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Abstract

Implicit arguments, which cannot be detected solely through
syntactic cues, make it harder to extract predicate-argument
tuples. We present a new model for implicit argument pre-
diction that draws on reading comprehension, casting the
predicate-argument tuple with the missing argument as a
query. We also draw on pointer networks and multi-hop com-
putation. Our model shows good performance on an argument
cloze task as well as on a nominal implicit argument predic-
tion task.

1 Introduction
Predicate-argument tuples describe “who did what to
whom” and are an important data structure to extract from
text, for example in Open Information Extraction (Etzioni et
al. 2007). This extraction is straightforward when arguments
are syntactically connected to the predicate, but much harder
in the case of implicit arguments, which are not syntactically
connected to the predicate and may not even be in the same
sentence. These cases are not rare; they can be found within
the first few sentences on any arbitrary Wikipedia page, for
example:1

Twice in the late 1980s Gillingham came close to win-
ning promotion to the second tier of English football,
but a decline then set in. . .

Here, Gillingham is an implicit argument to decline. Gener-
ally, predicates with implicit arguments can be nouns, as in
the example, or verbs.

Implicit argument prediction as a machine learning task
was introduced by Gerber and Chai (2010) and Ruppen-
hofer et al. (2010), and was studied in a number of pa-
pers (Silberer and Frank 2012; Laparra and Rigau 2013a;
Stern and Dagan 2014; Chiarcos and Schenk 2015; Schenk
and Chiarcos 2016; Do, Bethard, and Moens 2017). In this
task, the model is given a predicate-argument tuple with one
or more arguments missing. The model then chooses a filler
for each missing argument from the document (or chooses
to leave the argument unfilled). Building on recent work that
made the task accessible to neural models through training
on automatically generated data (Cheng and Erk 2018), we
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1https://en.wikipedia.org/wiki/History of Gillingham F.C.

introduce a new neural model for implicit argument predic-
tion.

In this paper, we view the task of implicit argument pre-
diction as related to Reading Comprehension (Hermann et
al. 2015): A predicate-argument tuple with the missing ar-
gument is a query. The answer to the query has to be lo-
cated in the document. However the tasks are not exactly
the same. One difference is that the answer is not a vocab-
ulary item or text span, but a single input item. This sug-
gests the use of Pointer Networks (Vinyals, Fortunato, and
Jaitly 2015). We obtain the Pointer Attentive Reader for im-
plicit argument prediction. Another difference is that more
than one argument may be missing in a predicate-argument
tuple. In this case we want the model to reason over the
whole document to derive a more informative query. We do
this through a multi-hop extension, taking inspiration from
multi-hop memory networks (Sukhbaatar et al. 2015). Our
model shows good performance on an argument cloze task
as well as on a nominal implicit argument prediction task.

