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Abstract

Text classification is one of the fundamental tasks in natural
language processing. Recently, deep neural networks have
achieved promising performance in the text classification task
compared to shallow models. Despite of the significance of
deep models, they ignore the fine-grained (matching signals
between words and classes) classification clues since their
classifications mainly rely on the text-level representations. To
address this problem, we introduce the interaction mechanism
to incorporate word-level matching signals into the text
classification task. In particular, we design a novel framework,
EXplicit interAction Model (dubbed as EXAM), equipped
with the interaction mechanism. We justified the proposed
approach on several benchmark datasets including both multi-
label and multi-class text classification tasks. Extensive experi-
mental results demonstrate the superiority of the proposed
method. As a byproduct, we have released the codes and
parameter settings to facilitate other researches.

Introduction
Text classification is one of the fundamental tasks in natural
language processing, targeting at classifying a piece of
text content into one or multiple categories. According to
the number of desired categories, text classification can
be divided into two groups, namely, multi-label (multiple
categories) and multi-class (unique category). For instance,
classifying an article into different topics (e.g., machine
learning or data mining) falls into the former one since
an article could be under several topics simultaneously.
By contrast, classifying a comment of a movie into its
corresponding rating level lies into the multi-class group.
Both multi-label and multi-class text classifications have
been widely applied in many fields like sentimental analysis
(Cambria, Olsher, and Rajagopal 2014), topic tagging (Grave
et al. 2017), and document classification (Yang et al. 2016).

Feature engineering dominates the performance of tradi-
tional shallow text classification methods for a very long time.
Various rule-based and statistical features like bag-of-words
(Wallach 2006) and N-grams (Brown et al. 1992) are designed
to describe the text, and fed into the shallow machine learning
∗Equal contribution.
†Corresponding Author.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

models such as Linear Regression (Zhu and Hastie 2001) and
Support Vector Machine (Cortes and Vapnik 1995) to make
the judgment. Traditional solutions suffer from two defects:
1) High labor intensity for the manually crafted features, and
2) data sparsity (a N-grams could occur only several times in
a given dataset).

Recently, owing to the ability of tackling the aforemen-
tioned problems, deep neural networks (Kim 2014; Iyyer et
al. 2015; Schwenk et al. 2017; Liu, Qiu, and Huang 2016;
Grave et al. 2017) have become the promising solutions
for the text classification. Deep neural networks typically
learn a word-level representation for the input text, which
is usually a matrix with each row/column as an embedding
of a word in the text. They then compress the word-level
representation into a text-level representation (vector) with
aggregation operations (e.g., pooling). Thereafter, a fully-
connected (FC) layer at the topmost of the network is
appended to make the final decision. Note that these solutions
are also called encoding-based methods (Munkhdalai and Yu
2017), since they encode the textual content into a latent
vector representation.

Although great success has been achieved, these deep
neural network based solutions naturally ignore the fine-
grained classification clues (i.e., matching signals between
words and classes), since their classifications are based
on text-level representations. As shown in Figure 1, the
classification (i.e., FC) layer of these solutions matches the
text-level representation with class representations via a dot-
product operation. Mathematically, it interprets the parameter
matrix of the FC layer as a set of class representations (each
column is associated with a class) (Press and Wolf 2017).
As such, the probability of the text belonging to a class is
largely determined by their overall matching score regardless
of word-level matching signals, which would provide explicit
signals for classification (e.g., missile strongly indicates the
topic of military).

To address the aforementioned problems, we introduce the
interaction mechanism (Wang and Jiang 2016b), which is
capable of incorporating the word-level matching signals for
text classification. The key idea behind the interaction mech-
anism is to explicitly calculate the matching scores between
the words and classes. From the word-level representation,
it computes an interaction matrix, in which each entry is
the matching score between a word and a class (dot-product
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Figure 1: Illustration of encoding-based methods for text
classification with text-level matching.

between their representations), illustrating the word-level
matching signals. By taking the interaction matrix as a text
representation, the later classification layer could incorporate
fine-grained word level signals for the finer classification
rather than simply making the text-level matching.

