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Abstract

Query-document semantic interactions are essential for the
success of many cloze-style question answering models.
Recently, researchers have proposed several attention-based
methods to predict the answer by focusing on appropriate
subparts of the context document. In this paper, we design
a novel module to produce the query-aware context vector,
named Multi-Space based Context Fusion (MSCF), with the
following considerations: (1) interactions are applied across
multiple latent semantic spaces; (2) attention is measured at
bit level, not at token level. Moreover, we extend MSCF to the
multi-hop architecture. This unified model is called Enhanced
Attentive Reader (EA Reader). During the iterative inference
process, the reader is equipped with a novel memory update
rule and maintains the understanding of documents through
read, update and write operations. We conduct extensive ex-
periments on four real-world datasets. Our results demon-
strate that EA Reader outperforms state-of-the-art models.

Introduction
How to enable machines to answer questions with a doc-
ument as the context has been a long-term goal of natu-
ral language processing and artificial intelligence. Towards
this goal, several large-scale datasets of cloze-style ques-
tions over a context document have been released (Hermann
et al. 2015; Hill et al. 2015), which contribute to training
supervised question answering (QA) models.

Deep learning techniques, such as end-to-end neural net-
works, have achieved promising results on cloze-style ques-
tion answering tasks. A common structure of these re-
cent works can be summarized as an “encoder-interaction-
prediction” framework (Chen, Bolton, and Manning 2016;
Sordoni et al. 2016; Kadlec et al. 2016; Dhingra et al. 2017;
Cui et al. 2017; Cheng, Dong, and Lapata 2016; Wang and
Jiang 2016; Tan et al. 2017). In the encoder phase, all the
words are transformed into low-dimensional dense vector
representations and the recurrent neural network (RNN) is
applied to encode contextual embeddings. In the interaction
phase, the attention mechanism (Bahdanau, Cho, and Ben-
gio 2015) allows the query to directly interact with the doc-
ument at the token level. It then computes a weight distri-
bution over document words according to their relevance to

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the query. In the answer prediction phase, the candidate to-
ken with maximum probability, estimated by either the joint
query-document representation or the normalized attention
vector, is selected as the predicted answer.

Most research focus on the interaction layer which is re-
sponsible for semantic interactions between documents and
queries. Attention mechanisms, borrowed from the machine
translation literature, are introduced to aggregate document
representations with a weighted sum. Thus, the attention
scoring function is essential for the quality of the obtained
query-aware context vector. Existing attention scoring func-
tions, such as multiplicative attention (Luong, Pham, and
Manning 2015), additive attention (Bahdanau, Cho, and
Bengio 2015) and multi-head attention (Vaswani et al.
2017), are mostly applied token-wise (Hermann et al. 2015;
Kadlec et al. 2016; Dhingra et al. 2017; Huang et al. 2017;
Paulus, Xiong, and Socher 2017). Therefore, the attention-
based pooling can be formularized as c =

∑i=n
i=1 aivi,

where ai is a scalar, vi denotes the i-th token embedding
and c is the query-aware context vector for prediction.

In this paper we use the term bit or feature to denote an
element (such as vi1) in a vector. A major downside for the
token-wise attention mechanism is that, different bits in vi
are assigned to the same weight, which makes it hard to pre-
serve only the highly related semantic features while discard
those unrelated parts in the attended context vector. Bit-wise
mechanism has been introduced to self-attention and its ef-
fectiveness has been verified through (Shen et al. 2018) in
many sequence modeling tasks. It is also promising to learn
query-document sophisticated semantic interactions by ap-
plying bit-wise to the inter-attention scoring function.