2 Related Work
Recent work on implicit arguments started from Gerber
and Chai (2010) and Ruppenhofer et al. (2010). Gerber
and Chai (2010) constructed a dataset (G&C) by select-
ing 10 nominal predicates and labeling implicit arguments
of these predicates in the NomBank (Meyers et al. 2004)
corpus manually. The resulting dataset is quite small, con-
sisting of approximately 1000 examples. They also pro-
posed a linear classifier for the task. Gerber and Chai (2012)
added more features and performed cross validation on the
dataset, leading to better results. Ruppenhofer et al. (2010)
also introduced an implicit argument dataset by annotating
several chapters of fiction (SemEval-2010), which is even
smaller (about 500 examples) and more complex than Ger-
ber and Chai (2010). There has since been much follow-
up work proposing new methods for G&C (Laparra and
Rigau 2013a; Schenk and Chiarcos 2016; Do, Bethard, and
Moens 2017) and SemEval-2010 (Silberer and Frank 2012;
Laparra and Rigau 2013b; Chiarcos and Schenk 2015). To
overcome the size limitation, several methods for creating
additional training data have been proposed. Feizabadi and
Padó (2015) combined the two datasets, using one as out-
of-domain training data for another. Roth and Frank (2015)
identified new instances of implicit arguments by aligning
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monolingual comparable texts, however the size is still sim-
ilar to that of G&C and SemEval-2010. Schenk and Chiar-
cos (2016) proposed using text with automatically labeled
semantic roles to learn protypical fillers. Both Silberer and
Frank (2012) and Cheng and Erk (2018) used coreference
information to obtain additional training data. Silberer and
Frank (2012) used datasets with manually annotated coref-
erence as additional training data. Cheng and Erk (2018)
generated large amounts of training data by using automat-
ically produced coreference labels. They also introduced an
additional dataset for testing, which has manually annotated
coreference (Hovy et al. 2006) but is automatically manipu-
lated to simulate implicit arguments. We adopt the data gen-
eration schema from Cheng and Erk (2018) as the scale al-
lows training of complex neural models. We evaluate our
model on the G&C dataset, and compare to models from
Gerber and Chai (2012) and Cheng and Erk (2018), which
have obtained the best performance on the G&C dataset (dis-
cussed in Section 5.3). Recently, O’Gorman et al. (2018) in-
troduced a new AMR corpus with annotation for more than
2000 implicit arguments. While the data is not available yet,
it will significantly extend the amount of naturally occurring
test data once it is available.

In this paper we draw on recent progress in reading
comprehension and memory networks, for the task of im-
plicit argument prediction. Hermann et al. (2015) first in-
troduced neural models to reading comprehension tasks by
creating a large cloze-like dataset from news articles paired
with human-written summaries. They proposed an Atten-
tive Reader model that used an attention mechanism to rea-
son over the document and query pair. Since then there has
been much follow-up work on new datasets (Hill et al. 2016;
Rajpurkar et al. 2016; Welbl, Stenetorp, and Riedel 2017)
and new models (Chen, Bolton, and Manning 2016; Seo et
al. 2017; Dhingra et al. 2017). Another related line of work
that is of particular interest to us is that on End-to-End Mem-
ory Networks (Sukhbaatar et al. 2015), which use multiple
layers of attention computation (called “multiple hops”) to
allow for complex reasoning over the document input.

We also draw on pointer networks in that we view im-
plicit argument prediction as a pointer to a previous men-
tion of an entity. Vinyals, Fortunato, and Jaitly (2015) first
proposed Pointer Networks as a variant of the conventional
sequence-to-sequence model that uses the attention distribu-
tion over input sequence directly as a “pointer” to suggest
one preferred input state, instead of as a weight to combine
all input states. This architecture has been applied to a num-
ber of tasks, including Question Answering (Xiong, Zhong,
and Socher 2017) and Machine Comprehension (Wang and
Jiang 2017).

3 Task Setup
The implicit argument prediction task, as first introduced by
Gerber and Chai (2010), is to identify the correct filler for
an implicit argument role of a predicate, given the explicit
arguments of the same predicate and a list of candidates.
This task requires a lot of human effort in annotation, and
the existing human-annotated datasets are too small for the
use of neural models. The argument cloze task proposed by

Cheng and Erk (2018) overcame this difficulty by automati-
cally generating large-scale data for training. The cloze task,
as shown in Figure 1, aims to simulate natural occurrences of
implicit arguments, and can be briefly described as follows.

Manville Corp. said it will build a $ 24 million power plant to 
provide electricity to its Igaras pulp and paper mill in Brazil .

The company said the plant will ensure that it has adequate energy 
for the mill and will reduce the mill’s energy costs .

(a) A piece of raw text from OntoNotes corpus.

x0 = The company    x1 = mill    x2 = power plant

e0: ( build-pred,  x0-subj,  x2-dobj,  — )
e1: ( provide-pred,  —,  electricity-dobj,  ??-prep_to )
e2: ( ensure-pred,  x2-subj,  —,  — )
e3: ( has-pred,  x0-subj,  energy-dobj,  x1-prep_for )
e4: ( reduce-pred,  x2-subj,  cost-dobj,  — )

(b) An example of argument cloze task.

