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Abstract

Recognizing time expressions is a fundamental and important
task in many applications of natural language understand-
ing, such as reading comprehension and question answer-
ing. Several newest state-of-the-art approaches have achieved
good performance on recognizing time expressions. These
approaches are black-boxed or based on heuristic rules, which
leads to the difficulty in understanding the temporal infor-
mation. On the contrary, classic rule-based or semantic pars-
ing approaches can capture rich structural information, but
their performances on recognition are not so good. In this
paper, we propose a pattern-based approach, called PTime,
which automatically generates and selects patterns for recog-
nizing time expressions. In this approach, time expressions
in training text are abstracted into type sequences by using
fine-grained token types, thus the problem is transformed to
select an appropriate subset of the sequential patterns. We use
the Extended Budgeted Maximum Coverage (EBMC) model
to optimize the pattern selection. The main idea is to max-
imize the correct token sequences matched by the selected
patterns while the number of the mistakes should be lim-
ited by an adjustable budget. The interpretability of patterns
and the adjustability of permitted number of mistakes make
PTime a very promising approach for many applications. Ex-
perimental results show that PTime achieves a very compet-
itive performance as compared with existing state-of-the-art
approaches.

1 Introduction
Along with the rapid progress of natural language under-
standing research area, understanding temporal information
has been increasingly important in various applications such
as reading comprehension and question answering. Recog-
nizing time expressions, as a first and fundamental step of
understanding temporal information, has attracted consider-
able attention since last decade. Lots of efforts have been
paid on developing standards for modeling temporal infor-
mation and annotating time expressions in free text (Puste-
jovsky et al. 2005; 2010; Hobbs and Pan 2006). Many anno-
tated data corpus, such as the datasets of TempEval (Verha-
gen et al. 2010; UzZaman et al. 2013), the WikiWars dataset
(Mazur and Dale 2010; Lee et al. 2014) and the Tweets
dataset (Zhong, Sun, and Cambria 2017) , were built for

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

evaluating the ability of time expression recognizing sys-
tems.

Existing approaches for time expression recognizing have
achieved good performance on benchmark datasets, espe-
cially two recent approaches named SynTime and TOMN.
SynTime (Zhong, Sun, and Cambria 2017) improved previ-
ous results by grouping tokens to 3 main types, including
time token, modifier and numeral. It uses the time tokens
to trigger time expressions and expand their boundaries by
searching modifiers and numeral tokens with heuristic rules.
TOMN (Zhong and Cambria 2018) use the three types as
pre-tags instead of the classic BIO tagging scheme with a
CRF model to achieve state-of-the-art results.

However, TOMN is a black-boxed learning approach,
thus its result lacks an interpretability, and has no structure
information for further understanding. SynTime expands the
boundary of time expression by heuristically searching to-
kens of “PREFIX”, “SUFFIX” or numeral. Though having
a good performance, the heuristics also reduced the inter-
pretability of SynTime and limited its adaptivity. For ex-
ample, the word “in” can appear within a time expression
like “〈T〉late in 2018〈/T〉” or in front of a time expression
like “finished in 〈T〉2017〈T〉”, which cannot be distinguished
by the heuristics. On the contrary, the classic rule-based or
semantic parsing approaches can capture rich structural in-
formation, but their performances have a clear gap compar-
ing with those newest approaches. Besides, different appli-
cations may have different precision-recall requirements on
recognizing time expressions, which is not seriously consid-
ered in the existing approaches.

The previous work has shown the power of token types
in recognizing time expressions. With these types, it is pos-
sible to generate sequential patterns from known time ex-
pressions. The generated patterns can be used to recognize
new time expressions from incoming texts, and their ex-
plicit sequential structures can also give an interpretability
to the recognized results. However, since the actual natu-
ral language utterances can be highly ambiguous and com-
plex, the generality of token types can also bring mistakes.
For example, as shown in figure 1, the pattern “NUMBER
TIME UNIT” matches three different time expressions, “29
years”, “two days” and “one month”, but it mistakenly
matches a non-timex string “three quarters”, in which the
token “quarter” means “1 of 4 equal parts” but not 15 min-
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utes or 3 months.