Another important issue is that the QA task consists of
heterogeneous queries and various document topics. Recent
work in (Xiong, Zhong, and Socher 2017) uses Highway
Maxout Network to pool across multiple model variations.
However, it brings much more parameters compared to a
simple feed-forward network. We take the inspiration from
multi-head attention proposed in (Vaswani et al. 2017). A
simple dot product for modeling relevance may reduce the
effective resolution of attention. To alleviate it, the multi-
space structure is proposed. It has the advantage of jointly
attending to document information from different repre-
sentation subspaces. This mechanism has become success-
ful in computing the context-aware features inside the en-
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coder/decoder on the neural machine translation task.
Given that modeling semantic interactions within a sin-

gle space sometimes fails to handle complex relations be-
tween documents and queries, it is promising to exploit the
multi-space module to perform attention, with the purpose
of extracting different aspects of the document into different
attended context vector representations. In this way, multi-
space attention can act as a mixture of experts to summarize
useful clues for answer prediction. Notably, to control the
model complexity, we constrain the product of the number
of spaces and the dimension of each projected space equiv-
alent to the dimension of original inputs.

Inspired by the above mentioned models, we propose
a new module, named Multi-Space based Context Fusion
(MSCF). It offers the following improvements to the previ-
ously popular attention paradigms. First, we project encoded
embeddings for the query and the document into multiple
latent spaces respectively. We hypothesize that the represen-
tation for each space will attend to a specific aspect of the
semantics. Second, a novel bit-wise attention mechanism, is
performed on each of these projected versions of represen-
tations in parallel. Different attentions from multiple sub-
spaces are concatenated and once again projected, yielding
a fused query-aware context vector.

As a shallow architecture may fail to understand the
document and make inferences, the effectiveness of multi-
hop reasoning has been explored so far in the literature
(Sukhbaatar et al. 2015; Sordoni et al. 2016; Dhingra et al.
2017; Hu, Peng, and Qiu 2017; Xiong, Zhong, and Socher
2017; Kumar et al. 2016; Hu, Peng, and Qiu 2017). It al-
lows the query to reason in a sequential way, based on the
information that has been gathered previously from the doc-
umen,t. An iterative inference process usually involves al-
ternate operations of read and update: (1) read: the query
triggers an attention process that searches the memory (i.e.,
the whole document) and retrieves relevant facts to produce
an “evidence” vector; (2) update: the query representation is
renewed while taking into account the query of last hop as
well as the newly formed evidence vector, which enables the
model to attend to different inputs during each pass. After a
fixed number of iterations, the model uses a summary of its
inference process to predict.

In this paper, our multi-hop strategies tightly integrates
previous ideas related to iterative attention processes. More-
over, we equip it with a novel write operation, unlike exist-
ing models (Sukhbaatar et al. 2015; Sordoni et al. 2016),
do not maintain the memory constant, but instead evolve
the memory over hops according to a gating writing rule.
Specifically, a fusion gate is generated to control the degree
to which the previous memory is exposed. The design of
the fusion gate is very similar to long short-term memory
network (LSTM) (Hochreiter and Schmidhuber 1997) and
gated recurrent units (GRU) (Chung et al. 2014), wh,ich
controls the information that flows into or out of memory,
acting as a fine-grained information filter. In a word, our
multi-hop architecture reasons about different parts of the
document through read, update and write operations.

We combine MSCF with multi-step inference, and name
the joint model Enhanced Attentive Reader (EA Reader).

To summarize, our main contributions are three folds:

• We propose a novel module, named MSCF, to model
fine-grained query-document interactions. It combines the
multi-space mechanism with a bit-wise scoring function
in a complementary manner.

• EA Reader allows multi-hop inference. It is equipped with
a novel memory update rule and has an encoding memory
that evolves over time and maintains the understanding of
documents through read, update and write operations.

• We conduct extensive experiments on four benchmark
datasets, and the results demonstrate that EA Reader out-
performs several state-of-the-art models significantly.

Related Work
Cloze-style question answering tasks can be defined as:
given a query and a document as the context, extract a ∈ C.
Note that, C is the set of candidate answers which appear in
the document, and the answer a is a single word or entity.

According to the way to predict the answer, those methods
generally fall into two categories: LSTM with Attention and
Pointer-Style Attention sum.

LSTM with Attention
The first aims at computing a joint query-document rep-
resentation, which is used to rank the candidate answers.
DeepLSTM Reader (Hermann et al. 2015), the most
strightforword way, processes the concatenated document-
query pair by employing a deep LSTM cell with skip con-
nections to obtain the joint representation.

