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Abstract

Joint entity and relation extraction is to detect entity and re-
lation using a single model. In this paper, we present a novel
unified joint extraction model which directly tags entity and
relation labels according to a query word position p, i.e., de-
tecting entity at p, and identifying entities at other positions
that have relationship with the former. To this end, we first
design a tagging scheme to generate n tag sequences for an
n-word sentence. Then a position-attention mechanism is in-
troduced to produce different sentence representations for ev-
ery query position to model these n tag sequences. In this
way, our method can simultaneously extract all entities and
their type, as well as all overlapping relations. Experiment
results show that our framework performances significantly
better on extracting overlapping relations as well as detect-
ing long-range relation, and thus we achieve state-of-the-art
performance on two public datasets.

Introduction
Relation extraction (RE) aims to detect the semantic relation
between entities in unstructured text. Traditional RE systems
separate this task into pipelined subtasks: first detecting en-
tities and then classifying the relation types between can-
didate entity pairs. Such a framework makes the task easy
to conduct, but it ignores the underlying interdependencies
and error propagation between these two subtasks (Li and Ji
2014; Gupta, Schütze, and Andrassy 2016).

Different from the pipelined methods, joint extraction is
to detect entities together with their relations using a joint
model. Recent studies show that joint learning approaches
can effectively integrate the information of entity and rela-
tion, and therefore achieve better performance in both sub-
tasks. Most previous joint models are based on feature-based
structured learning (Kate and Mooney 2010; Li and Ji 2014;
Miwa and Sasaki 2014; Ren et al. 2017). These methods
heavily depend on hand-crafted features and other NLP
toolkits. Recently, several neural architectures have been ap-
plied, most of which utilize parameter sharing for joint mod-
eling, but still require explicit separate components for en-
tity recognition and relation classification (Miwa and Bansal
2016; Gupta, Schütze, and Andrassy 2016). In contrast,
Zheng et al. (2017b) proposes a special tagging scheme
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Figure 1: An example sentence that contains overlapping re-
lations which share the same entity in the sentence. For ex-
ample, the first three relations in the table are overlapping
because they share the same entity “Trump”. Similarly, the
last two relations are also overlapping due to the shared en-
tity “New York City”. Such overlapping relations are very
common in datasets of relation extraction (see Table 1).

to convert joint extraction to a sequence labeling problem,
solving the task in a unified way. However, their method can-
not identify overlapping relations, which may lead to poor
recall when processing a sentence with overlapping relations
(see Figure 1). Another unified method proposed by Zeng et
al. (2018) employs sequence-to-sequence learning with copy
mechanism. Although it can extract overlapping relations,
their model fails to identify multi-word entities. Overall, it
is still challenging to jointly extract entities and overlapping
relations using a single unified model.

In this paper, we present a new unified method to solve
the joint extraction by tagging entity and relation labels si-
multaneously according to a query word position p. Given a
sentence and a query position p, our model is to answer two
pseudo questions: “What is the entity and its type at p?” and
“Which entities have relationship with the the one at p?” To
this end, we design a special tagging scheme that annotates
entity labels at query position p, as well as relation labels at
other positions in the sentence (see Figure 2). Thus, it actu-
ally transforms the joint relation extraction problem to a list
of sequence labeling problems, e.g., for an n-word sentence,
we annotate n different tag sequences according to n query
positions. To model these n tag sequences in a single unified
model, a novel position-attention mechanism is introduced
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Figure 2: An example of our tagging scheme, where n denotes the sentence length, p ∈ [1, n] is the query word position. For a
query p, we build an n-tag sequence to represent all possible overlapping relations that correspond to the entity at p. Thus, entity
type is labeled at p if it is the start of an entity, and relation types are labeled at the rest of words if they have relationship with
the entity at p. In this way, all entities and overlapping relations can be annotated using this tagging scheme. In this example,
“LOC” in “B-LOC” is short for entity type LOCATION, “PER” in “S-PER” is short for PERSON, “PO” in “B-PO” is short for
relation type President of, “BI” in “B-BI” is short for Born in and “LI” in “B-LI’ is short for Located in.

into the sequence tagging model (see Figure 3) to produce
n different position-aware sentence representations. These
representations are then used to decode different tagging re-
sults, from which we can extract all entities, their types and
all overlapping relations. In addition, the proposed attention
mechanism can build direct connection between words (en-
tities), which might contribute to extraction of long-range re-
lation (the two entities have a long distance from each other).