Document (e0  ~ e3):    build-pred  company-subj  plant-dobj  
provide-pred  electricity-dobj  mill-prep_to  ensure-pred  plant-subj 
has-pred  company-subj  energy-dobj  mill-prep_for  

Query (e4):    reduce-pred  TARGET-subj  cost-dobj

(c) An example when viewed as document-query pair.

Figure 1: Example of the argument cloze task and how to
view it as reading comprehension. (Part 1a and 1b modified
from Cheng and Erk (2018).)

Given a piece of text with dependency parses and coref-
erence chains (x0~x2), a sequence of events (predicate-
argument tuples, e0~e4) are extracted from dependency rela-
tions2. Then, one argument (i.e., prep to of e1) that belongs
to a coreference chain (x1) with at least two mentions is ran-
domly selected and removed. The model is asked to pick the
removed argument from all coreference chains appearing in
the text (Figure 1b).

However, in both manually annotated implicit argument
datasets (Gerber and Chai 2010; Ruppenhofer et al. 2010),
only preceding mentions are considered as ground truth
fillers, so the example in Figure 1b is very dissimilar to nat-
urally occurring implicit arguments. Therefore, to make the
argument cloze task closer to the natural task, we change the
evaluation of the task by considering candidates to be men-
tions, not coreference chains, and by considering only candi-
dates that appear before the implicit argument, independent
of their number of mentions.

We thus formalize the task as shown in Figure 1c. For an
event (e4) with a missing argument (subj), we concatenate
the predicates and arguments of all preceding events (e0~e3)
and view this as the document, and we treat the target event
with a special placeholder token (marked red) at the missing
argument position as the query. The task is then to select

2The event structure, in which arguments are encoded position-
ally after the predicate, follows common practice in recent litera-
ture of narrative schema (Pichotta and Mooney 2016)
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Figure 2: Pointer Attentive Reader. The document encoder produces a context-aware embedding for each argument mention
via a BiGRU. The query encoder, similar to the document encoder, concatenate the last forward and backward hidden state
to produce a single query vector. An attention distribution is computed from the query vector and all argument mention
embeddings, which is then used as a pointer to select one filler for the missing argument in the query.

any mention of the correct entity (marked blue) among the
arguments appearing in the preceding document. A query
may have multiple correct answers when there are multiple
mentions of the removed entity, as shown in the example.

4 Model
As discussed above, we view the task of implicit argument
prediction as a variant of reading comprehension, in that we
can treat the list of preceding events as a document and the
target event with missing argument as a query. And we also
draw on pointer networks and on multi-hop attention.

Most previous work on reading comprehension (Chen,
Bolton, and Manning 2016; Seo et al. 2017; Dhingra et
al. 2017) can be viewed as extending the Attentive Reader
model by Hermann et al. (2015). The Attentive Reader first
encodes the document and the query via separate recur-
rent neural networks to get a list of document word vec-
tors and one query vector. The query vector is used to obtain
an attention-weighted sum over all document word vectors,
which is then combined with the query vector to make the
final prediction.

In the case of implicit argument prediction, however,
the task is to directly select one token (an argument men-
tion) from the document input sequence as the filler for the
missing argument. This suggests the use of Pointer Net-
works (Vinyals, Fortunato, and Jaitly 2015), a variant of the
sequence-to-sequence model that uses the attention distribu-
tion over input states to “point” to a preferred input state.

So we combine the ideas from Attentive Reader and
Pointer Networks and propose the Pointer Attentive
Reader (PAR) model for implicit argument prediction, as
illustrated in Figure 2.

4.1 Pointer Attentive Reader
Embedding The document input and the query input, as
discussed in Section 3, are both sequences of event com-
ponents, represented as [xd

1, . . . , x
d
|D|] and [xq

1, . . . , x
q
|Q|] re-

spectively (where |D| and |Q| are the numbers of tokens in
document and query). The missing argument in the query
is represented by a special placeholder token. Each token is
then mapped to an embedding vector before being passed
into the document encoder and query encoder.