Based upon the interaction mechanism, we devise an
EXplicit interAction Model (dubbed as EXAM). Specifically,
the proposed framework consists of three main components:
word-level encoder, interaction layer, and aggregation layer.
The word-level encoder projects the textual contents into the
word-level representations. Hereafter, the interaction layer
calculates the matching scores between the words and classes
(i.e., constructs the interaction matrix). Then, the last layer
aggregates those matching scores into predictions over each
class, respectively. We justify our proposed EXAM model
over both the multi-label and multi-class text classifications.
Extensive experiments on several benchmarks demonstrate
the effectiveness of the proposed method, surpassing the
corresponding state-of-the-art methods remarkably.

In summary, the contributions of this work are threefold:
• We present a novel framework, EXAM, which leverages

the interaction mechanism to explicitly compute the word-
level interaction signals for the text classification.

• We justify the proposed EXAM model over both multi-
label and multi-class text classifications. Extensive ex-
perimental results demonstrate the effectiveness of the
proposed method.

• We release the implementation of our method (including
some baselines) and the involved parameter settings to
facilitate later researchers1.

Preliminaries
In this section, we introduce two widely-used word-level
encoders: Gated Recurrent Units (Chung et al. 2014) and
Region Embedding (Qiao et al. 2018). These encoders project
a piece of input text into a word-level representation, serving
as the building blocks of the proposed method. For the

1https://github.com/NonvolatileMemory/AAAI 2019 EXAM .

notations in this paper, we use bold capital letters (e.g., X) and
bold lowercase letters (e.g., x) to denote matrices and vectors,
respectively. We employ non-bold letters (e.g., x) to represent
scalars, and Greek letters (e.g., α ) as parameters. Xi,: is used
to refer the i-th row of the matrix X, X:,j to represent the j-th
column vector and Xi,j to denote the element in the i-th row
and j-th column.

Gated Recurrent Units
Owing to the ability of capturing the sequential dependen-
cies and being easily optimized (i.e., avoid the gradient
vanishing and explosion problems), Gated Recurrent Units
(GRU) becomes a widely used word-level encoder (Liu,
Qiu, and Huang 2016; Yogatama et al. 2017). Typically, a
GRU generates word-level representations in two phases:
1) mapping each word in the text into an embedding (a
real-valued vector), and 2) projecting the sequence of word
embeddings into a sequence of hidden representations, which
encodes the sequential dependencies.
Word embedding. Word embedding is a general method to
map a word from one hot vector to a low dimensional and
real-valued vector. With enough data, word embedding can
capture high-level representations of words.
Hidden representation. Given an embedding feature se-
quence E = [E1,:,E2,:, · · ·,En,:], GRU will compute a
vector Hi,: at the i-th time-step for each Ei,:, and Hi,: is
defined as:

ri = σ(Mr · [Hi−1,:,Ei,:]),
zi = σ(Mz · [Hi−1,:,Ei,:]),

H̃i,: = tanh(Mr · [Hi−1,:,Ei,:]),

Hi,: = (1− zi) ∗Hi−1,: + zi ∗ H̃i,:,

(1)

where Mr and Mz are trainable parameters in the GRU,
and σ and tanh are sigmoid and tanh activation func-
tions, respectively. The sequence of hidden representations
H = [H1,:, · · · ,Hn,:] is denoted as the word-level represen-
tation of the input text.

Region Embedding
Although word embedding is a good representation for the
word, it can only compute the feature vector for the single
word. Qiao et al. (2018) proposed region embedding to learn
and utilize task-specific distributed representations of N-
grams. In the region embedding layer, the representation
of a word has two parts, the embedding of the word itself and
a weighting matrix to interact with the local context. For the
word wi, the first part ewi

is learned by an embedding matrix
E ∈ Rk×v and the second part Kwi

∈ Rk×(2×s+1) is looked
up in the tensor U ∈ Rk×(2×s+1)×v by wi’s index in the
vocabulary, where v is the size of the vocabulary, 2× s+ 1
the region size and k the embedding size. And then, each
column in Kwi

is used to interact with the context word in
the corresponding relative position of wi to get the context-
aware pt

wi+t
for each word wi+t in the region. Formally it is

computed by the following function:

pi
wi+t

= Kwi,t � ewi+t
, (2)
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Figure 2: Illustration of proposed EXAM method with word-
level matching.

