperation enables people to achieve together what no in-
dividual would be capable of on her own. From a group
of hunters coordinating their movements to an ad-hoc team
of programmers working on an open source project, the
scale and scope of human cooperation behavior is unique
in the natural world (Tomasello 2014; Henrich 2015). How-
ever, cooperation exists in a competitive world and finding
the right balance between cooperation and competition is a
fundamental challenge for anyone in a diverse multi-agent
world. At the core of this challenge is figuring out who to
cooperate with. How do we distinguish between friend and
foe? How can we parse a multi-agent world into groups,
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tribes, and alliances? Typically when we observe behav-
ior we only get information about these latent relationships
sparsely and indirectly through the actions chosen by agents.
Furthermore, these inferences are fundamentally challeng-
ing because of their inherent ambiguity; we are friend to
some and foe to others (Galinsky and Schweitzer 2015).
They are also compositional and dynamic; we may coop-
erate with some agents in order to better compete against
another. In order for socially aware AI systems to be capa-
ble of acting as our cooperative partners they must learn the
latent structure that governs social interaction.

In some domains like sports and formal games, this social
structure is known in advance and is essentially written into
the environment itself e.g., “the rules of the game” (Kitano et
al. 1997; Jaderberg et al. 2018). In contrast we focus on cases
where cooperation is more ambiguous or could even be ad-
hoc. In real life, people rarely play the same game twice and
have to figure out the rules as they go along whether it’s the
“rules of war” or navigating office politics.

Even young children navigate this uncertainty frequently
and display spontaneous cooperation in novel situations
from an early age (Warneken and Tomasello 2006; Ham-
lin, Wynn, and Bloom 2007; Hamann et al. 2011). There
is increasing evidence that this early arising ability to do
social evaluation and inference relies on “Theory-of-Mind”
(ToM) i.e., a generative model of other agents with mental
states of their own (Spelke and Kinzler 2007; Kiley Hamlin
et al. 2013). People use these models to simulate what an-
other agent might do next or consider what they themselves
would do hypothetically in a new situation. From the per-
spective of building more socially sophisticated machines,
ToM acts as a strong inductive bias for predicting actions.
Rather than learning statistical patterns of low-level behav-
ior which are often particular to a specific context (e.g., Bob
often goes left, then up), an approach based on human ToM
constrains inference to behaviors that are consistent with a
higher-level mental state such as a goal, a belief or even a
false-belief (e.g., Bob likes ice cream). When inference is
carried out over these higher-level mental states, the infer-
ences made are more likely to generalize to new contexts
in a human-like way (Baker, Saxe, and Tenenbaum 2009;
Baker et al. 2017).

Inspired by this ability, we aim to develop a new algo-
rithm that applies these human-like inductive biases towards

6163



understanding groups of agents in mixed incentive (cooper-
ative / competitive) contexts. These algorithms also serve as
models of human cognition that can give us a deeper under-
standing of human social intelligence. Practically, by cap-
turing the intuitive inferences that people make, our algo-
rithm is more likely to integrate with humans since it will be-
have in predictable and understandable ways. Our approach
builds on two major threads in the literature: generative
models for action understanding and game theoretic mod-
els of recursive reasoning. Our contribution is the develop-
ment of a new representation, Composable Team Hiearchies
(CTH) for reasoning about how one agent’s planning pro-
cess depends on another and can flexibly capture the kinds
of teams and alliances that structure group behavior. We pro-
pose that an algorithm using CTH as an inductive bias for
Bayesian inverse planning will have the flexibility to rep-
resent many types of group plans but is also constrained
enough that it will enable the kinds of rapid generalizations
that people do. We validate this hypothesis with two behav-
ioral experiments where people are given the same scenarios
as the algorithm and are asked to make the same inferences
and predictions that the algorithm did.

Related Work
Inferring the latent mental states of agents (e.g., beliefs, de-
sires, and intentions) from behavior features prominently
in machine learning and cognitive science (see Albrecht
and Stone (2017) for a recent and comprehensive review
from the machine learning point of view and Jara-Ettinger
et al. (2016) for a developmental perspective). Previous
computational treatments similar in spirit to the approach
here have focused on making inferences about other in-
dividuals acting in a single agent setting (Ng and Rus-
sell 2000; Baker, Saxe, and Tenenbaum 2009; Ramırez
and Geffner 2011; Evans, Stuhlmüller, and Goodman 2016;
Nakahashi, Baker, and Tenenbaum 2016; Baker et al. 2017;
Rabinowitz et al. 2018). When these tools are applied to
multi-agent and game theoretic contexts they have focused
on dyadic interactions (Yoshida, Dolan, and Friston 2008;
Ullman et al. 2009; Kleiman-Weiner et al. 2016; Raileanu et
al. 2018). Dyadic interactions are significantly simpler from
a representational perspective since an observer must merely
determine whether each agent is cooperating or competing.