The key contribution of this paper is the newly proposed
unified model for joint extraction of entities and overlapping
relations. In detail:

1. We design a tagging scheme which can simultaneously
represent type of entities and overlapping relations.

2. We propose a position-attention mechanism to produce
different position-aware sentence representations accord-
ing to query position p, which can be used to decode dif-
ferent tag sequences and extract overlapping relations.

3. We demonstrate the effectiveness of our method using
two public datasets and achieve state-of-the-art results.
Furthermore, the analysis shows that our model perfor-
mance better on extracting long-range relations, which
are usually more difficult.

Methodology
In this section, we first introduce our tagging scheme which
transforms overlapping relation extraction to a list of se-
quence labeling problems. Then we detail the position-
attentive sequence labeling model based on this tagging
scheme.

Tagging Scheme

As shown in Figure 2, for an n-word sentence, n different
tag sequences are annotated based on our tagging scheme
according to different query position p. In each tag sequence,
entity type is labeled at the current query position p if this
position is the start of an entity, and other entities, which
have relationship to the entity at p, are labeled with relation
types. The rest of tokens are assigned label “O” (Outside),
indicating that they do not correspond to the entity that is at-
tended to. Thus, relations, which are represented by a triplet
(Entity1, RelationType,Entity2), can be extracted based
on a tag sequence. Here, Entity1 is the first argument of
the relation and can be obtained from the detected entity
at the query position. Entity2, the second argument, and
RelationType can be extracted from other detected entities
and their labels in the same tag sequence. Obviously, the first
entity can be used multiple times to form overlapping rela-
tions.

For example, when the query position p is 5 and the token
at this position is “Trump”, the label of “Trump” is PER-
SON. Other entities, such as “United States”, “Queens” and
“New York City”, which are corresponding to “Trump”, are
labeled as President of, Born in and Born in. The first entity
“Trump” will be used for three times to form three different
triplets in this situation. If the query p is 12 and the token
is “Queens”, its tag is LOCATION, and the corresponding
entity “New York City” is labeled as Located in. For p is
2, there is no corresponding entity and thus only the entity
type of “United States” is labeled (notice that the relation is
unidirectional). All of the tokens are labeled as “O” when
p is 1 because there is no entity at the position p which is
attended to. For both entity and relation type annotation, we
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Figure 3: The architecture of our position-attentive sequence labeling model. It receives the same sentence input and a different
query position p to extract all overlapping relations. Here, the red “Queens” is the token at query position p, hp is the hidden
state of time-step p, ht is the hidden vector of time-step t, at is the attention weights and ct is the attention-pooling vector.

use “BIES” (Begin, Inside, End, Single) signs to indicate
the position information of tokens in the entity, and there-
fore we can extract multi-word entities. Through our tagging
scheme, all of overlapping relations in an n-word sentence,
together with all entity mentions and their entity types, can
be represented in n tag sequences.

Note that our tagging scheme is quite different from table
filling method (Miwa and Sasaki 2014). It uses only half of
the table and hence cannot represent reverse relation, which
is also a kind of overlapping form, e.g., if the relation of en-
tity pair (Entity1, Entity2) is Capital of, the reverse pair
(Entity2, Entity1) may have relation of Contains. In addi-
tion, the best search order “close-first” actually equals to first
detecting entities and then classifying relations. Most joint
neural methods following table filling (Gupta, Schütze, and
Andrassy 2016; Zhang, Zhang, and Fu 2017) also use this
search order and usually require explicit RC components in
the network.