where � denotes element-wise multiply. And the final
representation ri,s of the middle word wi is computed as
follows:

ri,s = max([pi
wi−s

,pi
wi−s+1

, · · ·,pi
wi+s−1

,pi
wi+s

]). (3)

Model
Problem Formulation
• Multi-Class Classification. In this task, we should cate-

gorize each text instance to precisely one of c classes.
Suppose that we have a data set D = {di, li}N , where di
denotes the text and the one-hot vector li ∈ Rc represents
the label for di, our goal is to learn a neural network N to
classify the text.

• Multi-Label Classification. In this task, each text instance
belongs to a set of c target labels. Formally, suppose that
we have a dataset D = {di, li}Ni=1, where di denotes the
text and the multi-hot vector li represents the label for the
text di. Our goal is to learn a neural network N to classify
the text.

Model Overview
Motivated by the limitation of encoding-based models for text
classification, which is lacking the fine-grained classification
clue, we propose a novel framework, named EXplicit interAc-
tion Model (EXAM), leveraging the interaction mechanism
to incorporate word-level matching signals. As can be seen
from Figure 2, EXAM mainly contains three components:
• A word-level encoder to project the input text di into a

word-level representation H.
• An interaction layer to compute the interaction signals

between the words and classes.
• An aggregation layer to aggregate the interaction signals

for each class and make the final predictions.
Considering that word-level encoders are well investigated

in previous studies (as mentioned in the Section 2), and the
target of this work is to learn the fine-grained classification
signals, we only elaborate the interaction layer and aggrega-
tion layer in the following subsections.

Interaction Layer
Interaction mechanism is widely used in tasks of matching
source and target textual contents, such as natural language
inference (Wang and Jiang 2016b) and retrieve-based chat-
bot (Wu et al. 2017). The key idea of interaction mechanism
is to use the interaction features between the small units
(e.g., words in the textual contents) to infer fine-grained clues
whether two contents are matching. Inspired by the success of
methods equipped with interaction mechanism over encode-
based methods in matching the textual contents, we introduce
the interaction mechanism into the task of matching textual
contents with their classes (i.e., text classification).

Specifically, we devise an interaction layer which aims
to compute the matching score between the word and class.
Different from conventional interaction layer, where the word-
level representations of both source and target are extracted
with encoders like GRU, here we first project classes into
real-valued latent representations. In other words, we employ
a trainable representation matrix T ∈ Rc×k to encode classes
(each row represents a class), where c denotes the amount of
classes and k is the embedding size equals to that of words.
We then adopt dot product as the interaction function to
estimate the matching score between the target word t and
class s, of which the formulation is,

Ist = Ts,:H
T
t,:, (4)

where H ∈ Rn×k denotes word-level representation of the
text, extracted by the encoder with n denoting the length of
the text. In this way, we can compute the interaction matrix
I ∈ Rc×n by following:

I = THT. (5)

Note that we reject more complex interaction functions like
element-wise multiply (Gong, Luo, and Zhang 2017) and
cosine similarity (Wang, Hamza, and Florian 2017) for the
consideration of efficiency.

Aggregation Layer
This layer is devised to aggregate the interaction features
for each class s into a logits osi , which denotes the matching
score between class s and the input text di. The aggregation
layer can be implemented in different ways such as CNN
(Gong, Luo, and Zhang 2017) and LSTM (Wang, Hamza, and
Florian 2017). However, to keep the simplicity and efficiency
of EXAM, here we only use a MLP with two FC layers, where
ReLU is employed as the activation function of the first layer.
Formally, the MLP aggregates the interaction features Is,: for
class s, and compute its associated logits as following:{

As,: = ReLU(Is,:W1 + b),
osi = As,:W2,

(6)

where W1 and W2 are trainable parameters and b is the
bias in the first layer.