However, when the number of agents increases beyond
a two player dyadic interaction, the problem of balancing
cooperation and competition often takes on a qualitatively
different character. Going from two to three or more players
means the choice is no longer whether to simply cooperate
or compete. Instead agents must reason about which agents
they should cooperate with and which they should compete
with. In a dyadic interaction there is no possibility of co-
operating to compete or the creation of more complicated
alliances and groups.

Computational Formalism
Stochastic Games
We study multi-agent interactions in stochastic games
which generalize single-agent Markov Decision Processes

to sequential decision making environments with multi-
ple agents. Formally, a stochastic game, G, is the tuple
〈n,S,A1...n, T,R1...n, γ〉 where n is the number of agents,
S is a set of states, A1...n is the joint action space with Ai

the set of actions available to agent i, T (s, a1...n, s′) is the
transition function which describes the probability of tran-
sitioning from state s to s′ after a1...n, R1...n(s, a1...n, s

′)
is the reward function for each agent, and γ is the discount
factor (Bowling and Veloso 2000; Filar and Vrieze 2012).
The behavior of each agent is defined by a policy π1...n(s)
which is the probability distribution over actions that each
agent will take in state s.

There are many different notions of what it means to
“solve” a stochastic game. Many of these concepts rely
on notions of finding a best-response (Nash) equilibrium
(Littman 1994; 2001; Hu and Wellman 2003). While solu-
tion concepts based on equilibrium analyses provide some
constraints on the policies agents will use, they cannot pro-
vide a way to explain behavior carried out by bounded or
cooperative agents who are willing to play a dominated strat-
egy to help another agent. When games are repeated, there
are often an explosion of equilibrium and these methods do
not provide a clear method for choosing between them. Fi-
nally, there is ample evidence that both human behavior and
judgments are not well explained by equilibrium thinking
(Wright and Leyton-Brown 2010). On the other hand, with-
out constraints from rational planning on the types of poli-
cies that agents are expected to use, there will be no way for
an observer to generalize or predict how an agent’s policy
will adapt to a new situation or context that the agent has not
been observed to act in.

Group Plan Representation
In this section we build up a representation for multi-agent
interaction that can be used to compute policies for agents
in novel situations, but is also sufficiently constrained that
it can be used for rapid inference. We first introduce two
simple planning operators based on individual best-response
(BR) and joint-planning (JP). We then show how they can be
composed together using a REPLACE operator into Compos-
able Team Hierarchies (CTH) which enable the flexible rep-
resentation of teams and alliances within a MARL context.

Operator Composition (REPLACE) We first define the
REPLACE operator that takes an N player stochastic game,
G and a policy πR indexed to a particular set of players (R)
and returns an N − |R| agent stochastic game G′ with the
agents in R removed. This new game G′ embeds πR in G to
generate dynamics for R such that from the perspective of
an agent in G′, the agents in R are now stationary parts of
the environment in G′ predictable from their policies. For-
mally REPLACE(G, πR) creates a game G′ identical to G but
with a reduced action space that excludes the agents in R
and modifies the transition function as follows:

TG′ (s′|s, a−R) =
∑
aR

TG(s′|s, a−R, aR)
∏
r∈R

1(πr(s) = ar)

where the −R refers to all agents other than those in R.

Best Response (BR) The best response operator BR takes
a game G with a single agent i and returns a policy πi for
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Figure 1: Example composition of base policies and operators to construct different types of teams with agents of variable
sophistication. See text for descriptions of the operators and descriptions of these models.

just that agent. Planning here is defined through the standard
Bellman equations.

Q(s, ai) =
∑
s′

T (s′|s, ai)[Ri(s, ai, s
′) + γmax

ai
′
Q(s′, a′i)]

πi(s) = argmax
ai

Q(s, ai)

where ties are broken with uniform probability.