Document Encoder The document encoder is a bidirec-
tional single-layer Gated Recurrent Unit (BiGRU) (Cho et
al. 2014). The forward and backward hidden state of each
token are concatenated, with predicate tokens being masked
out (as predicates are not considered as candidates), which
gives us a list of context-aware embeddings of argument
mentions: [d1, . . . ,dT].

Query Encoder The query encoder is also a BiGRU sim-
ilar to the document encoder, except that we concatenate the
last forward hidden state and the last backward hidden state
to get the single query vector q.

Attention For each argument mention embedding dt, we
compute an attention score at using the query vector q as3:

st = vT · tanh(W[dt,q])

at = softmax(st)
(1)

where W and v are learned parameters.
Finally, the attention scores [a1, . . . , aT ] are directly used

as pointer probabilities to select the most probable filler for
the implicit argument.

Training Unlike conventional pointer networks where
there exists a single target for the pointer, there could be mul-
tiple correct answers from the document input list in our im-
plicit argument prediction task (as in the example in Figure

3We have also tried bilinear attention and dot product attention
(Luong, Pham, and Manning 2015), but got lower performance.
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1c). Therefore, we train the model to maximize the “maxi-
mum correct” attention score. That is, with a list of attention
scores a = [a1, a2, . . . , aT ] ∈ RT , and a binary answer
mask mc ∈ RT which has 1s for correct answer positions
(e.g., plant-dobj and plant-subj in Figure 1c) and 0s else-
where, we train the model with the following negative log
likelihood (NLL) loss function:

L = − log(max(a ◦mc)) (2)
where ◦ is element-wise multiplication.

4.2 Multi-hop Attention
A single event can have more than one implicit argument,
and in fact this is the case for over 30% of nominal predi-
cates in the dataset of Gerber and Chai (2010). In such cases,
we still treat one implicit argument as the target argument to
be filled, and the other arguments are indicated to the model
to be missing but not target, using a separate placeholder
token. An example is shown in Figure 3, where target argu-
ments are marked red, “missing but not target” arguments
are marked bold, and answers to the target arguments are
marked blue.

Document 1:    build-pred  company-subj  plant-dobj  provide-pred  
electricity-dobj  mill-prep_to  ensure-pred  plant-subj
Query 1:    has-pred  MISS-subj  energy-dobj  TARGET-prep_for

Document 2:    build-pred  company-subj  plant-dobj  provide-pred  
electricity-dobj  mill-prep_to  ensure-pred  plant-subj
Query 2:    has-pred  TARGET-subj  energy-dobj  MISS-prep_for

Figure 3: Document-Query example for predicates with
more than one implicit argument.

When there are multiple implicit arguments, this could
make the query vector q lack enough information to com-
pute the correct attention distribution, especially in the ex-
treme case where only the predicate and placeholder tokens
are present in the query input. To overcome this difficulty,
we strengthen the model with the ability to reason over the
document and query to infer the missing but non-target argu-
ments and thus build a better query. We do this by extending
the Pointer Attentive Reader model with multi-hop atten-
tion, inspired by the idea of end-to-end memory networks
(Sukhbaatar et al. 2015). For example in Figure 3, we can
make the vector of Query 1 more informative by attending
to all missing arguments of has in the first hop. We are not
predicting the subject at this point, but could use it to help
the final prediction of TARGET-prep for. Figure 4 shows the
2-hop Pointer Attentive Reader model.