We then normalize the logits oi = [o1i , · · · , oci ] into
probabilities pi. Note that we follow previous work (Grave
et al. 2017) and employ softmax and sigmoid for multi-class
and multi-label classifications, respectively.
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Table 1: Statistics of Datasets.

Dataset Classes Average Lengths Train Samples Test Samples Tasks

Amazon Review Polarity 2 91 3,600,000 400,000 Sentiment
Amazon Review Full 5 93 3,000,000 650,000 Analysis

AG’s News 4 44 120,000 7,600 News Classification

Yahoo! Answers 10 112 1,400,000 60,000 Question Answer

DBPedia 14 55 560,000 70,000 Ontology Extraction

Loss Function
Similar to previous studies (Schwenk et al. 2017), in the
multi-class text classification, we use cross entorpy loss as
our loss function:

Lloss = −
N∑
i=1

c∑
j=1

(lji log(p
j
i )). (7)

Following previous researchers (Grave et al. 2017), we
choose binary classification loss as our loss function for the
multi-label one:

Lloss = −
N∑
i=1

c∑
j=1

(lji log(p
j
i ) + (1− lji )log(1− p

j
i )). (8)

Generalized Encoding-Based Model
In this section, we elaborate how the encoding-based model
can be interpreted as a special case of our EXAM framework.
As FastText (Grave et al. 2017) is the most popular model for
text classification and has been investigated extensively in
the literature, being able to recover it allows EXAM to mimic
a large family of text classification models.

FastText contains three layers: 1) an embedding layer to
get the word-level representation Ht,: for the word t, 2) an
average pooling layer to get the text-level representation
f ∈ R1×k, and 3) a FC layer to get the final logits p ∈ R1×c,
where k denotes the embedding size and c means the number
of classes. Note that we omit the subscript of the document
ID for conciseness. Formally, it computes the logits ps of
s-th class as follows:{

f = 1
n

∑n
t=1 Ht,:,

ps = fW:,s + bs,
(9)

where W ∈ Rk×c and b ∈ R1×c are the trainable parameters
in the last FC layer, and n denotes the length of the text. The
Eqn.(9) has an equivalent form as following:

ps =
1

n

n∑
t=1

(Ht,:W:,s) + bs. (10)

It is worth noting that Ht,:W:,s is exactly the interaction
feature between word t and class s. Therefore, the FastText
is a special case of EXAM with an average pooling as the
aggregation layer. In EXAM, we use a non-linear MLP to
be the aggregation layer, and it will generalize FastText to a
non-linear setting which might be more expressive than the
original one.

Experiments
Multi-Class Classification
Datasets We used publicly available benchmark datasets
from (Zhang, Zhao, and LeCun 2015) to evaluate EXAM.
There are in total 6 text classification datasets, corresponding
to sentiment analysis, news classification, question-answer
and ontology extraction tasks, respectively. Table 1 shows
the descriptive statistics of datasets used in our experiments.
Stanford tokenizer is used to tokenize the text and all words
are converted to lower case. We used padding to handle the
various lengths of the text, and different maximum lengths
are set for each dataset, respectively. If the length of the text
is less than the corresponding predefined value, we padded
it with zero; otherwise we truncated the original text. To
guarantee a fair comparison, the same evaluation protocol of
(Zhang, Zhao, and LeCun 2015) is employed. We split 10%
samples from the training set as the validation set to perform
early stop for our models.

Hyperparameters For the multi-class task, we chose
region embedding as the Encoder in EXAM. The region
size is 7 and embedding size is 128. We used adam (Kingma
and Ba 2014) as the optimizer with the initial learning rate
0.0001 and the batch size is set to 16. As for the aggregation
MLP, we set the size of the hidden layer as 2 times interaction
feature length. Our models are implemented and trained by
MXNet (Chen et al. 2015) with a single NVIDIA TITAN Xp.