End-to-End Sequence Labeling Model with
Position-Attention
With our tagging scheme, we build an end-to-end sequence
labeling neural architecture (Figure 3) to jointly extract enti-
ties and overlapping relations. Our architecture first encodes
the n-word sentence using a RNN encoder. Then, we use a
position-attention mechanism to produce different position-
aware sentence representations for every query position p.
Based on these position-aware representations, we finally
use Conditional Random Field (CRF) to decode the n tag
sequences to extract entities and overlapping relations.
Bi-LSTM Encoder RNNs have been shown powerful to
capture the dependencies of input word sequence. In this

work, we choose bidirectional Long Short Term Memory
(Bi-LSTM) as the encoding RNN. Consider a sentence that
consists of n words S = {wt}nt=1, we first convert the
words to their word-level representations {ww

t }nt=1, where
wt ∈ Rd is the d-dimensional word vector corresponding to
the t-th word in the sentence. As out of vocabulary (OOV)
word is common for entity, we also augment word repre-
sentation with character-level information. Character-level
representations {wc

t}nt=1 are extracted by a convolution neu-
ral network (CNN), where wc

t ∈ Rk is the k-dimensional
outputs of the CNN with k-filters. This CNN, similar to the
one applied on words, receives character embeddings as in-
put and generates representation which effectively captures
the morphological information of the word. The final rep-
resentations of words are concatenation of word-level and
character-level representation [ww

t ;wc
t ]. Then, the Bi-LSTM

is implemented to produce forward state
−→
ht and backward

state
←−
ht for each time step:

−→
ht =

−−−−→
LSTM(

−→
h t−1, [ww

t ,wc
t ]) (1)

←−
ht =

←−−−−
LSTM(

←−
h t+1, [ww

t ,wc
t ]) (2)

These two separate hidden states capture both past (forward)
and future (backward) information of the word sequence. Fi-
nally, we concatenate

−→
ht and

←−
ht as the encoding output of

the t-th word, donated as ht = [
−→
ht ;
←−
ht ], to obtain the fi-

nal sentence representations H = {ht}nt=1. However, such
representations are not enough for decoding the n tag se-
quences produced by our tagging scheme. Because position
information is lacking where to detect Entity1 and other
components in overlapping triplets.
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Position-Attention Mechanism The key information for
detecting an entity and its relationship with another entity in-
clude: (1) the words inside the entity itself; (2) the depended
entity; (3) the context that indicates the relationship. Under
these considerations, we propose position-attention, which
can encode the entity information at query position as well
as the context information of the whole sentence to generate
position-aware and context-aware representations {ut}nt=1:

ut = [ht; ct] (3)

where ct = att(H,hp,ht) is an attention-pooling vector of
the whole sentence (H):

stj = vT tanh(WHhj + Wphp + Whht)

atj = exp(stj)
/∑n

k=1
exp(stk)

ct =
∑n

j=1
atj hj

(4)

where WH ,Wp,Wh, v are parameters to be learned,
hj ,hp,ht are the hidden states at position j, p and t respec-
tively, stj is the score computed by comparing hp and ht

with each of the sentence state hj , and atj is the attention
weight produced by normalization of stj . It means that hp,
the state at the position that we attend to, is used for com-
paring with the sentence representations to encode position
information, and ht is used for matching the sentence rep-
resentations against itself (self-matching) to collect infor-
mation from the context (Wang et al. 2017). The position-
attention mechanism produces different sentence represen-
tations according to the query position p, and thus solves the
problem for modeling different tag sequences of a sentence.
The following tag decoder can predict completely distinct
labels given the same sentence and different query positions.
CRF Decoder It is shown beneficial for sequence labeling
model to consider the correlations between labels in neigh-
borhoods and jointly decode the best chain of labels. Thus,
we use CRF for jointly decoding, instead of independently
decoding each label. We consider Z = {zt}nt=1 to be the in-
put sequence scores, which is generated from position-aware
sentence representation ut:

zt = Wuut (5)

where zt ∈ RNt is the tag scores of the t-th word, and Nt is
the number of distinct tags. Consider Zt,j as the score of the
j-th tag at position t. For a sequence of labels y = {yt}nt=1,
we define the decoding score as:

score(Z, y) =
n∑

t=0

Ayt,yt+1
+

n∑
t=1

Zt,yt
(6)

where A is transition matrix such that Ai,j represents the
transition score from the tag i to tag j. Then we get the con-
ditional probability over all possible label sequences y with
the following form:

p(y|Z) = exp(score(Z, y))∑
y′∈YZ

exp(score(Z, y′))
(7)