Figure 1: An example of pattern and its instances

This brings an interesting question: is it possible to select
an appropriate subset of all generated patterns, to achieve
a good performance on recognizing time expressions, and
meanwhile provides an adjustability on limiting the total
mistakes for fitting different precision-recall demands of
various applications?

In this paper, we proposed a pattern-based approach to
recognizing time expression, PTime. Like many existing
rule-based approaches, we use regex patterns to detect and
type time-related tokens. We automatically generate candi-
date patterns from the training time expressions, and then
select an appropriate subset of them to maximize the cor-
rect token strings matched by the selected pattern set while
the number of total mistakes caused by it is limited. There-
fore, the pattern selection problem should be modeled as
an optimization on the whole set of candidate patterns. We
model the pattern selection problem as the Extended Bud-
geted Maximum Coverage (EBMC) Problem (Ding et al.
2015), which is to optimize a coverage function with a linear
constraint on the cost of selecting an object. As the EBMC
model has an explicit budget to constrain the total cost, a pa-
rameter ρ is introduced to loosely bound the total mistakes
caused by the selected patterns. A lower ρ allows more mis-
takes, which may enlarge their coverage while decreasing
the precision, and the result is just the opposite for a higher
ρ.

The rest of this paper is structured as follows. Section 2 re-
views related work. In section 3, we present the frame-work
of PTime. In section 4, we describe the details in pattern
generation. In section 5, we propose our EBMC-based pat-
tern selection method and a greedy algorithm to implement
the EBMC-based selection method. In section 6, we report
our experiment results on three benchmark datasets. Finally,
the last section concludes the paper with future work.

2 Related Work
The processing of temporal information can be divided into
two subtasks, recognition and normalization of time expres-
sions. We focus on the first subtask in this paper. Existing
approaches for time expression recognition can be roughly
classified as rule-based and learning-based approaches, and
semantic parsing approaches can be regarded as a hybrid of
them.

Classic rule-based approaches use deterministic hand-
engineered rules to recognize and type time-related tokens
and strings. Earlier work has shown that the complexity
of time expression is bounded, thus finite state automata
can be effective for extracting them from text (Hobbs et
al. 1997). TempEX (Mani and Wilson 2000), and its expan-
sion, GUTime (Verhagen et al. 2005), use both hand-crafted
rules and machine-learnt rules for extracting temporal in-
formation from text. HeidelTime (Strötgen and Gertz 2010;
Strötgen, Zell, and Gertz 2013; Strötgen et al. 2014) manu-
ally designs rules for recognizing time tokens and modifiers,
combining tokens, and filtering ambiguous expressions. SU-
Time (Chang and Manning 2012) proposed a 3-layered tem-
poral pattern language. It firstly recognizes single tokens,
then expands tokens to strings, and finally composes and fil-
ters the strings to get time expressions.

Semantic parsing approaches relies on hand-engineered
composition grammars defined on syntactic or semantic
units. (Angeli and Uszkoreit 2013) uses an EM-style boot-
strapping approach to learn a PCFG parser on pre-defined
preterminals. UWTime (Lee et al. 2014), uses a combinatory
categorical grammar to construct a compositional mean-
ing representations, and trains a context-dependent semantic
parser for parsing temporal information.

The above work recognize time expressions with rich
structural information, while the recall of their results are
unsatisfied. A recent work, SynTime (Zhong, Sun, and Cam-
bria 2017), focus on recognition and impressively outper-
forms other rule-based approaches. Instead of designing
rules in a fixed method, SynTime uses a group of time-
related tokens types to trigger time expressions and expands
their boundaries by several generic but heuristic rules.

The state-of-the-art black-box learning approaches use
classic sequential tagging models (e.g. CRF, Maximum-
Entropy Markov model) for the recognition problem. They
characterize a token by extracted morphologic or syntac-
tic features and temporal types. To capture the structure
information coarsely, they tag a token by both its own
features and the features of its preceding and following
words. ClearTK-TimeML (Bethard 2013) uses a small set
of morpho-syntactic features and temporal types of alphanu-
meric sub-tokens. TOMN (Zhong and Cambria 2018) uses
the same token regex expressions as SynTime to recognize
time token, modifier and numeral as pre-tags. The new tag-
ging scheme outperforms other classic schemes like the BIO
scheme with POS-tags as features.