To make the query vector document-aware, we up-
date the query vector q, in each but the last hop, by
an attention-weighted sum o1 over argument embeddings
[d1,d2, . . . ,dT]:

s′t = v′T · tanh(W′[dt,q])

a′t = softmax(s′t)

o1 = ΣT
t=1a

′
t · dt

q1 = o1 + q

(3)

Document Input Query Input

Query EncoderDocument Encoder

Embedding

d1 d2 d3 dT……

o1

Attention
Weighted Sum q

+

Attention Distribution q1

2-hop Attention

Figure 4: 2-hop Pointer Attentive Reader. The query vector
q is first updated by an attention weighted sum o1 from all
argument embeddings in the document, before used to com-
pute the final attention distribution.

where W′ and v′ are learned parameters. Then in Equation 1
we use q1 instead of q to compute the final attention scores.

In this paper we only experiment with 2-hop attention.
However the model can be easily extended to k-hop (k > 2)
attention models.

Extra Supervision Another advantage of using multi-hop
attention is that we can apply extra supervision (Hill et al.
2016) on the attention scores to force the model to learn any
arbitrary attention distribution as desired. In the case of mul-
tiple implicit arguments, we want the model to attend to all
missing arguments of the query event in the first hop of at-
tention, so that the query vector receives enough information
for subsequent hops. Therefore, the desired distribution has
1/k for all mentions of all missing arguments (assuming k
mentions in total) and 0 elsewhere. (In the examples in Fig-
ure 3, the distribution would have 0.5 for both company-subj
and mill-prep to.) Then we can add the KL-divergence be-
tween the actual attention scores and the desired distribution
to the loss function in Equation 2.

5 Empirical Results
5.1 Training Data
Preprocessing We construct a large scale training dataset
from the full English Wikipedia corpus. We retrieve each
document from the 20160901 dump of English Wikipedia4,
and split it into paragraphs using the WikiExtractor tool5.

We run Stanford CoreNLP (Manning et al. 2014) to ob-
tain dependency parses and coreference chains of each para-
graph,6 from which we extract a sequence of events and en-
tities as demonstrated in Figure 1b, after lemmatizing all
verbs and arguments, incorporating negation and particles
to verbs, and normalizing passive constructions. We down-
sample the most frequent verbs (with counts over 100,000)

4https://dumps.wikimedia.org/enwiki/
5https://github.com/attardi/wikiextractor.
6The coreference chains are used to make training data, but are

not handed to the model.
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by a ratio proportional to the square root of their counts, then
construct a document-query pair for every argument of ev-
ery event in the sequence if the argument co-refers with at
least one argument in its preceding events (Figure 1c). This
leads to approximately 25 million document-query pairs in
the training dataset. This dataset is used to train models for
both evaluation tasks discussed below.

Initialization and Hyperparameters For training the
Pointer Attentive Reader model, we initialize the embed-
ding layer with event-based word2vec embeddings, follow-
ing Cheng and Erk (2018). (The embedding vectors for
placeholder tokens are initialized to zero.) We use a hidden
size of 300 in both document encoder and query encoder,
and apply a dropout layer with a rate of 0.2 on all embed-
dings before they are passed to the encoders. We train the
model for 10 epochs with a batch size of 128, using Adagrad
optimizer (Duchi, Hazan, and Singer 2011) to minimize the
negative log-likelihood loss as defined in Equation 2 with
a learning rate of 0.01. The 2-hop Pointer Attentive Reader
model is trained with the same set of hyperparameters.

5.2 Evaluation on OntoNotes Dataset
Our main evaluation is on the argument cloze task using the
OntoNotes datasets of Cheng and Erk (2018). The datasets
are large and provide clean test data, as they are based on
gold syntax and coreference annotation. The two datasets are
ON-SHORT and ON-LONG, where the latter consists of con-
siderably longer documents. We modify their data genera-
tion pipeline7 as discussed in Section 3. This greatly reduces
the number of test cases, as many cases in the original set-
ting have the missing argument only coreferring with argu-
ments of subsequent events, which are excluded in our new
setting. Also, although now there can be more than one can-
didate that constitutes a correct answer to a query (as in the
example in Figure 1c), the number of candidates also grows
much larger (about three times), because we now view every
argument mention rather than a whole coreference chain as a
candidate. Some statistics of both the original and modified
datasets are shown in Table 1.