Datasets NYT Wiki-KBP
#Relation types 24 14
#Training sentences 66,335 75,325
#Training sentences with ORs 24,183 26,628
#Training triplets 116,747 113,540
#Test sentences 395 289
#Test sentences with ORs 1 23
#Test triplets 3878 2002
#Test triplets (without “None”) 396 316

Table 1: Statistics of the datasets in our experiments. Here,
“ORs” is short for overlapping relations.

where YZ represents the set of possible label sequences for
Z. During training, we maximize the log-likelihood of the
correct tag sequence on the the training set {(Zi, yi)}:

L =
∑
i

log p(y|Z) (8)

Decoding is to search for the tag sequence that obtains the
maximum score given by:

y∗ = argmax
y∈YZ

score(Z, y) (9)

The best tag sequence y∗ can be computed using the Viterbi
algorithm.

Extracting Entities and Overlapping Relations
from Tag Sequences
From our tagging scheme, we know that the first entity of
the triplet and its entity type can be extracted from the labels
at the query position, and the second corresponding entity,
if existed, as well as the relation type, can be obtained from
the labels at other positions (see Figure 2). The overlapping
relation extracting problem is solved because the first entity
is allowed to belong to multiple triplets in a tag sequence.
Through n tag sequence results considering different query
positions, we can extract all overlapping relations in a sen-
tence, as well as all entity mentions and their entity types.
Moreover, the extracted entity types can be used to validate
the triplets, for example, if the relation type is Born in, the
entity type of the first argument must be PERSON.

Experiments
Experiment Settings
Datasets We use two public datasets to demonstrate the ef-
fectiveness of our method: (1) NYT (Riedel, Yao, and Mc-
Callum 2010) is a news corpus sampled from 294k 1989-
2007 New York Times news articles. We use the same
dataset1 published by (Ren et al. 2017). The training data are
automatically labeled using distant supervision, while 395
sentences are annotated by the author of (Hoffmann et al.
2011) and used as test data. (2) Wiki-KBP (Xiao and Weld
2012) utilizes 1.5M sentences sampled from 780k Wikipedia
articles as training corpus, while test set consists of 289 sen-
tences selected by the author of (Ren et al. 2017) from the

1https://github.com/shanzhenren/CoType
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Method NYT Wiki-KBP
Prec. Rec. F1 Prec. Rec. F1

MultiR (Hoffmann et al. 2011) 0.338 0.327 0.333 0.301 0.530 0.380
DS-Joint (Li and Ji 2014) 0.574 0.256 0.354 - - -
Cotype (Ren et al. 2017) 0.423 0.511 0.463 0.311 0.537 0.388

ReHession (Liu et al. 2017) 0.412 0.573 0.480 0.367 0.493 0.421
LSTM-CRF (Zheng et al. 2017b) 0.693 0.310 0.428 0.596 0.256 0.358

LSTM-LSTM-Bias (Zheng et al. 2017b) 0.615 0.414 0.495 0.536 0.303 0.387
PA-LSTM-CRF 0.494 0.591 0.538 0.511 0.393 0.444

Table 2: Comparison of our model and baseline methods on NYT and Wiki-KBP datasets. PA-LSTM-CRF denotes our sequence
labeling model with position-attention.