Expert knowledge make most of the classic rule-based
approaches and the semantic parsing approaches have in-
terpretability, which could be helpful for understanding
task like time expressions classification and normalization.
Meanwhile, existing approaches with good performance are
black-boxed or based on heuristic rules. Our approach also
uses token types, but it automatically generates candidate
patterns and then selects appropriate subset of generated pat-
terns based on the EBMC model. Besides, a parameter is
introduced to balance the precision-recall demand.
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3 The Framework of PTime
In this section, we explain the framework of PTime. As in-
dicated by figure 2. Our approach consists a training process
and a test process.

Figure 2: The framework of PTime

3.1 The Training process
In the training process, PTime transforms the input docu-
ments to token sequences during pre-processing, generating
patterns based on predefined token types, then select an ap-
propriate subset of the candidates according to the precision-
control parameter ρ.

Pre-processing As the first step of our approach, the pre-
processing component transforms the input documents to to-
ken sequences, we use CoreNLP to get the lemma and the
POS-tag of each token. Most of the lemma-POS pairs will
be regarded as tokens directly. However, some of the tokens
are written as combinations of multiple words in the input
texts (e.g. “5days”), and some token strings should be treated
as an entirety (e.g. “Thanksgiving day”). To deal with this
problem, we use some generic rules listed as follow.

• Multi-tokens that should be combined as one. In most sit-
uation, we concatenate their lemmas as pseudo lemma of
the combined token, and use the type of it as a pseudo
POS-tag.

– Holidays. A set of common holidays mainly collected
from other recognizing systems like SUTime, UWTime
and SynTime. Including “New Year”, “Valentine Day”
and so on.

– Numeral values written as English word(s). We nor-
malize these strings and use the numeral value as
the pseudo lemma. Some special values will be typed
as their corresponding types directly (e.g. “nineteen
ninety-six” will be typed as “YEAR”). Others will be
tagged with the POS-tag “CD”.

– Some common combination of words representing
indefinite quantity. Including phrases like “a few”,
“dozens of”.

– Some common combination of words representing
inequality among quantities. Including phrases like
“more than”, “no less than”, “at least”.

• Single token that should be split. Words containing a “-”
or “/” will be split at the position where they appear before
tokenization. After annotating by CoreNLP (Manning et
al. 2014), if a token is a concatenation of a number and
an English character string, and cannot match any of our
types, it will be split to 2 tokens. The number is tagged as
“CD”, the other parts will be re-lemmatized and inherits
the original POS-tag. For example, “5mins/NNS” will be-
come “5/CD” and “min/NNS”, and “1990s/NNS” will not
be split since it has already matched the DECADE type.

After pre-processing, the inputs are converted to token se-
quences. We generate candidate patterns from the training
time expressions, then use an optimization method to select
patterns. For the range of precision-control parameter ρ, we
suggest to set it in the range of 0.8 to 0.98 in real appli-
cations, depends on your demands and the quality of your
training dataset(s). Moreover, if the optimizing objective has
been clarified (e.g. maximizing the F1 score), the value of
ρ can be determined by a validation procedure on a devel-
opment set or cross-validation on your training set. Formal
definition and detailed explanation about our implementa-
tion of pattern generation and selection will be presented in
section 4 and 5.

3.2 The Test process
In the test process, PTime reads the test documents and does
the same pre-processing as the training process to transform
them to token sequences. With the patterns previously se-
lected in the training process, PTime scans the transformed
token sequences and extracts time expressions from them.
After some necessary post-processing, PTime outputs the
annotated documents.

Post-processing After extraction, adjacent and overlapped
strings will be merged as a longer expression. Besides,
as the expressions of ranges are annotated as two sep-
arated time expressions in the TIMEX3 standard (Puste-
jovsky et al. 2005) (e.g. “〈T〉1957〈/T〉 and 〈T〉58〈/T〉”), our
approach may lose some numeral expressions which depend
on nearby expressions. Several heuristic rules are designed
to recognize them back. The post-processing is similar to
other systems like TOMN.