Joint Planning (JP) A second planning operator JP gen-
erates cooperative behavior through joint planning. Each in-
dividual agent considers itself part of a hypothetical central-
ized “team-agent” that has joint control of all the agents
that are included in the team and optimizes the joint re-
ward of that team (Sugden 2003; Bratman 2014). Plan-
ning under this approach combines all the agents in a
game into a single agent and finds a joint plan which op-
timizes that group objective (De Cote and Littman 2008;
Oliehoek, Spaan, and Vlassis 2008; Kleiman-Weiner et al.
2016). If J is the set of agents that have joined together as a
team, their joint-plan can be characterized as:

QJ(s, aJ) =
∑
s′

T (s′|s, aJ)∗(∑
j∈J

Rj(s, aj , s
′) + γmax

a′
J

QJ(s′, a′J)
)

Each agent plays its role in the team plan by marginal-
izing out the actions of all the other agents: πi(s) =
argmaxaQ

J(s, a) where ties are broken with uniform
probability. Thus JP takes a N > 1 agent game G as input
and returns policies πJ as if all agents in G are cooperating
with each other towards a joint goal.

Base Policies π0 Base policies (π0) are non-strategic i.e.,
they take actions independent of the other agents. A com-
mon choice is to act randomly or to choose a locally optimal
option ignoring all other agents. See (Wright and Leyton-
Brown 2014) for the various choices one could make about
the level-0 policy in matrix-form games, some of which
could be extended to stochastic games.

Composable Team Hierarchies
We now show how with just these three simple operators
(REPLACE, JP, BR) and a set of base policies (π0

1...n) we can
create complex team plans that vary in both their team struc-
tures as well as their sophistication. We start by noting that
the output of JP and BR (policies) is an input to REPLACE,
and the output of REPLACE (games with fewer players) is an
input to JP and BR. When composed together, these opera-
tors generate hierarchies of policies.

Figure 1 shows how these planning procedures can be
composed together to create strategic agents (using BR),
teams of cooperative agents (using JP) and compositional
combinations of the two. Even with just three players there
are a combinatorial number of possible team partitions (all
playing together, two against one, no teams) and higher and
lower levels of sophisticated agents within those partitions.
When shown hierarchically, this representation mirrors the
tree-like structure of a grammar producing an “infinite use
of finite means” – the key benefit of a composable represen-
tation. We call these structures Composable Team Hierar-
chies (CTH). We now show how previous approaches from
the literature can be subsumed under CTH, which unifies
some previous approaches and enables new ways of reason-
ing about plans.

Level-K Planning One technique common in behavioral
game theory is iterative best response which is often called
level-K or cognitive hierarchy (Camerer, Ho, and Chong
2004; Wright and Leyton-Brown 2010). In brief, an agent
operating at level K assumes that other agents are using
K − 1 level policies. This approach has also been ex-
tended to sequential decision making in reinforcement learn-
ing (Yoshida, Dolan, and Friston 2008; Kleiman-Weiner et
al. 2016; Lanctot et al. 2017). By considering only a finite
number (K) of these best responses, an infinite regress is
prevented. This also captures some intuitive constraints on
bounded thinking. This approach to multi-agent planning
is to replace all other agents with a slightly less strategic
k−1 policy. Importantly, this formalism maps a multi-agent
planning problem into a hierarchy of nested single-agent
planning problems. This recursive hierarchy grounds out in
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level-0 models (π0
i ) which we described above as base poli-

cies.
Figure 1a shows how a level-K policy with K = 2 for

agent A can be constructed by iterating between the BR and
REPLACE operators. The CTH shows a level-2 A best re-
sponding to level-1 models of B and C who are best re-
sponding to level-0 base policies of A & C and A & B re-
spectively.

Cooperative Planning While Level-K representations
can capture certain aspects of strategic thinking i.e., how
to best respond in one’s own interest to other agents, it is
not sufficient to generate the full range of social behavior.
Specifically it will not generate cooperative behavior when
cooperation is dominated in a particular scenario. However
cooperative behavior between agents that form teams and
alliances is commonly observed. An agent may be optimiz-
ing for a longer horizon where the game is repeated or one’s
reputation is at stake. Furthermore, certain agents may have
intrinsic pro-social dispositions and an observer must be
able to reason about these. A cooperative stance towards a
problem can be modeled as a DEC-MDP (Oliehoek, Spaan,
and Vlassis 2008). In CTH this stance is easily represented.
For instance starting with a base game G that has players
(A,B,C) one can compute all three policies for working
together as: JP(G).