ON-SHORT ON-LONG
Original Modified Original Modified

# doc 1027 597
# test cases 13018 7781 18208 10539

Avg # candidates 12.06 34.99 36.95 93.89
Avg # correct 1 3.17 1 4.61

Table 1: Statistics of the OntoNotes datasets.

We compare our model to 2 baselines, the RANDOM
baseline, which randomly selects one candidate, and the
MOSTFREQ baseline, which selects any candidate belong-
ing to the coreference chain with highest number of men-
tions. We also compare with the best performing EVENT-
COMP model in Cheng and Erk (2018).

7https://github.com/pxch/event imp arg

Results The evaluation results are shown in Table 2. We
can see that the Pointer Attentive Reader outperforms the
previously best EVENTCOMP model by a large margin,
especially on the harder ON-LONG dataset. Cheng and
Erk (2018) found that entity salience features, that is, num-
bers of different types of mentions in a coreference chain,
greatly improves the performance of their EVENTCOMP
model. We have also tried to add such features to our model,
but do not see significant improvement (sometimes adding
the features even degrades the performance). This is proba-
bly due to the fact that by sequentially modeling the context
through a document encoder, PAR is already encoding en-
tity salience as some latent information in its context-aware
vectors [d1, . . . ,dT].

ON-SHORT ON-LONG
RANDOM 13.24 8.74
MOSTFREQ 35.15 26.29
EVENTCOMP 36.90 21.26

+ entity salience 46.06 31.43
PAR 58.12 51.52

Table 2: Evaluation on the OntoNotes datasets.

To better understand why PAR is performing well, we plot
the accuracy of different models on ON-LONG by the fre-
quency of the removed argument, that is, by the number of
preceding mentions referring to the argument, in Figure 5.
We can see that entity salience boosts the performance of
the EVENTCOMP model in particular for frequent entities.
While PAR not only achieves comparable performance on
frequent entities with EVENTCOMP + entity salience, it also
maintains a relatively steady performance on rare entities,
indicating that our model is able to capture both semantic
content of events and salience information of entities.

1 2 3 4 5 6 7 8 9 10+
Entity Frequency
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A
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EVENTCOMP + Salience
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Figure 5: Performance of EVENTCOMP, with and without
entity salience, and PAR, by entity frequency (length of
coreference chain) of the removed argument, on ON-LONG.

Evaluation on Multiple Implicit Arguments To test our
model’s ability to predict multiple implicit arguments of
the same predicate (Section 4.2), we extract subsets from
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Nine people were injured in Gaza when gunmen opened fire on an Israeli bus. Witnesses say the shots came from the Palestinian international airport. Israeli Prime Minister
Ehud Barak closed down the two-year-old airport in response to the incident. Palestinians criticized the move. They regard the airport as a symbol of emerging statehood.
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0.32
0.40

Figure 6: An example from the OntoNotes dataset (english/bn/cnn 0019) with multiple implicit arguments, and the
attention scores computed by PAR and 2-hop PAR. While PAR fails on this example, 2-hop model succeeds from a more
informative query vector when the first hop attends to other missing arguments of the query.

both the ON-SHORT and ON-LONG datasets by selecting
queries with more than one argument that is a potential im-
plicit argument (i.e., co-referring with arguments of preced-
ing events). Then we modify each query by removing all
such potential implicit arguments, and ask the model to pre-
dict one of them at a time, as in the examples shown in
Figure 3. We name the resulting two subsets ON-SHORT-
MULTI and ON-LONG-MULTI.

ON-SHORT
-MULTI

ON-LONG
-MULTI

PAR w/o multi-arg 51.49 43.06
PAR 48.45 39.90
2-HOP PAR 50.54 42.69

+ extra supervision 50.73 41.72

Table 3: Evaluation on subsets of the OntoNotes datasets
with more than one missing argument in the query.