To learn more complex query-document interactions,
some models exploit the attention mechanism. This includes
the Attentive Reader (Hermann et al. 2015; Chen, Bolton,
and Manning 2016) which computes the query-aware doc-
ument vector as the weighted sum of the token embeddings
based on aligning scores computed by the attention scoring
function; and the Impatient Reader (Hermann et al. 2015)
which allows the model to recurrently accumulate informa-
tion from the document as it sees each query token and thus
builds document representation incrementally.

Attention mechanisms in previous works typically have
one or more of the following characteristics. First, interac-
tions are modeled in a token-wise fashion. Different features
of the token embedding share the same inportance score,
which makes it hard to distinguish the highly related seman-
tic features of a word. Second, interactions are performed
within a single space, which limits the ability of dealing
with heterogeneous, highly flexible queries. Our proposed
MSCF is closely related to Stanford Attentive Reader (Chen,
Bolton, and Manning 2016), but has two special properties
in comparison: (1) MSCF performs multiple spaces of atten-
tion, each of which reveals some aspects of semantic interac-
tions, providing a better understanding of the query intents;
(2) MSCF learns query-document interactions at the bit-wise
level. The attention score map can select the features that
best match the query, and incorporate this information into
the query-aware context vector.
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Pointer-Style Attention Sum

The other category consists of models motivated by Pointer
Network (Vinyals, Fortunato, and Jaitly 2015). Unlike the
classical softmax classifier, the document attention weights
are directly used to predict the probability of the answer
given the document. The AS reader (Kadlec et al. 2016)
obtains an attention over the document by computing dot
products between the query embeddings and contextual em-
beddings. An aggregation module named pointer-sum atten-
tion is further applied to sum the word’s attention across all
the occurrences.

Inspired by it, the Attention-over-Attention (AoA)
Reader (Cui et al. 2017) exploit mutual information be-
tween the document and query based on query-to-document
attention and document-to-query attention. The pointer-style
attention mechanism to perform the final answer prediction
has also been proposed by some mutli-hop models in the
prediction phase (Sordoni et al. 2016; Dhingra et al. 2017).
In contrast, our model predicts the answer based on the con-
text vector rather than the pointer-sum attention.

Multi-Hop Architecture

The above mentioned models use a single-hop architecture.
The benefit of multi-hop reasoning has also been explored.

Memory networks (Sukhbaatar et al. 2015; Kumar et al.
2016) focus on maintaining a memory component for QA
tasks. Generally, the document representations are stored as
the memory, and each token embedding can be regarded as
a memory slot. MemN2N (Sukhbaatar et al. 2015) modi-
fies it into an end-to-end recurrent architecture. The query
representation is updated iteratively from hop to hop, which
enables the model to attend to different inputs during each
pass. Iterative Attentive Reader (Sordoni et al. 2016) also
scan the document and the query iteratively to perform
multi-hop reasoning. The major difference between them,
is that MemNets embeds the query to obtain an internal
state, whereas Iterative Attentive Reader performs an at-
tentive read on the query encodings, resulting in a query
glimpse during each iteration. ReasoNet (Shen et al. 2017)
also combines dynamic reasoning steps with reinforcement
learning. GA Reader (Dhingra et al. 2017) designs a novel
module, called gated-attention, and is applied per hop to act
as fine-grained information filters during the multi-step rea-
soning.

These extensions of memory networks have two things
in common: (1) the multi-hop architecture is equipped with
an explicit memory and a recurrent attention mechanism for
reading the memory; (2) the encoded memory remains the
same during each pass, i.e., can be only read but not written
to. In contrast,we extends MemN2N by designing a gating
writing operation which evolves the memory over iterations.
The repeated, tight integration between queries and docu-
ments allows the model to store and filter context informa-
tion dynamically, which is helpful to distinguish the parts of
the document that are most salient to the answer prediction.

Enhanced Attentive Reader
In this section, we will give a detailed introduction to the
proposed Enhanced Attentive Reader (EA Reader).

Contextual Encoding Representation
First, all the discrete tokens are mapped to a sequence of
k-dimensional dense vectors via an embedding matrix E ∈
Rk×|V |; therefore we have xd

1, . . . ,x
d
m ∈ Rk for the context

document and xq
1, . . . ,x

q
n ∈ Rk for the query.