Composing Cooperation and Competition In addition
to these two well studied formalisms, CTH can represent a
range of possible social relationships that are not expressible
with level-K planning or cooperative planning alone. Fig-
ure 1b combines both operators to describe a cooperate to
compete stance. Under this CTH A best responds to B & C
cooperating to compete against a naive version of A’s own
behavior. Figure 1c depicts agent A best responding to both
a naive B and model of C that is acting to betray the group
of three. The CTH representation can capture an A which is
acting to counter a perceived betrayal by C. These examples
show the representational flexibility of CTH and its ability to
intuitively capture different social stances that agents might
have towards each other.

Inverse Group Planning
Observers can use CTH to probabilistically infer the various
stances that each agent takes towards the others. Agents rep-
resent their uncertainty over the CTH for agent i as P (CTHi),
their prior beliefs before seeing any behavior. These beliefs
can be updated in response to the observation of new behav-
ioral data using Bayes rule:

P (CTHi|s,ai) ∝P (CTH)P (ai|s, CTHi) (1)

=P (CTHi)

T∏
t=1

P (ai,t|st, CTHi) (2)

where s and ai are sequences of states and actions from time
1 . . . T . P (ai,t|st|CTHi) is the probability of a given action
under the induced hierarchy of goal-directed planning as de-
termined by a given CTH. We use the Luce-choice decision
rule to transform the Q-values of each action under planning

into a probability distribution:

P (ai,t|st, CTHi) ∝ exp(β ∗Q∗CTH(s, a)) (3)

where β controls the degree to which the observer believes
agents are able to correctly maximize their future expected
utility at each time step. When β −→∞ the observer believes
that agents are perfect optimizers, as β −→ 0 the observer
believes the other agents are acting randomly.Q∗CTH(s, a) are
the optimal Q-values of the root agent in a given CTH.

In theory, the number of CTH considered by an observer
could be infinite since the number of levels in the hierarchy
does not have to be bounded. As this would make inference
impossible, a realistic assumption is to assume some max-
imum level of sophistication which bounds the number of
levels in the hierarchy (Yoshida, Dolan, and Friston 2008;
Kleiman-Weiner et al. 2016). Another possibility is to put a
monotonically decreasing probability distribution on larger
CTH as is done in the cognitive hierarchy model. Finally,
since we have posed this IRL problem as probabilistic infer-
ence, Markov Chain Monte Carlo (MCMC) algorithms and
other sampling approaches might enable the computation of
P (CTHi|s,ai) even when the number of hypothetical CTH
are large. In this work we are agnostic to the how the po-
lices are computed as any reinforcement learning algorithm
is possible. In our simulations we used a simple version of
Monte Carlo Tree Search (MCTS) based on Upper Confi-
dence Bound applied to Trees (UCT) which selectively ex-
plores promising action sequences (Browne et al. 2012).

Experiments
Our two experiments were carried out in a spatial stag-hunt
domain. In these scenarios, the agents control hunters who
gain rewards by capturing prey: stags and hares. The hunters
and stags can move in the four cardinal directions and can
stay in place. The hares do not move but the stags move
away from any nearby hunters so must be cornered to be
captured. All moves happen simultaneously and agents are
allowed to occupy the same squares.

Hunters are rewarded for catching either type of prey
by moving into its square, and when any prey is caught
the game terminates. Catching a hare is worth one point
to the hunter who catches it. Catching a stag requires co-
ordination but hunters split 20 points when capturing it. At
least two hunters must simultaneously enter the square with
the stag on it to earn the points. The stag-hunt is a com-
mon example used to demonstrate the challenges of co-
ordinating on joint action and the creation of cooperative
cultural norms (Skyrms 2004). Previous work on the spa-
tial stag-hunt has mostly focused on modeling behavior, not
inferences, in two-player versions. As noted before, with
only two hunters there are limited possibilities for differ-
ent team arrangements (Yoshida, Dolan, and Friston 2008;
Peysakhovich and Lerer 2018).

We designed nine different scenes in this stag-hunt world
that each had three hunters, two stags, and two hares (Fig-
ure 2). Different scenes had different starting positions and
different spatial layouts which means that both people and
our algorithm must generalize across different environments
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Figure 2: Experimental scenarios and results for Experiment 1. Each scene involved 3 time steps from a starting state. The
hunters were represented with circles. Each agent’s movement path is traced out with dotted lines with small numbered dots
indicating the position in a given time step. Human participants saw a more dynamic scene that played out over the course of
the experiment instead of seeing the full trajectory at once. To the right of each scenario are plots showing the average human
inferences (top) and Bayesian model average results run on the same scene that participants saw.