Baselines To demonstrate the effectiveness of our proposed
EXAM, we compared it with several state-of-the-art base-
lines. The baselines are mainly in three variants: 1) models
based on feature engineering; 2) Char-based deep models,
and 3) Word-based deep models. The first category uses the
feature from the text to conduct the classification, and we
reported the results from BoW (Zhang, Zhao, and LeCun
2015), N-grams (Zhang, Zhao, and LeCun 2015) and N-
grams TFIDF (Zhang, Zhao, and LeCun 2015) as baselines.
The second one means the input of the model is the character
in the original text, and we chose the Char-CNN (Zhang,
Zhao, and LeCun 2015), Char-CRNN (Zhang, Zhao, and
LeCun 2015) and VDCNN (Schwenk et al. 2017) as baselines.
As for the word-based deep models, the text is pre-segmented
into words as the input, and we applied Small word CNN
(Zhang, Zhao, and LeCun 2015), Large word CNN (Zhang,
Zhao, and LeCun 2015), LSTM (Zhang, Zhao, and LeCun
2015), FastText (Grave et al. 2017) and W.C RegionEmb
(Qiao et al. 2018) as the baselines. It is worth emphasizing
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Table 2: Test Set Accuracy [%] on multi-class document classification tasks, and all the results of baselines are directly cited
from the respective papers. The three different models are separated by lines. The best scores for the category are marked with
underline and the overall best scores are highlight with bold font.

Model Amz. P. Amz. F. AG Yah. A. DBP

BoW (Zhang, Zhao, and LeCun 2015) 90.4 54.6 88.8 68.9 96.6
N-grams (Zhang, Zhao, and LeCun 2015) 92.0 54.3 92.0 68.5 98.6
N-grams TFIDF (Zhang, Zhao, and LeCun 2015) 91.5 52.4 92.4 68.5 98.7

Char-CNN (Zhang, Zhao, and LeCun 2015) 94.5 59.6 87.2 71.2 98.3
Char-CRNN (Zhang, Zhao, and LeCun 2015) 94.1 59.2 91.4 71.7 98.6
VDCNN (Schwenk et al. 2017) 95.7 63.0 91.3 73.4 98.7

Small word CNN (Zhang, Zhao, and LeCun 2015) 94.2 56.3 89.1 70.0 98.2
Large word CNN (Zhang, Zhao, and LeCun 2015) 94.2 54.1 91.5 71.0 98.3
LSTM (Zhang, Zhao, and LeCun 2015) 93.9 59.4 86.1 70.8 98.6
Bigram-FastText (Grave et al. 2017) 94.6 60.2 92.5 72.3 98.6
W.C RegionEmb (Qiao et al. 2018) 95.1 60.9 92.8 73.7 98.9
EXAM (Ours) 95.5 61.9 93.0 74.8 99.0

that all the baselines and our EXAM do not use pre-trained
word embedding over other corpus like glove.

Overall Performance We compared our EXAM to several
state-of-the-art baselines with respect to accuracy. All results
are summarized in Table 1. Four points are observed as
following:

• Models based on feature engineering get the worst results
on all the five datasets compared to the other methods. The
main reason is that the feature engineering cannot take full
advantage of the supervision from the training set and it
also suffers from the data sparsity.

• Char-based models get the highest overall scores on the
two Amazon datasets. There are possibly two reasons, 1)
compared to the word-based models, char-based models
enrich the supervision from characters and the characters
are combined to form N-grams, stems, words and phrase
which are helpful in the sentimental classification. 2) The
two Amazon datasets contain millions of training samples,
perfectly fitting the deep residual architecture for the
VDCNN. For the three char-based baselines, VDCNN gets
the best performance on almost all the datasets because it
has 29 convolutional layers allowing the model to learn
more combinations of characters.

• Word-based baselines exceed the other variants on three
datasets and lose on the two Amazon datasets. The main
reason is that the three tasks like news classification
conduct categorization mainly via key words, and the word-
based models are able to directly use the word embedding
without combining the characters. For the five baselines,
W.C RegionEmb performs the best, because it learns the
region embedding to utilize the N-grams feature from the
text.

• It is clear to see that EXAM achieves the best performance
over the three datasets: AG, Yah. A. and DBP. For
the Yah.A., EXAM improves the best performance by
1.1%. Additionally, as a word-based model, EXAM beats

Table 3: Component-wise evaluation.