4 Generating Candidate Patterns
In the training process, text are inputed as annotated doc-
uments, where each time expression is marked as an XML
element. After pre-processing, we treat each document as a
token string, and each token can be identified by the doc-
ument it belongs and its position in the document. For ex-
ample, the head token in the first time expression of 7th
training document (shown in figure 3) can be represented
as tok{7,1} = (“the”,“DT”), where “the” and “DT” are the
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lemma and the POS-tag of the token respectively. Similarly,
we identify a string by its document id, start position and
end position. For example, the appearance of the time ex-
pression “the start of 2015” in that document can be denoted
as str{7,1,4} = (tok{7,1}, . . . , tok{7,4}).

Celebrating 〈T 〉the start of 2015〈/T 〉 at the float!!
Is anyone here as well? Waiting for Sun Yanzi and . . .

Figure 3: A fragment of the 7th document in Tweet-training

By transforming each token to its corresponding type, we
can abstract each string to a sequential pattern.

Definition 1 (Token Type) A token type is a tuple consist-
ing a type name and a regex expression, i.e.

typei = (namei, regexi)

In real applications, we require our types to be non-
overlapped,

type(tok) = typei.name

iff
tok.lemma/tok.pos matches typei.regex

Some examples of the token types are shown in table 1.

Table 1: Some examples of our token types
Name Content

DEFINITE DET. (the this that these those)/W?DT

EARLY LATE (earlier later)/RBR?
(before after ago early late)/RB

TIME UNIT (second minute hour . . . century era)/NNP?S?

Definition 2 (Pattern) The pattern of a string is defined as
the sequence of token types generalized from each corre-
sponding token of it. i.e.

pat
(
str{i,l,r}

)
=
(
type

(
tok{i,l}

)
, type

(
tok{ı,l+1}

)
, ...

..., type
(
tok{i,r}

) )
We denote the set of time expressions in the training texts

as E, and abstract the strings in E to get a candidate pattern
set P , i.e.

P = {pat(e) e ∈ E}

There are two main problems need to be considered in
generating candidates patterns. One is the balance between
generality and specificity of types. A good type design
should have the generality to ensure the generated patterns
can recognize newly appeared time expressions with an ac-
ceptable accuracy. Another one is the difficulty of accom-
modating all potential time-related tokens with manually de-
signed types. A previous study (Zhong, Sun, and Cambria
2017) has shown that domain/dataset based type expansion
does improve the performance of recognition.

4.1 Token Types
Designing a type system is a very difficult task which need
tremendous domain knowledges and experience. Prior stud-
ies have designed many good type systems and verified
their types on benchmark datasets. Our type system con-
tains 32 fine-grained types classified from the perspective
of POS-tags and semantic functions. Most of the types and
their corresponding regexs are collected from SUTime1 and
SynTime2. We subdivided some types in a finer granular-
ity and removed some informal or ambiguous words (e.g.
remove the abbreviation “hr” for “hour” because of it is
also the abbreviation for “human resources”). The aim of
fine-grained classification and adjustment of types is to
reduce the amount of probable mistakes caused by over-
generalization. A detailed description of the types is attached
in the appendix.

4.2 Untyped Tokens
Because of the probable incompleteness of the token types,
some tokens may not match any types, like “fiscal” in the
TempEval-3 dataset and “war” in the WikiWars dataset.
Statistics on training dataset show that there are only 40
to 60 words cannot be typed by our types in each dataset.
Therefore, we let the untyped tokens remain unchanged.
In other words, we dynamically create one-token types for
the untyped tokens. For example, the pattern of the time
expression “1 hr” is “NUMBER hr”, where “hr” is a dy-
namically created one-token type with a regex “hr/[\̂s]+”,
which can only match the word itself. This technique can
give our approach the adaptability to various data without
over-generalization.