To incorporate some contextual information into the em-
bedding of each word, we use a bidirectional GRU (Chung
et al. 2014) with hidden size h to encode the context,

�

hi =
−−−→
GRU(

�

hi−1,x
d
i ), i = 1, . . . ,m

�

hi =
←−−−
GRU(

�

hi+1,x
d
i ), i = m, . . . , 1

(1)

and we concatenate each
�

hi with
�

hi to obtain di ∈ R2h

for the i-th document word. Meanwhile, another BiGRU
is applied to process the query and the last hidden state
is picked up as the query embedding. Finally, we obtain
two contextual encoded representations: D = {di}mi=1

∈
R2h×m for the document and q ∈ R2h for the query.

Multi-Space based Context Fusion
Question answering (QA) requires modeling complex in-
teractions between the document and the query. Previous
works, such as Stanford Attentive Reader (Chen, Bolton, and
Manning 2016), use token-wise attention to perform seman-
tic interactions and summarize the document into a fixed-
size query-aware context vector.

We design a new module to generate the query-aware
context vector, named Multi-Space based Context Fusion
(MSCF), with the following considerations: (1) interactions
are applied across multiple latent semantic spaces; (2) at-
tention is measured at bit level, not at token level. Figure 1
provides an overview of the architecture of MSCF.

Latent Semantic Spaces The intuition behind using mul-
tiple spaces is that the QA task consists of heterogeneous
queies and various document topics. These variations may
require different spaces to perform attention-based pooling.

The projected embeddings in each space are derived from
the contextual encoded representations by linear projection,

Dl = W l
d ·D

ql = W l
q · q

(2)

with W l
d ∈ R2h/L×2h and W l

q ∈ R2h/L×2h being learned
transformation matrices in the l-th space for the document
and query respectively. L indicates the number of subspaces.
To control the model complexity, we constrain that the di-
mension for each space is the same and the total dimensions
of all spaces equivalent to that of original embeddings.

Bit-wise Attention Scoring Function For each space, at-
tention is triggered when weighting different parts in the
document according to their relevance to the query.
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Figure 1: The overview of MSCF. The superscript denotes
the serial number of subspaces. D denotes contextual en-
coded representations for documents. Di and Ãi are the
projected document representations and attention score map
for the i-th space. o denotes the query-aware context vector.

Previous attention mechanisms have one characteristic, is
that weights are computed token-wise. Multiplicative atten-
tion uses dot product, and Stanford Attentive Reader (Chen,
Bolton, and Manning 2016) chooses a more flexible bilinear
term as in (Luong, Pham, and Manning 2015), i.e.,

rli = (dl
i)

ᵀW l
b ql (3)

Additive attention is associated with

rli = (wl)ᵀtanh(W l
1d

l
i +W l

2q
l) (4)

where the scalar score rli indicates relevance between the i-
th context word and its corresponding query in the l-th space.

In contrast, we propose a novel attention scoring func-
tion to learn relevance in a bit-wise fashion. Varied weights
are assigned to different bits of an token embedding, which
enable the query to attend to document semantics at fine-
grained feature level rather than word level.

The bit-wise compatibility function is defined as,

Al
:,i = W ltanh(dl

i � ql))

Ãl = softmax(Al)
(5)

where W l ∈ R2h/L×2h/L is the inter-attention parameter
matrix for the l-th space, and � denotes Hadamard product.

Similar to a feature map in computer vision, we also de-
fine the normalized weight matrix Ãl as an attention score

map. The element Ãl
ij indicates the importance weight for

the i-th feature over the j-th token in the l-th space.
Let cl denotes the corresponding attended context vector

in the l-th space. The computation is defined as,

cl =

i=m∑
i=1

Ãl
:,i � dl

i (6)

Multi-Space Context Fusion As shown in Figure 1,
we combine different inter-attentions from multiple sub-
spaces and successively perform concatenation and non-
linear transformation to refine the aggregated query-aware
context representation as,

o = relu(Wc[c
1, . . . , cL]) (7)

where Wc ∈ R2h×2h ensures that the output keeps the same
shape (i.e., 2h-dimensional) as the input.