Dataset EXAM EXAMEncoder

Amz. P. 95.5 95.1
Amz. F. 61.9 60.9
AG 93.0 92.8
Yah. A. 74.8 73.1
DBP 99.0 98.9

all the word-based baselines on the other two Amazon
datasets with a performance gain of 1.0% on the Amazon
Full, because our EXAM considers more fine-grained
interaction features between classes and words, which is
quite helpful in this task.

Component-wise Evaluation We studied the variant of
our model to further investigate the effectiveness of the
interaction layer and aggregation layer. We built a model
called EXAMEncoder to preserve only the Encoder com-
ponent with a max pooling layer and FC layer to derive
the final probabilities. EXAMEncoder does not consider the
interaction features between the classes and words, so it will
automatically be degenerated into the Encoding-Based model.
We reported the results of the two models on all the datasets
at Table 3, and it is clear to see that EXAMEncoder is not a
patch on the original EXAM, verifying the effectiveness of
interaction mechanism. We also drew the convergence lines
for EXAM and the EXAMEncoder for the datasets. From
the Figure 3, where the red lines represent EXAM and the
blue is EXAMEncoder, we observed that EXAM converges
faster than EXAMEncoder with respect to all the datasets.
Therefore, the interaction brings not only performance
improvement but also faster convergence. The possible
reason is that a non-linear aggregation layer introduces more
parameters to fit the interaction features compared to the
average pooling layer as mentioned in Section 4.
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Figure 3: Convergence lines on the four dataset DBP, Amz. F., Amz. P. and Yah. A., respectively.

Table 4: Performance comparison between EXAM and baselines. The best scores are highlight in bold font.

Kanshan-Cup Dataset Zhihu Dataset

Model Precision Recall@5 F1 Precision Recall@5 F1

Char-CNN (Zhang, Zhao, and LeCun 2015) 1.299 0.536 0.379 - - -
Char-TextRNN (Liu, Qiu, and Huang 2016) 1.304 0.537 0.380 - - -

FastText (Grave et al. 2017) 1.325 0.546 0.387 1.235 0.564 0.387
TextCNN (Kim 2014) 1.331 0.550 0.389 1.241 0.566 0.389
Word-TextRNN (Liu, Qiu, and Huang 2016) 1.345 0.555 0.393 1.240 0.566 0.389
EXAM (Ours) 1.360 0.561 0.397 1.267 0.578 0.397

Multi-Label Classification
Datasets We conducted experiments on two different
multi-label text classification datasets, named KanShan-Cup
dataset2 (a benchmark) and Zhihu dataset3, respectively.
• KanShan-Cup dataset. This dataset is released by a

competition of tagging topics for questions (multi-label
classification) posted in the largest Chinese community
question answering platform, Zhihu. The dataset contains
3,000,000 questions and 1,999 topics (classes), where one
question may belong to one to five topics. For questions
with more than 30 words, we kept the last 30 words,
otherwise, we padded zeros. We separated the dataset into
training, validation, and testing with 2,800,000, 20,000,
and 180,000 questions, respectively.

• Zhihu dataset. Considering the user privacy and data
security, KanShan-Cup does not provide the original texts
of the questions and topics, but uses numbered codes and
numbered segmented words to represent text messages.
Therefore, it is inconvenient for researchers to perform
analyses like visualization and case study. To solve this
problem, we constructed a dataset named Zhihu dataset.
We chose the top 1,999 frequent topics from Zhihu and
crawled all the questions relevant to these topics. Finally,
we acquired 3,300,000 questions, with less than 5 topics
for each question. We adopted 3,000,000 samples as the
training set, 30,000 samples as validation and 300,000
samples as testing.

Baselines We applied the following models as baselines to
evaluate the effectiveness of EXAM.

2https://biendata.com/competition/zhihu/.
3www.zhihu.com.

• Char-based Model. We chose Char-CNN (Zhang, Zhao,
and LeCun 2015) and Char-RNN (Liu, Qiu, and Huang
2016) as the baselines to represent this kind of methods.