Table 3 shows the result of testing PAR and 2-hop PAR on
the two subsets. The “PAR w/o multi-arg” evaluates PAR on
the same subsets of queries, but only removes one argument
at a time. The performance drop of over 3 points from the
same model proves that the multi-argument cases are indeed
harder than single-argument cases. The 2-hop model, how-
ever, brings the performance on multi-argument cases close
to single-argument cases. This confirms our hypothesis that
multi-hop attention allows the model to build a better query
by reasoning over the document. We also trained a 2-hop
model with extra supervision on the first hop of attention
scores, as discussed in Section 4.2, but it does not provide
much benefit in this experiment. Figure 6 shows an exam-
ple where PAR fails to point to the correct answer, but the
2-hop model succeeds by first attending to other missing ar-
guments of the query (Palestinians as missing subject) in the
first hop, then pointing to the correct answer in the second
hop with a more informative query vector.

5.3 Evaluation on G&C Dataset
The implicit argument dataset by Gerber and Chai (2010
2012) is a very small dataset with 966 annotated implicit
arguments, comprising only 10 nominal predicates. Still it is

currently the largest available dataset of naturally occurring
implicit arguments.

The task is, for each missing argument, to either choose
a filler from a list of candidates or to leave the argument
unfilled. The candidates for each missing argument position
consists of all core arguments labeled by PropBank (Palmer,
Gildea, and Kingsbury 2005) or NomBank (Meyers et al.
2004) within a two-sentence candidate window (i.e., the cur-
rent sentence and the preceding two sentences). An example
is shown below:

The average interest rate rose to 8.3875% at
[Citicorp]subj ’s $50 million weekly auction of [91-day
commercial paper]obj, or corporate IOUs, from 8.337%
at last week’s [sale]pred.

where Citicorp is the implicit subject of sale, and 91-day
commercial paper is the implicit object of sale.

There are two obstacles to applying our Pointer Attentive
Reader to the task. First, the number of missing argument
positions (3737) is much larger than the number of gold im-
plicit arguments, making the dataset highly biased. Whether
a particular argument position is typically filled is mostly
predicate-specific, and the size of dataset makes it hard to
train a complex neural model. This problem was also noted
by Cheng and Erk (2018), who trained a simple fill / no-fill
classifier with a small subset of shallow lexical features used
originally by Gerber and Chai (2012). We adapt the same
idea to overcome the problem. This also makes our results
comparable to Cheng and Erk (2018).

Second, our model only considers arguments of preced-
ing verbal events (i.e., with verb predicates) as candidates.
However, many of the candidates defined by the task, espe-
cially those from NomBank annotations, are not present in
any verbal event (arguments of nominal predicates are likely
to be absent from any dependency relation with a verb). To
make a fair comparison, we convert every NomBank propo-
sition within the candidate window to an event by mapping
the nominal predicate to its verbal form, and add it to the list
of preceding events. After adding the extra events, there still
remains a slight difference between the candidates available
to our PAR model and the candidates defined by the task,
which we adjust by masking out the unavailable candidates
from other models used in comparison.
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Cross Validation The Wikipedia training data for our
Pointer Attentive Reader contains only verbal predicates,
and the text is from a different domain than the G&C dataset.
To bridge the gap, we fine tune the model on G&C dataset
by 10-fold cross validation, that is, for each testing fold,
the model is tuned on the other nine folds. We remove the
dropout layers in both document encoder and query en-
coder to ensure reproducibility. To prevent overfitting, we
freeze the parameter weight in embedding layer and query
encoder layer, using Adagrad optimizer with a learning rate
of 0.0005. Still, due to the size of the dataset and the com-
plexity of the model, the performance is very sentitive to
other hyperparameters, and we cannot find a single set of
hyperparameters that works best for all models. Therefore,
we report our results as an average of 5 runs with slightly
different hyperparameter settings. 8

Results The evaluation results are presented in Table 4.
The GCAUTO and EVENTCOMP results are from Cheng and
Erk (2018); GCAUTO is a reimplementation of Gerber and
Chai (2012) without gold features. EVENTCOMP* evaluates
the EVENTCOMP model in a condition that masks out some
candidates to make it a fair comparison with our PAR model,
as discussed above. Note that GCAUTO, EVENTCOMP and
EVENTCOMP* all have an intrinsic advantage over the PAR
model as they exploit event information from the whole doc-
ument to make the prediction, while our new model only
looks at the preceding text.