Our MSCF module shares some similarities with the well-
known multi-head attention (Vaswani et al. 2017), but with
two differences. First, due to the property of QA tasks, we
simply use projected representations of queries and doc-
uments as inputs to multiple subspaces of inter-attention.
There is no extra derivation from inputs to sets of queries,
keys and values. Second, we replace the simple scaled dot
product with a fine-grained bit-wise attention. A sophisti-
cated attention score map instead of a score vector is futher
applied to guide the extraction of answers.

Multi-Hop Context Generator
EA Reader can also be extended to handle T hop operations,
analogous to end-to-end memory network (Sukhbaatar et al.
2015). The document representation is regarded as a mem-
ory component that can be read and written to. Each docu-
ment word vector is a memory slot.

Query Update Mechanism Our model renews the query
representation during each pass, which allows the model to
condition its attention on the result of previous iterations.

More specifically, multiple memory modules are stacked
together by taking the output from last hop as input to the
current hop. Similar to (Sukhbaatar et al. 2015), we apply a
simple linear update across hops:

s0 = q

st+1 = Ws st + et
(8)

where the linear mapping combines query st with “evi-
dence” vector et retrieved from the previous hop. After T
hops, the final state sT is passed to the answer module.

Memory Read and Write Mechanism Figure 2 shows
the workflow of multi-step reasoning. At step t, the query
triggers a MSCF process over the memory slots to compute
an overall memory, and obtains an “evidence” vector et.

Prior work, such as the Iterative Attention (Sordoni et al.
2016), does not take the write operation into consideration.
Our reader is equipped with a novel write operation that
evolves the memory over multiple iterations.

At time step t+ 1, it writes the evidence gathered from
read operation at the previous hop into slots of the memory.
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Figure 2: The workflow of multi-hop reasoning.

To efficiently fuse attended information et into memory Mt,
we take a simple gating operation to do information integra-
tion. The fusion gate is computed as,

Gt = σ(We[et ⊗ rm] +WmMt) (9)

where ⊗ denotes the outer product which duplicates its left
vector m times to form a matrix. We use Gt and 1 − Gt

as the gated weights to assemble Mt and et. The integrated
information is computed by a weighted sum as:

Mt+1 = Gt � (et ⊗ rm) + (1−Gt)�Mt (10)

where 1 is a matrix of ones. Notably, we set the weight ma-
trix Ws, We and Wm for update and write operations to be
the same across hops.

This memory update mechanism further encourages in-
formation to flow from query to document. Note that, eq.(10)
has strong connections with the write module adopted in
NSE (Munkhdalai and Yu 2017). In NSE, the attention
weight vector emitted by the read module is reused to guide
the update of memory. In contrast, we use a gate to dynam-
ically determine how much of the past information needs to
be erased and how much of the newly collected evidence
needs to be passed along to the future.

Answer Prediction Module
Using the final query-aware context vector sT , the model
computes the probability distribution over tokens as:

p = softmax(WasT ) (11)

The entity with maximum probability which appears in the
passage is predicted as the answer. Model parameters are
updated w.r.t. a negative log-likelihood objective.

Experiments
In this section, we conduct extensive experiments to answer
the following questions:
• (Q1) How does our proposed MSCF perform in query-

document interaction learning?
• (Q2) Is it necessary to extend EA Reader to the multi-hop

architecture for question answering?
• (Q3) How does the settings of networks influence the per-

formance of EA Reader?
We will answer these questions after presenting some fun-

damental experimental settings.

Experiment Setup
Datasets We evaluate the EA Reader on four large-scale
datasets. The first two, CNN and Daily Mail datasets1 are
constructed with web-crawled CNN and Daily Mail news
data (Hermann et al. 2015). One entity word is replaced with
a special placeholder to indicate the missing token. Further,
entities within each article are anonymized.

The next two datasets are formed from two different sub-
sets of the Children’s Book Test2 (Hill et al. 2015). Each
document consists of 20 continuous sentences in the story,
and the 21st sentence is regarded as the query, where one
word is blanked with a special symbol. We choose sub-
sets whose answers belong to Named Entities (CBT-NE) or
Common Nouns (CBT-CN).