manual annotations in 2013 KBP slot filling assessment re-
sults (Ellis et al. 2012). We use the public training data2

which are automatically labeled using distant supervision
and handcrafted patterns by the author of (Liu et al. 2017).
Statistics of the datasets are shown in Table 1.
Evaluation We mainly focus on overlapping relation extrac-
tion in this paper. Because our model directly extracts rela-
tions without detecting entities and their entity types first,
we only evaluate the results of extracted triplets. We use the
F1 metric computed from Precision (Prec.) and Recall (Rec.)
for evaluation. A triplet is marked correct when its relation
type and two corresponding entities are all correct, where
the entity is considered correct if the head and tail offsets
are both correct. We exclude all triplets with relation type
of “None” (because we do not require them as negative sam-
ples) and create a validation set by randomly sampling 10%
sentences from test set as previous studies (Ren et al. 2017;
Zheng et al. 2017b) did.
Implementation Details For both datasets, the word em-
beddings are randomly initialized with 100 dimensions and
the character embeddings are randomly initialized with 50
dimensions. The window size of CNN is set to 3 and the
number of filters is 50. For Bi-LSTM encoder, the hidden
vector length is set to 200. We use l2 regularization with
a parameter of 0.001 to avoid overfitting. Parameter opti-
mization is performed using Adam (Kingma and Ba 2014)
with learning rate 0.001 and batch size 16. In addition, we
randomly sample 10% negative tag sequences in which all
words are labeled as “O” to reduce the training samples.
Baselines We compare our method on NYT and Wiki-KBP
datasets with the following baselines: (1) MultiR (Hoff-
mann et al. 2011) models training label noise based on multi-
instance multi-label learning; (2) DS-Joint (Li and Ji 2014)
jointly extracts entities and relations using structured per-
ceptron; (3) Cotype (Ren et al. 2017) learns jointly the rep-
resentations of entity mentions, relation mentions and type
labels; (4) ReHession (Liu et al. 2017) employs heteroge-
neous supervision from both knowledge base and heuristic
patterns. (5) LSTM-CRF and LSTM-LSTM-Bias (Zheng
et al. 2017b), the most related work to our method, con-
verts the joint extraction task to a sequence labeling prob-
lem based on a novel tagging scheme. However, it cannot
detect overlapping relations. Note that we do not compare

2https://github.com/LiyuanLucasLiu/ReHession

our method with (Zeng et al. 2018) for two reasons. First,
their model can decode only the first word of multi-word
entity, while ours can detect the whole. In this paper, we
conduct a stricter evaluation in which an entity is consid-
ered correct only if the head and tail offsets are both correct,
which makes the task more challenging. Second, they do not
report the result on manually labeled NYT test set. Instead,
they use test set split from training data which is generated
by distant supervision.

Experimental Results and Analyses
Main Results We report our experimental results on NYT
and Wiki-KBP datasets in Table 2. It is shown that our
model, position-attentive LSTM-CRF (PA-LSTM-CRF),
outperforms all the baselines and achieves state-of-the-art
F1 score on both datasets. Specially, compared to LSTM-
LSTM-Bias (Zheng et al. 2017b), our method achieves sig-
nificant improvements of 5.7% in F1 Wiki-KBP dataset,
which is mainly because our model can extract overlapping
relations. For NYT dataset, although no overlapping rela-
tion is manually labeled, our model also outperforms LSTM-
LSTM-Bias by 4.3% in F1 due to a large improvement in
Recall. We consider that it is because our model our model
is capable of identifying more long-range relations, which
will be further discussed in section of attention analysis. We
also notice that the Precision of our model drops compared
with LSTM-LSTM-Bias. This is mainly because many over-
lapping relations are not annotated in the manually labeled
test data. We will discuss it in the following paragraph.
Effect on Overlapping Relation Extraction As Table 1
shows, there are about a third of sentences that contain over-
lapping relations in training data of both datasets, but much
less in test sets. In fact, we find that many overlapping re-
lations are omitted from the manually labeled test data in
both datasets, especially for the relations of reverse pair of
entities, e.g., “per:parents” and “per:children” in Wiki-KBP,
or “/location/country/administrative divisions” and “/loca-
tion/administrative division/country” in NYT. This may sig-
nificantly affect the performance of our model on overlap-
ping relation detection, especially the Precision. Thus, to
discover the capability of our model to identify overlap-
ping triplets, we simply add some gold triplets into test set
of Wiki-KBP. For example, we add a ground-truth reverse
triplet with “per:parents” type if “per:children” is originally
labeled and vice versa. This will increase the number of sen-
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Method Wiki-KBP
Prec. Rec. F1 F1∗