5 Selecting Patterns
After generation, we get the candidate pattern set P , which
can extract string from the token sequences of input docu-
ments.
Definition 3 (Strings Matched by a Pattern) For a pat-
tern p ∈ P , on given input documents D, we define S(p)
as the set of strings that can be matched by types in p in
sequence.

SD(p) =

str{i,l,l+|p|−1}

|p|−1∧
k=0

type
(
tok{i,l+k}

)
= pk


However, as previously discussed in section 1, some

patterns are over generalized so they will mistakenly ex-
tract non-timex strings. In extreme cases, we might have
|
⋃
p∈P Straining(p)| � |E|. Therefore, we wish to select

an high quality subset Q ⊆ P instead of using the whole P ,
which can still recognize most of correct time expressions.

To ensure the quality of the selected pattern set Q, we
measure the quality of each candidate pattern on training
texts by a cost function, which is computed by counting the

1https://github.com/stanfordnlp/CoreNLP/tree/master/src/edu/
stanford/nlp/time/rules

2https://github.com/xszhong/syntime/tree/master/syntime/
resources/syntimeregex
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number of mistakes caused by it (i.e. the number of strings
which are extracted by the pattern but not “contained” in the
time expression set E).

Definition 4 (Containing Relationship) We say a string
str{i,l,r} is “contained” in a time expression set X , if and
only if it is contained by an expression in X . i.e.

str{i,l,r} b X

iff
∃lx, rx

(
lx ≤ l ∧ r ≤ rx ∧ str{i,lx,rx} ∈ X

)
Definition 5 (Cost Function) For any p ∈ P , its cost is de-
fined on the training data as

Cost(p) =
∑

s∈Straining(p)

{
0 s b E

1 otherwise

The total cost of a set Q ⊆ P is simply defined as sum-
ming up the cost of each pattern in it, i.e.

Cost(Q) =
∑
p∈Q

Cost(p)

We assume the limitation of mistakes should be related to
the number correctly recognized time expressions |E|. To fit
different precision-recall requirements, we use a parameter
ρ to define an adjustable bound.

Definition 6 (The Cost Bound with the parameter ρ)
The total cost should not exceed a boundB, which is defined
as

B = |E| · (1− ρ)
where ρ ∈ [0, 1].

A higher ρ may improve the precision of selected patterns
by limiting the number of mistakes caused by them, but may
lose some useful patterns.

To measure the gain of selected patterns, a straightforward
way is to count the number of time expressions a pattern
can match. However, the strict match requirement will un-
derrates short patterns, as it ignores the fact that a long ex-
pression might be a composition of several short expressions
(e.g. “10 a.m. Saturday” is composed by “10 a.m.” and “Sat-
urday”). In order to assess the patterns more accurately, we
measure the contribution of selected patterns by defining a
coverage function for patterns on each time expressions.

Definition 7 (Coverage Function) For a pattern p ∈ P
and a tokened expression e ∈ E, we say p has a positive
coverage Cov(p, e) on e if and only if p can match a sub-
string of e (or the whole e).

Cov(p, e) =

{
|p|
|e| ∃s ∈ Straining(p) s is a substring of e
0 otherwise

For example, Cov(“ORDINAL WEEK”, “the/DT second/JJ
Sunday/NNP”)≈ 0.67 andCov(“ORDINAL WEEK”, “Fri-
day/NNP”) = 0.0.

With the coverage function, we could define the gain of a
set of selected patterns as follows.

Definition 8 (Gain Function) For a set Q ⊆ P of patterns,
its gain over the time expression set E is defined as

Gain(Q) =
∑
e∈E

max
p∈Q
{Cov(p, e)}

Finally, the problem of selecting patterns can be formal-
ized as
Problem 1 (Pattern Selection) Given the candidate pat-
tern set P , training documentsD, time expression set E and
a control parameter ρ, Select a subset Q ⊆ P to

Maximize Gain(Q)

Subject to Cost(Q) ≤ B
This optimization problem is a case of maximizing a set cov-
erage function with a linear constraint, which has some well-
known instances like the Set Cover problem, the Maximum
Coverage problem and the Budgeted Maximum Coverage
problem (Khuller et al. 1999). And our problem definition
is an alternation of the Extended Budgeted Maximum Cov-
erage problem (Ding et al. 2015). Efficient approximation
algorithms of it has been sufficiently discussed in (Wolsey
1982). Follow the prior studies, we solve our pattern selec-
tion problem with algorithm 1.