P R F1

Gerber and Chai (2012) 57.9 44.5 50.3
GCAUTO 49.9 40.1 44.5
EVENTCOMP 49.3 49.9 49.6
EVENTCOMP* 48.0 48.7 48.3
PAR 44.0 44.7 44.4
2-HOP PAR 45.9 46.6 46.2

+ extra supervision 47.9 48.6 48.3

Table 4: Evaluation on the G&C dataset.

The performance of the plain PAR model is already com-
parable to the GCAUTO baseline. With an additional hop
of attention, the performance increases by around 2 points.
This is as expected, as over 30% of the predicates in the
G&C dataset have more than one implicit argument, and we
have shown in Section 5.2 that multi-hop attention helps
prediction on multi-argument cases. Finally, when the 2-
hop model is trained with extra supervision, it gains another
1.7 points improvement, achieving an F1 score of 48.3, on
par with EVENTCOMP*, the comparably evaluated EVENT-
COMP. Figure 7 shows the attention scores of PAR and 2-
hop PAR on the previous example, to demonstrate the power
of 2-hop inference on multi-argument cases.

8The hyperparameters are: (B = 4, λ = 1.0), (B = 8, λ =
1.0), (B = 16, λ = 1.0), (B = 8, λ = 0.1), and (B = 8, λ =
0.0), where B is the batch size and λ is the `2 regularizer weight.

rise-pred

rate-subj

8.3875%-prep_to

auction-prep_at

8.337%-prep_from

auction-pred

Citicorp-subj

paper-obj

PAR
2-hop PAR (1st Hop)

2-hop PAR (2nd Hop)

The average interest rate rose to 8.3875% at Citicorp's $50 million weekly auction
of 91-day commercial paper, or corporate IOUs, from 8.337% at last week's sale.

Query: (sale/sell-pred, TARGET-subj, MISS-obj)            Answer: Citicorp
0.0
0.2
0.4
0.6
0.8
1.0

Figure 7: A G&C example with multiple implicit arguments,
and the attention scores computed by PAR and 2-hop PAR.
While the 2-hop model attends more to the non-target miss-
ing argument (paper-obj) on the first hop, it successfully
points to the target argument in the second hop.

6 Conclusion
In this paper we have framed implicit argument predic-
tion as a reading comprehension task, where the predicate-
argument tuple with the missing argument is a query, and
the preceding text is the document in which the answer can
be found. Also drawing on pointer networks and multi-hop
memory networks, we have introduced the Pointer Atten-
tive Reader model for implicit argument prediction. On an
argument cloze task, the Pointer Attentive Reader beats the
previous best model by a large margin, showing good per-
formance on short and long texts, and on salient as well as
less salient arguments. When multiple arguments are miss-
ing, the use of a second hop to reason over possible ar-
guments of the query considerably improves performance.
This also proves useful on a small dataset of naturally oc-
curring nominal predicates. Our code is available at https:
//github.com/pxch/imp arg rc.

In this paper, we have formulated the implicit argument
prediction as a task of selecting a mention of an argument,
ignoring coreference. In future work, we plan to adapt other
widely used reading comprehension models, like BiDAF
(Seo et al. 2017), to our task. Another interesting direction
is to model coreference latently, through self-attention dur-
ing the computation of embeddings for the document. We
are also interested in integrating implicit argument reasoning
in actual reading comprehension. Because argument cloze
can be viewed as a variant of reading comprehension, mod-
els trained on argument cloze can be straightforwardly inte-
grated into models for reading comprehension.
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