LSTM-LSTM-Bias 0.581 0.290 0.386 0.310
PA-LSTM-CRF 0.623 0.436 0.513 0.637

Table 3: Evaluation for overlapping relation extraction on
Wiki-KBP, where F1∗ denotes the F1 score on sentences
with overlapping relations. By simply adding some gold
triplets using the reverse relations, our model achieves a
large improvement of 6.9% in F1 and 11.2% in Precision
compared with the results in Table 2.

tences with overlapping relations in test set to about 50 from
23, but still much less in proportion to training data. We
report the evaluation results compared with LSTM-LSTM-
Bias in Table 3. It can be seen that our model achieves
an large improvement of 6.9% in F1 and 11.2% in Preci-
sion compared with the results in Table 2, while the per-
formance of LSTM-LSTM-Bias basically remain the same
in F1. Moreover, for overlapping relations, our model sig-
nificantly outperforms LSTM-LSTM-Bias by about 30%,
which demonstrates the effectiveness of our method on ex-
traction of overlapping relations.
Ablation Study We also conduct ablation experiments to
study the effect of components of our model. As shown
in Table 4, all the components play an important roles in
our model. Consistent with previous work, the character-
level representations are helpful to capture the morpholog-
ical information and deal with OOV words in sequence la-
beling task (Ma and Hovy 2016). Introducing position atten-
tion mechanism for generating the position-aware represen-
tations seems an efficient way to incorporate the information
of the query position compared with directly concatenating
the the hidden vector at the query position to each state of
the BiLSTM encoder. In addition, the self-matching in our
position-attention mechanism also contributes to the final re-
sults for the reason of extracting more information from the
context.
Comparison of Running Time While LSTM-LSTM-Bias
or LSTM-CRF runs sequence tagging only once to extract
non-overlapping relations, our model tags the same sentence
for another n− 1 times in order to recognize all overlapping
relations. This means our model is more time-consuming
(O(n2) vs. O(n)). For instance, LSTM-CRF only predicts
about 300 samples and consumes 2s on Wiki-KBP test set,
while our model decodes about 7000 tag sequences and
takes about 50s. However, testing can be speeded up by shar-
ing the sentence representation before position attention be-
cause it is identical for the other n−1 times decoding. In this
way, the running time of our model reduces to 16s. More-
over, we may also prune some query positions to further ac-
celerate in real application because it is impossible for some
words to be the head of an entity.

Further Analysis for Attention
Detecting Long-Range Relations It is shown in previous
work that attention mechanism is helpful to capturing the
long range dependencies between arbitrary tokens, which

Wiki-KBP Prec. Rec. F1
PA-LSTM-CRF 0.511 0.393 0.444
- Character embeddings 0.470 0.359 0.407
- Position attention 0.461 0.372 0.412
- Self-matching 0.459 0.392 0.423

Table 4: F1 results of ablation experiments on Wiki-KBP.
For model without position attention, we directly concate-
nate the hidden vector at the query position to each hidden
state of the sentence to generate position-aware representa-
tions. For model without self-matching, the third item Whht

is removed from Equation 4.

is very important for detecting triplets composed of enti-
ties that have a long distance from each other. To further
prove the effectiveness of position attention, we analyze the
F1 score on triplets with different distances between entities
on Wiki-KBP dataset. As shown in Figure 4, we find that
the performance of our model remains stable as the distance
between entities increases, while that of LSTM-LSTM-Bias
drops significantly. It means that our model can effectively
model the dependencies between entities despite a long dis-
tance between them.
Case Study for Attention Weights We select two sentences
from the test set of Wiki-KBP to show the alignment of our
position-attention for case study. As shown in Figure 5, the
information of the first entity at the query position, together
with the context evidence for recognizing relations, is en-
coded into the position-aware representations regardless of
distance between entities. For instance, in Figure 5(a), the
second entity “Albert” pays more attention to the possible
corresponding entities “Anderson” and “Carol”, as well as
the key context word “sons” that contains information of
relation. The model also produces reasonable alignment at
other query position as Figure 5(b) shows. In Figure 5(c),
“Thousand Oaks” can still attend to the first entity “Sparky
Anderson” despite a long distance between them.