Algorithm 1: Algorithm for Pattern Selection
Input: the candidate pattern set P , time expression set

E and the functions Cov, Cost
Output: A subsetQ ⊆ P denotes the selected patterns
Q1 ← GreedySelect(∅);
p∗ = argmaxp∈P {Gain({p})};
if Cost(p∗) > |E| · (1− ρ) then

return Q1;
Q2 ← GreedySelect({p∗});
if Gain(Q1) > Gain(Q2) then

return Q1;
else

return Q2;

The sub-procedure GreedySelect is described as algo-
rithm 2. In each iteration, the algorithm re-ranking the re-
main candidates pattern setR, find the pattern pi with a max-
imum gain-cost ratio and try to add pi to the selected pattern
set. The micro value ε � 1 in Cost(pi) + ε is just a tech-
nique trick to avoid the probable divide-zero error, which
will not affect the choice of the algorithm.

Our algorithm 1 is slightly different with the classic ver-
sion. We choose a better solution between GreedySelect(∅)
and GreedySelect({p∗}), but the classic algorithm chooses
a better solution between GreedySelect(∅) and {p∗}. This
difference affects neither the approximation ratio nor
the time complexity, since Gain(GreedySelect({p∗}) ≥
Gain({p∗}) always holds and the theoretical complexity
of GreedySelect({p∗}) is the same as GreedySelect(∅). Ac-
cording to prior proofs, our algorithm has the time complex-
ity O(|P |2|E|) (Ding et al. 2015) and the approximation ra-
tio of 1− e−β ≈ 0.35 (Wolsey 1982), where β is the unique
root of ex = 2− x.
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Algorithm 2: GreedySelect
Input: Initial selected patterns I , and all of the input of

algorithm 1
Output: A subset Q ⊆ P denotes the selected patterns
R← P − I;
Q← I;
repeat

pi ∈ R← argmax{ (Gain(Q∪{pi})−Gain(Q))
Cost(pi)+ε

};
if Cost(Q ∪ {pi}) ≤ |E| · (1− ρ) then

Q← Q ∪ {pi};
R← R \ {pi};

until R = ∅;
return Q

6 Evaluation
We evaluate PTime against six state-of-the-art approaches
(i.e., HeidelTime, SUTime, SynTime, ClearTK, UWTime,
and TOMN) on three datasets namely TempEval-3, Wiki-
Wars, and Tweets.

6.1 Experimental Setup
Datasets We evaluate our approach on the TempEval-3
(UzZaman et al. 2013), the WikiWars (Mazur and Dale
2010) and the Tweets (Zhong, Sun, and Cambria 2017). For
the TempEval-3, we use the training and test sets splits fol-
lowing previous studies (Bethard 2013) i.e. use the Time-
Bank (Pustejovsky et al. 2003) corpus as the training set
and the platinum-annotated corpus as the test set. For the
WikiWars and the Tweets, we follow previously work to
set the split of training and test sets (Lee et al. 2014;
Zhong, Sun, and Cambria 2017). For development, we per-
form a 10-fold cross-validation on each training dataset. De-
tailed statistics of the datasets is presented in table 23.

Table 2: Dataset statistics
Dataset #Docs #Words #Timex

TimeBank 183 61,418 1,243
TempEval-3 (test) 20 6,375 138
WikiWars (whole) 22 119,468 2,671

Tweets (whole) 942 18,199 1,127

Comparison Methods We compare our system primar-
ily to six state-of-the-art approaches, including HeidelTime
(Strötgen and Gertz 2010; Strötgen et al. 2014), SUTime
(Chang and Manning 2012), SynTime (Zhong, Sun, and
Cambria 2017), ClearTK (Bethard 2013), UWTime (Lee et
al. 2014) and TOMN (Zhong and Cambria 2018). Hedi-
alTime, SUTime and SynTime are rule based approaches.
UWTime is a semantic parsing approach based on a combi-
natory categorial grammar. ClearTK and TOMN are black-
boxed approaches with CRFs frameworks. The results of all

3The statistics of TimeBank, WikiWars, Tweets are cited from
(Zhong and Cambria 2018), and the statistics of the test set of
TempEval-3 is cited from (Lee et al. 2014)

the comparison approaches are cited from (Zhong and Cam-
bria 2018).