• Word-based Model. For the word-based models, we
reported the results from TextCNN (Kim 2014), TextRNN
(Liu, Qiu, and Huang 2016) and FastText (Grave et al.
2017). The three models got the best performance in the
KanShan-Cup competition, so we applied them as the
word-based baselines.

Hyperparameters We implemented the baseline models
and EXAM by MXNet (Chen et al. 2015). We used the matrix
trained by word2vec (Mikolov et al. 2013) to initialize the
embedding layer, and the embedding size is 256. We adopted
GRU as the Encoder, and each GRU Cell has 1,024 hidden
states. The accumulated MLP has 60 hidden units. We applied
Adam (Kingma and Ba 2014) to optimize models on one
NVIDIA TITAN Xp with the batch size of 1000 and the
initial learning rate is 0.001. The validation set is applied for
early-stopping to avoid overfitting. All hyperparameters are
chosen empirically.

Metrics We used the following metrics to evaluate the
performance of our model and baseline models.

• Precision: Different from the traditional precision metric
(Precision@5) which is set as the fraction of the relevant
topic tags among the five returned tags, we utilized
weighted precision to encourage the relevant topic tags
to be ranked higher in the returned list. Formally, the
Precision is computed as following,

Precision =
∑

pos∈{1,2,3,4,5}

Precision@pos

log(pos+ 1)
. (11)
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Figure 4: The visualization of interaction features of EXAM.

• Recall@5: Recall is the fraction of relevant topic tags that
have been retrieved over the total amount of five relevant
topic tags, high recall means that the model returns most
of the relevant topic tags.

• F1: F1 is the harmonic average of the precision and recall,
we computed it as following,

F1 =
Precision ∗Recall@5

Precision+Recall@5
. (12)

Performance Comparison Table 4 gives the performance
of our model and baselines over two different datasets with
respect to Precision, Recall@5 and F1. We observed the
following from the Table 4:
• Word-based models are better than char-based models in

Kanshan-Cup dataset. That may be because in Chinese the
words can offer more supervisions than characters and the
question tagging task needs more word supervision.

• For word-based baseline models, all the baselines have
similar performance which corroborates the conclusion in
FastText (Grave et al. 2017) that simple network is on par
with deep learning classifiers in text classification.
• Our models achieve the state-of-the-art performance over

two different datasets though we only slightly modified
TextRNN to build EXAM. Different from the traditional
models which encode the whole text into a vector, in
EXAM, the representations of classes firstly interact with
words to get more fine-grained features as shown in
Figure 4. The results suggest that word-level interaction
features are relatively more important than global text-level
representations in this task.

Interaction Visualization To illustrate the effectiveness of
explicit interaction, we visualized an interaction feature I of
the question “Second-hand TIDDA 1.6 T Mannual gear has
gotten some problems, please everybody help me to solve it
?”. This question has 5 topics: Car, Second-hand Car, Motor
Dom, Autocar Conversation and Autocar Service. EXAM
only misclassified the last topic. In Figure 4, we observed
that when classifying different topics, the interaction features
are different. The topics “Car” and “Second-hand Car” pay
much attention to the words like “Second-hand TIIDA” and
the other topic like “Autocar Conversation” focuses more
on “got some problems”. The results clearly signify that the

interaction feature between the word and class is well-learned
and highly meaningful.

Related Work
Text Classification Existing researches on text classifi-
cation can be categorized into two groups: feature-based
and deep neural models. The former focuses on hand-
craft features and uses machine learning algorithms as the
classifier. Bag-of-words (Wallach 2006) is a very efficient
way to conduct the feature engineering. SVM and Naive
Bayes are constantly the classifier. The latter, deep neural
models, taking advantage of neural networks to accomplish
the model learning from data, have become the promising
solution for the text classification. For instance, Iyyer et
al. (2015) proposed Deep Averaging Networks (DAN) and
Grave et al. (2017) proposed the FastText, and both are
simple but efficient. To get the temporal features between
the words in the text, some models like TextCNN (Kim
2014) and Char-CNN (Zhang, Zhao, and LeCun 2015) exploit
the convolutional neural network, and there are also some
models based on Recurrent Neural Network (RNN). Recently,
Johnson et al. (2017) investigated the residual architecture
and built a model called VD-CNN and Qiao et al. (2018)
proposed a new method of region embedding for the text
classification. However, as mentioned in the Introduction, all
these methods are text-level models while EXAM conducts
the matching at the word level.