0~4 5~9 10~14 15~19 20~24 25~
Distance between entities

0.1

0.2

0.3

0.4

0.5

F1
 sc
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e

LSTM-LSTM-Bias
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Figure 4: Model performance on triplets with different dis-
tances between entities on Wiki-KBP dataset.
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Figure 5: Part of attention matrices for position-attention. Each row is the attention weights of the whole sentence for the current
token. The query position is marked by an arrow, the red tokens indicate the first entity extracted at the query position, and the
blue tokens indicates the second corresponding entities. (a) and (b) are the attention matrices of different query positions for
the same sentence, and (c) is the attention matrix for a sentence with long-range entity pairs.

Related Work
Traditional relation extraction frameworks divide this task
into two separate steps: first performing named entity recog-
nition (NER) and then conducting relation classification
(RC). RC is normally treated as a problem of multi-label
classification. Feature-based methods are first introduced to
tackle this problem (Rink and Harabagiu 2010), and recently
several neural architectures are applied, including CNNs
(Zeng et al. 2014; 2015; Santos, Xiang, and Zhou 2015;
Lin et al. 2016; Adel and Schütze 2017) and RNNs (Zhang
and Wang 2015; Zhou et al. 2016; Zhang et al. 2017). All
of these approaches utilize position embedding (or position
indicator) to integrate entity position information and finally
generate a sentence representation for identifying relation
type of the input entity pair. Zhou et al. (2016) employs at-
tention mechanism to decide the contribution of each word
to the final representation. Zhang et al. (2017) proposes a
position-aware attention mechanism to refine the informa-
tion of position embedding. Besides, CRF is introduced to
model the interdependency between entity type and relation
type (Adel and Schütze 2017). However, all these methods
require preprocessing step such as NER, and therefore may
suffer from error propagation.

In contrast, joint extraction approaches detect entities and
identify their relations using a joint model. Most of the
joint models are based on feature-based structured learning
(Kate and Mooney 2010; Singh et al. 2013; Li and Ji 2014;
Miwa and Sasaki 2014; Ren et al. 2017; Wang et al. 2018).
Recently, several end-to-end neural architectures are applied

to joint extraction. Most of them have explicit separate com-
ponents for NER and RC subtask (Miwa and Bansal 2016;
Gupta, Schütze, and Andrassy 2016; Katiyar and Cardie
2017; Zhang, Zhang, and Fu 2017; Zheng et al. 2017a;
Verga, Strubell, and McCallum 2018), and usually RC com-
ponent is still behind NER component and depends on NER
results. On the contrary, Zheng et al. (2017b) proposes a
unified model which utilizes a special tagging scheme to
convert joint extraction task to a sequence tagging prob-
lem. However, their model cannot recognize overlapping
relations in the sentence. Zeng et al. (2018) proposes an-
other unified model using sequence-to-sequence learning
with copy mechanism to solve overlapping relation extrac-
tion, but their method fails to identify multi-word entities.

In this paper, we present a novel unified model from joint
extraction of entities and overlapping relations. We design a
tagging scheme which simultaneously annotates entity type
and relation type in n tag sequences for an n-word sen-
tence, and propose a position-attention mechanism to model
them in a unified sequence tagging model. Attention mech-
anisms are used to model dependencies of input and output
sequences, and are successfully applied in various NLP tasks
(Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2017;
Cheng, Dong, and Lapata 2016; Wang et al. 2017). We also
incorporate self-attention into our position-attention mecha-
nism to capture the context information. It is a special case
which is computed inside a sequence to capture the long-
range dependencies between tokens, and is also widely used
in many NLP tasks (Lin et al. 2017; Tan et al. 2017).
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Conclusion
In this paper, we propose a unified position-attentive se-
quence labeling framework for joint extraction of enti-
ties and overlapping relations. Experiments show that our
method can effectively extract overlapping relations and
achieves the start-of-the-art results on two public datasets.
Besides, we find that attention mechanism is helpful to mod-
eling the long range dependencies and improves the model
performance on long-range relation detection.
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