Reproducibility We implement our method using Tensor-
flow3. Hyper-parameters of each model are tuned by grid-
searching on the validation set. All tokens are initialized
with the 100-dimensional pre-trained GloVe word embed-
dings (Pennington, Socher, and Manning 2014). The embed-
ding matrix are updated during training. The hidden size h
is 240. The number of latent semantic subspaces L is 6. We
adopt Adam for optimization (Kingma and Ba 2014), with
an initial learning rate of 0.001 and mini-batches of 32. We
set GRU-dropout probability to 0.1 (Srivastava et al. 2014).

Performance Comparison among Single-Hop
Models (Q1)
Table 1 shows a comparison of the performance of MSCF
with previously published single-hop models. Note that, At-
tentive Reader and Impatient Reader are highly related to
MSCF. They weight the document based on a token-level at-
tention scoring function, whereas MSCF performs bit-wise
semantic aligning across multiple spaces. As shown in Ta-
ble 1, MSCF brings a substantial boost in performance, with
nearly 6% absolute improvements. Compared with other
prior work, MSCF outperforms the state-of-the-art single-
hop systems BIDAF, with 2.4% and 3.1% absolute improve-
ments on the CNN and Daily Mail testsets. Our model also
could stay on par with the second-best baseline NSE when
evaluated on the CBT datasets.

MSCF integrates the bit-wise attention into multi-space
qeury-document interactions. While MSCF covers two dis-
tinct properties, we want to know whether it is indeed nec-
essary and effective to combine them for jointly interaction
learning. Table 1 also shows accuracy by removing one com-
ponent at a time. The steepest reduction is observed when
removing multi-space projections. Next, we observe a sub-
stantial drop when replacing the bit-wise attention with a
bilinear term applied in Stanford Attentive Reader, which
demonstrates the effectiveness of modelling interactions at
fine-grained feature level. It also indicates multi-space pro-
jections are essential, which can be verified through the fact
that it still provides 4% absolute improvements over Stan-
ford AR on CNN datasets.

1http://cs.nyu.edu/∼kcho/DMQA/
2http://www.thespermwhale.com/jaseweston/babi/CBTest.tgz
3https://www.tensorflow.org/
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Table 1: Validation / Test accuracy (%) on four benchmark datasets for single-hop models. Results marked with “w/o” are
obtained by removing a component. Best performance is in bold.

Model
Acc (%)

CNN Daily Mail CBT-NE CBT-CN
Valid Test Valid Test Valid Test Valid Test

Deep LSTM Reader (Hermann et al. 2015) 55.0 57.0 63.3 62.2 - - - -
Attentive Reader (Hermann et al. 2015) 61.6 63.0 70.5 69.0 - - - -
Impatient Reader (Hermann et al. 2015) 61.8 63.8 69.0 68.0 - - - -
Stanford AR (Chen, Bolton, and Manning 2016) 72.4 72.4 - - - - - -
BiDAF (Seo et al. 2017) 76.3 76.9 80.3 79.6 - - - -
AoA Reader (Cui et al. 2017) 73.1 74.4 - - 77.8 72.0 72.2 69.4
AoA Reader + Reranking (Cui et al. 2017) - - - - 79.6 74.4 75.7 73.1
NSE (Munkhdalai and Yu 2017) - - - - 78.2 73.2 74.3 71.9

MSCF (w/o multi-space projections) 72.9 73.4 76.3 71.7 74.2 70.1 70.2 68.5
MSCF (w/o bit-wise, + token-wise) 76.1 76.5 80.3 80.4 75.7 71.1 71.2 69.5
MSCF 78.8 79.3 82.3 82.7 78.1 73.1 73.9 71.5

Table 2: Validation / Test accuracy (%) on four benchmark datasets for multi-hop models. Results marked with “w/o” are
obtained by removing a component. Best performance is in bold.