and contexts. This makes it less likely that a heuristic ap-
proach based on features will work. Instead we can test
whether people invert an underlying group planning pro-
cess. In both experiments (N=37, all USA), each participant
was tested on all nine scenarios. Participants watched the
scene unfold a few moves at a time. All human data was
collected on Amazon Mechanical Turk. In Experiment 1 we
compare our algorithm against the inferences people made
about the underlying structure i.e., who is cooperating with
who. In Experiment 2 we compare our algorithm against
people’s ability to predict the next action in a scene. In both
experiments we compare human participant data with our
Bayesian inference with a uniform prior over depth-1 CTH.
When modeling human judgments and behavior β usually
corresponds to the noise in the utility maximization process
where non-optimal decisions are made proportional to how
close their utility is to optimal. In the team inference experi-
ment (experiment 1) participants used a continuous slider to
report their judgments so β = 1 was used for model compar-
ison while in the action-prediction experiment (experiment
2) subjects made a discrete choice to report their predictions
so a higher β = 5 was used.

Experiment 1: Team Inference

For each scenario, participants made judgments about
whether A&B, B&C, and C&A were cooperating at three
different time points by selecting a range between 0 and 100
on a slider. These ratings were averaged together and nor-
malized to 0 and 1. In total, we collected a total of 81 dis-
tinct data points. Figure 2 shows the human data and model
results for each of the nine scenarios at each time point. We
did not find any systematic individual differences among hu-
man participants.

The model performs well across all inferred team struc-
tures: when all three players are on the same team (g, i),
when just two are working together (a, c, d) and when all
three are working independently (b, e, f, h). These infer-
ences were made based on information about the abstract
team structure since they were made before any of the actual
outcomes were realized. Even a single move was often suf-
ficient to give away the collective intentions of the group of
hunters. Finally, the model also handles interesting reversals.
In situation (b), one might infer that B and C were going to
corner the stag but this inference is quickly overturned when
C goes for a hare instead at the last minute. Situation (h) also
contains a change of mind. At first it seems A is following B
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Figure 3: Quantification of algorithm inferences in Experi-
ment 1 compared to human judgments. (a) Bayesian model
averaging explains a high degree of variance in human judg-
ments. (b) The maximum likelihood CTH captures some of
the coarse grained aspects of the inferences but does not cap-
ture the uncertainty in people’s judgments.

to capture the stag together but he then reverses and goes for
the hare. Just this single reversal was sufficient to flip peo-
ple’s judgments about the underlying team structure and our
algorithm captures this.

There were also a few circumstances where people’s judg-
ments significantly deviated from our algorithm. For in-
stance, in scenario (c) people were quicker to infer that B
and C are on the same team while the model has greater
uncertainty. This difference might reflect the fact that peo-
ple put a higher prior on cooperative CTH while we used
a uniform prior. Indeed, increasing the prior on coopera-
tive CTH results in more human-like inferences for this sce-
nario. Most of the differences were more subtle. The model
makes stronger predictions (closer to 0 and 1) while peo-
ple integrated information more slowly and less confidently.
Figure 3 and Table 1a show a quantification of how well
our algorithm can act as a model for human judgments.
Bayesian model averaging across the uncertainty in the un-
derlying CTH (Figure 3a) did a better job of capturing hu-
man team inferences than did the CTH with the highest like-
lihood (Figure 3b). Thus a full Bayesian approach seems to
be needed to capture the nuanced and graded judgments that
people make as they integrate over the ambiguous behavior
of the agents.

Experiment 2: Action Prediction
In a second experiment using the same set of stimuli as Ex-
periment 1 we compared our system’s ability to predict the
next action with people’s predictions. Each participant was
given the choice to select the action (from those available)
for each of the 3 hunters. Averaging over the participants
gives a distribution over the next action for human partici-
pants. Across all nine scenarios, we elicited 53 judgements
which generated 216 distinct data points. Since our compu-
tational formalism is a generative model the same algorithms
that was used for team inferences is also tested on action pre-
dictions.

Figure 4 and Table 1b show the ability of this algorithm
to predict the human action prediction distribution. We find
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Figure 4: Quantification of algorithm predictions in Exper-
iment 2 compared to human predictions. Both (a) Bayesian
model averaging and (b) the maximum likelihood CTH ex-
plains a high degree of variance in human predictions. (c)
Level-K models explain significantly less variance in human
predictions.