Evaluation Metrics We use the evaluation toolkit of
TempEval-3 (UzZaman et al. 2013) to measure the results
of our approach. We report the Precision, the Recall, and
the F1 score in terms of strict match and relaxed match. The
strict match means exact match between the extracted time
expressions and the ground truth while the relaxed match
means that there exists overlap token(s) between them.

Parameter Settings We grid searched the value of ρ with
a step of 0.01 for maximizing the strict match F1 score on
each dataset. The values of ρ are set to 0.87, 0.94, 0.94 for
TempEval-3, WikiWars and Tweets respectively.

6.2 Experimental Results and Analysis
Experimental Results Table 3, table 4 and table 5 report
the performance of PTime on given ρ and comparison ap-
proaches. The best results are in bold face and the second
are underlined.

Table 3: Test results on TempEval-3
Method Strict Match Relaxed Match

Pr. Re. F1 Pr. Re. F1

HeidelTime 83.85 78.99 81.34 93.08 87.68 90.30
SUTime 78.72 80.43 79.57 89.36 91.30 90.32
ClearTK 85.90 79.70 82.70 93.75 86.96 90.23
UWTime 86.10 80.40 83.10 94.60 88.40 91.40
SynTime 91.43 92.75 92.09 94.29 95.65 94.96
TOMN 92.59 90.58 91.58 95.56 93.48 94.51
PTime 85.19 83.33 84.25 92.59 90.58 91.58

Table 4: Test results on WikiWars

Method Strict Match Relaxed Match
Pr. Re. F1 Pr. Re. F1

HeidelTime 88.20 78.50 83.10 95.80 85.40 90.30
SUTime 78.61 76.69 76.64 95.74 89.57 92.55
ClearTK 87.69 80.28 83.82 96.80 90.54 93.56
UWTime 87.70 78.80 83.00 97.60 87.60 92.30
SynTime 80.00 80.22 80.11 92.16 92.41 92.29
TOMN 84.57 80.48 82.47 96.23 92.35 94.25
PTime 86.86 87.57 87.21 95.98 96.76 96.37

Table 5: Test results on Tweets

Method Strict Match Relaxed Match
Pr. Re. F1 Pr. Re. F1

HeidelTime 91.67 74.26 82.05 96.88 78.48 86.71
SUTime 77.69 79.32 78.50 88.84 90.72 89.77
ClearTK 86.83 75.11 80.54 96.59 83.54 89.59
UWTime 88.36 70.76 78.59 97.88 78.39 87.06
SynTime 89.52 94.07 91.74 93.55 98.31 95.87
TOMN 90.69 94.51 92.56 93.52 97.47 95.45
PTime 92.92 94.09 93.50 97.92 99.16 98.53

The results show that PTime outperforms all other ap-
proaches on WikiWars and Tweets, and takes a third place
in both strict match F1 and relaxed match F1 on TempEval-
3. On TempEval-3, PTime is inferior to SynTime and its
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succeeding work, TOMN, both of which significantly out-
performed other systems at least 7% in strict match F1

score. On WikiWars, our approach outperforms all other ap-
proaches in recall and F1 without obviously loss in preci-
sion. It improves the strict match F1 score by 3.39% and
the relaxed match F1 score by 2.12% comparing to the sec-
ond best one. On Tweets, we raise the strict match F1 by
0.94% and outperforms all other systems in all the three of
the relaxed match precision, recall and F1 score, including a
2.66% improvement in the relaxed match F1 score. Besides,
our results maintain a better balance between precision and
recall, as the differences between them are relatively small
in our results comparing with others.