Interaction Mechanism Interaction Mechanism is widely
used in Natural Language Sentence Matching (NLSM). The
key idea of interaction mechanism is to use the interaction
features between the small units (like words in sentence)
to make the matching. Wang et al. (2016b) proposed a
“matching-aggregation” framework to perform the interaction
in Natural Language Inference. Following this work, Parikh
et al. (2016) integrated the attention mechanism into this
framework, called Decomposable Attention Model. Then
Wang et al. (2016a) discussed different interaction functions
in Text Matching. Yu et al. (2017) adopted tree-LSTM to get
different level units to perform the interaction. Gong et al.
(2017) proposed a densely interactive inference network to
use DenseNet to aggregate dense interaction features. Our
work is different from them since they mainly apply this
mechanism in text matching instead of the classification.
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Conclusion
In this work, we present a novel framework named EXAM
which employs the interaction mechanism to explicitly
compute the word-level interaction signals for the text
classification. We apply the proposed EXAM on multi-class
and multi-label text classifications. Experiments over several
benchmark datasets verify the effectiveness of our proposed
mechanism. In the future, we plan to investigate the effect of
different interaction functions in the interaction mechanism.
Besides, we are interested in extend EXAM by introducing
more complex aggregation layers like ResNet or DenseNet.
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Parikh, A. P.; Täckström, O.; Das, D.; and Uszkoreit, J.
2016. A decomposable attention model for natural language
inference. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2249–2255.
Press, O., and Wolf, L. 2017. Using the output embedding to
improve language models. In Proceedings of the European
Chapter of the Association for Computational Linguistics,
157–163.
Qiao, C.; Huang, B.; Niu, G.; Li, D.; Dong, D.; He, W.; Yu,
D.; and Wu, H. 2018. A new method of region embedding for
text classification. In International Conference on Learning
Representations.
Schwenk, H.; Barrault, L.; Conneau, A.; and LeCun, Y. 2017.
Very deep convolutional networks for text classification. In
Proceedings of the European Chapter of the Association for
Computational Linguistics, 1107–1116.
Wallach, H. M. 2006. Topic modeling: beyond bag-of-words.
In Proceedings of the International Conference on Machine
Learning, 977–984.
Wang, S., and Jiang, J. 2016a. A compare-aggregate model
for matching text sequences. CoRR abs/1611.01747.
Wang, S., and Jiang, J. 2016b. Learning natural language
inference with LSTM. In The North American Chapter of
the Association for Computational Linguistics, 1442–1451.
Wang, Z.; Hamza, W.; and Florian, R. 2017. Bilateral
multi-perspective matching for natural language sentences.
In Proceedings of the International Joint Conference on
Artificial Intelligence, 4144–4150.
Wu, Y.; Wu, W.; Xing, C.; Zhou, M.; and Li, Z. 2017.
Sequential matching network: A new architecture for multi-
turn response selection in retrieval-based chatbots. In
Proceedings of the Annual Meeting on Association for
Computational Linguistics, 496–505.
Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A. J.; and
Hovy, E. H. 2016. Hierarchical attention networks for
document classification. In The North American Chapter of
the Association for Computational Linguistics, 1480–1489.
Yogatama, D.; Dyer, C.; Ling, W.; and Blunsom, P. 2017.
Generative and discriminative text classification with recur-
rent neural networks. CoRR abs/1703.01898.
Yu, H., and Munkhdalai, T. 2017. Neural tree indexers for
text understanding. In Proceedings of the European Chapter
of the Association for Computational Linguistics, 11–21.
Zhang, X.; Zhao, J. J.; and LeCun, Y. 2015. Character-level
convolutional networks for text classification. In Advances
in Neural Information Processing Systems, 649–657.
Zhu, J., and Hastie, T. 2001. Kernel logistic regression
and the import vector machine. In Advances in Neural
Information Processing Systems, 1081–1088.

6366