(a) Experiment 1

BMA-CTH MLE-CTH
R 0.90 0.86

RMSE 0.18 0.28
(b) Experiment 2

BMA-CTH ML-CTH Level-K
R 0.74 0.73 0.38

RMSE 0.27 0.28 0.41

Table 1: Pearson correlation coefficients (R) and root mean
square error (RMSE) for both experiments. Higher R and
lower RMSE indicate explaining more of the variation in the
human (a) judgments and (b) predictions. BMA is Bayesian
model average and ML is maximum likelihood.

a relatively high-correlation (R > 0.7) but we do not find as
large of a difference between the Bayesian model averaging
over CTH and the maximum likelihood CTH. This is likely
due to the fact that each participant directly selected the ac-
tion they thought was most likely rather than give a graded
measure of confidence. Still both of these CTH based mod-
els out-perform a Level-K model which does not allow for
the use of the JP operator.

Discussion
Our contribution is a novel representation for extending
single-agent generative models of action understanding to
the richness of multi-agent interaction. In human cognition,
the ability to infer the mental states of others is often called
Theory-of-Mind and here we develop a Theory-of-Minds
which explains and predicts group behavior. The core of this
work is to build on two key insights from how people learn
in general and in particular learn about other people (Tenen-
baum et al. 2011):

1. Agents have the ability to construct generative models of
other agents and use those models to reason about future
actions by simulating their planning. With models of other
agents and a model of the environment, agents can predict
what will happen next through forward simulation. With
these future-oriented predictions of what other agents will
do, individuals can better generate their own plans. They
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can even use these models hypothetically in order to pre-
dict what an agent would do, or counterfactually to predict
what another agent would have done.

2. The inferences people make about others take place at a
high level of abstraction. For instance, people learn about
who is cooperating with whom and why, rather than rea-
soning directly about the likelihood of a particular se-
quence of actions in a specific situation. While in some
sense, these abstract inference are more complex, they
drastically reduce a hypotheses space about every action
an agent might take to a much smaller hypothesis space of
actions that serve a social purpose. These abstract reasons
generalize in ways that mere patterns of behavior do not.

In this work, we took inspiration from the ways that human
observers think abstractly about alliances, friendships, and
groups. We formalized these concepts in a multi-agent re-
inforcement learning formalism and used them as priors to
make groups tractably understandable to an observer. Our
model explains the fine-grained structure of human judg-
ment and closely matches the predictions made by human
observers in a novel and varying three-agent task.

There are still many avenues for future work. While the
approach described here can work well for small groups
of agents, the computations involved scale poorly with the
number of agents. Indeed, when interacting with a large
number of agents more coarse-grained methods which ig-
nore individual mental states might be required (Yang et
al. 2018). Another way forward is to constrain the possible
types of CTH to consider. For instance, when dealing with
a large number of agents, people seem to use group mem-
bership cues, some of which are directly observable such
as style of dress or easily inferable such as language spo-
ken (Liberman, Woodward, and Kinzler 2017). These cues
could rapidly prune the number of CTHs considered but also
could lead to biases. Another possible route to scaling these
methods is through sophisticated state abstractions such
as those in deep multi-agent reinforcement learning where
agents are trained for cooperation and competition (Leibo
et al. 2017; Perolat et al. 2017; Lowe et al. 2017; Lerer
and Peysakhovich 2017; Peysakhovich and Lerer 2018;
Foerster et al. 2018). Self-play and feature learning based
methods might also be useful for generating interesting base
policies to build on in our CTH representation (Hartford,
Wright, and Leyton-Brown 2016).

Our current set of experiments looked at situations where
team coordination required spatial convergence. Future
work will look at environments with buttons that can open
and close doors or by giving agents the ability to physically
block others. In these scenarios heuristics based on spatial
convergence will not correlate with human judgments and
higher order CTH may be needed to identify the under-
lying team structures. Finally, endowing multi-agent rein-
forcement learning agents with the ability to do CTH infer-
ence could give these agents the ability to more effectively
reason about and coordinate with others.

While we propose a method of understanding and plan-
ning with agents that have known teams, agents are fre-
quently in scenarios where team structures have yet to be

established e.g., the first day of kindergarten. In future work,
we hope to explore how agents can identify the best team-
mates in an environment and create a social relationship with
them. Based on previous actions an observer could begin to
predict an agent’s likelihood of changing its social stance
through changes in the CTH structure. Finally, social norms
and anti-social behavior such as punishing and disliking are
not easily captured in the current version of the CTH repre-
sentation. Future work will extend CTH with new operators
that expand its flexibility.
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