Besides, The running efficiency of PTime is in the same
order comparing to other approaches according to (Ning et
al. 2018). The generation of candidate patterns can be fin-
ished within 1 minute, running the selection step took 7
minutes in average, and recognizing timexes from test set
finished within 3 seconds in average. The above results are
achieved by a simple implementation of PTime written by
Java and Scala without any optimization, running on a per-
sonal workstation with an Intel E3-1226 CPU of 3.30GHz.

Result analysis To analyze our results in details, we com-
pared our results with the best performed rule-based ap-
proach SynTime. The results of SynTime are generated by
using the source code published by its authors 4.

We achieved good results on WikiWars and Tweets.
One reason is our approach can generate patterns
with rich structures, such as “NUMBER TIME UNIT
EARLY LATE”, so we can recognize the exact time ex-
pression from the sentence “Russia declared war on Japan
〈T〉eight days later〈/T〉.”, while SynTime missed the suf-
fix “later” because its heuristic rules do not take it as a
suffix modifier. PTime can recoginize the time expression
“late in 1985” with the pattern “EARLY LATE RELA-
TION YEAR”, while not mistaken the border of “1,460
years” in the sentence “The first Roman Emperor in
〈T〉1,460 years〈/T〉 raised”. The patterns of PTime can han-
dle some ambiguity of words. For example, though “hr” is
not included in any of its types, PTime selected a reasonable
and useful pattern “NUMBER hr” for the Tweets dataset,
while the deterministic type based approaches might mis-
takenly recognize the “hr” from the phrase “Singapore’s HR
Manager”.

However, the performance of PTime has a large gap to
SynTime on TempEval-3, especially in recall. A main rea-
son is that PTime failed to recognize some one-token time
expressions like “years”, “days”, i.e. PTime did not select
the pattern “TIME UNIT”. We observed the training data
and found out some negative samples like “37 years old” or
“three - quarters”. These negatives make PTime overrated
the cost of the pattern “TIME UNIT”, which leads to the re-
sult that it was dropped in selection. This is because PTime
can not utilize the contextual information outside a string
for disambiguation. Besides, as a data-driven approach, the
incompleteness of training set also affected the recognizing
ability of PTime. For example, PTime failed to recognize the

4https://github.com/xszhong/syntime

expression “3:07:35”, because PTime did not see its corre-
sponding pattern “TIME” in the training data. If we manu-
ally add these common patterns to the selected pattern set,
the performance is dramatically improved.

Besides, analysis of the selected patterns showed that
there are many meaningful common patterns, including pat-
terns like “TIME TIME REFERENCE” and “ORDINAL
MONTH YEAR”. It is no doubt that adding the common
patterns to PTime can further improve its performance. For
example, the common part of selected patterns from the
WikiWars and Tweets training datasets have 43 patterns,
14 of which are not appeared in the patterns selected from
the TimeBank. If we simply treat these patterns as “com-
mon patterns well known to human experts”, the F1-score of
PTime on TempEval-3 can be promoted to 87.54%. PTime
benefits the formation of common patterns, which in turn
can enhance the performance of PTime 5.

7 Conclusion
The contributions of this paper are summarized as follows:

• We proposed a pattern-based approach to recognizing
time expressions, called PTime. In this approach, sequen-
tial patterns are generated from time expressions in train-
ing text by using their token types, and the pattern selec-
tion is optimized by using the Extended Budgeted Max-
imum Coverage (EBMC) model. Especially, a parameter
is introduced to meet various precision-recall demands in
different applications.

• We implemented the PTime approach, especially, we
manually designed 32 fine-grained token types, and de-
signed a greedy algorithm for selecting patterns based on
EBMC model.

• We evaluated our implementation on three benchmark
datasets. The experimental results showed that our ap-
proach achieved best F-Measure on two datasets, as com-
pared with state-of-the art approaches. It improved the
strict match F1 score by 3.39% on the WikiWars dataset
and 0.94% on the Tweets dataset comparing with the sec-
ond best approach.

In the near future, we will explore (semi-)automatic ways
of designing a better token type system. We are also in-
terested in enhancing PTime by including common patterns
well known to human experts. Furthermore, it is also inter-
esting to combine PTime with classic time expression nor-
malization techniques for better understanding temporal in-
formations.
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