Model
Acc (%)

CNN Daily Mail CBT-NE CBT-CN
Valid Test Valid Test Valid Test Valid Test

Iterative Attention (Sordoni et al. 2016) 72.6 73.3 - - 75.2 68.6 72.1 69.2
EpiReader (Trischler et al. 2016) 73.4 74.0 - - 75.3 69.7 71.5 67.4
GA Reader (+ feature, fix L(w)) (Dhingra et al. 2017) 76.7 77.4 80.0 79.3 78.5 74.9 74.4 70.7
GA Reader (update L(w)) (Dhingra et al. 2017) 77.9 77.9 81.5 80.9 76.7 70.1 69.8 67.3

MSCF (i.e., single-hop) 78.8 79.3 82.3 82.7 78.1 73.1 73.9 71.5
EA Reader (w/o write operation) 80.2 80.9 82.9 83.4 78.3 75.1 75.2 72.5
EA Reader 80.9 81.4 83.9 84.3 79.8 76.6 76.8 73.9

Performance of Multi-hop Architecture (Q2)
By applying the multi-hop architecture to EA Reader, the
performance increases by 2.1% and 1.6% again to set a new
state of the art on the CNN and Daily Mail testsets respec-
tively. Moreover, on the CBT-NE and CBT-CN test sets, it
leads to an improvement of 1.7% and 0.8% over the most
competitive model (achieved by GA Reader in Table 2, AoA
Reader with the assistance of reranking strategies in Table 1,
respectively). Our multi-hop model improves the accuracy to
76.6% and 73.9% for CBT-NE, CBT-CN respectively.

It can be observed that, removing the write operation leads
to a reduction of about 1% and 1.5% on the Daily Mail and
CBT-NE testsets. The gated writing function is responsible
for filtering information irrelevant to the prediction.

Hyper-Parameter Study (Q3)
Number of Subspaces We show the effect of varying the
number of subspaces on the final validation set performance
in Figure 3. A steep and steady rise in accuracy is ob-
served as the number of hops is increased from 2 to 4. How-
ever, model performance degrades when the subspaces is set
greater than 6, which is caused by overfitting.

Depth of Network As shown in Figure 4, model per-
formance on CBT-NE validation dataset increases steadily

2 3 4 5 6 7 8 9 10

numbers of subspaces

74

76
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80

A
c

c
(%

)

71

72

73

74

CNN

CBT-NE

Figure 3: Impact of subspaces on Acc performance.

when we increase the hops from 1 to 4, while on CNN, 3 is
a more suitable setting for the number of hops.

Attention Scoring Function We compare four variants of
operations, including Additive, Multiplicative, Multi-Head
and Bit-wise. Results in Table 3 indicate that the feature-
wise attention surpasses token-wise attention by large mar-
gins, e.g., +1.5% to multi-head attention on CNN testset. It
justifies our motivation to interact at fine-grained level.
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Table 3: Results with various attention on single-hop model.

Attention Acc on Testsets (%)
CNN Daily Mail

Additive 77.5 80.9
Multiplicative 77.9 81.2
Multi-Head 77.8 81.4

Bit-wise 79.3 82.7

Case Study
We try to interpret the interactive aligning across multiple
latent spaces in a straight forward way. We choose the bilin-
ear scoring function which computes relevance scores at
token level, thus we can visualize attention weight distri-
bution over the context tokens with a heat map in Figure 5.
Each row represents a specific space and each column repre-
sents a context word4. Note that, all attention weight vectors
are all extracted from the single-hop structure.

This way of visualization gives hints on which aspect of
semantics is reflected in each subspace. Some latent spaces,
e.g., space I, III, V highlight characters associated with the
event (i.e., entity0 and entity5), while others like II, IV focus
on some other aspects of the event, such as time, location
and action. Space VI shows the average aggregation of all
the aspects of the event and seems messy.

Another way of visualization can be achieved by averag-
ing the attention vectors across different spaces. Note that,
there is no need to apply softmax to it, since averaging atten-
tions still keep the normalization condition. Figure 6 yields
a general view of which token is mostly focused on during
the query-context interaction. It can be observed that the in-
teraction phase takes the characters (i.e., entity0 and entity5)
more into account, which is consistent with the query type.

Conclusion
In this paper, we propose the Enhanced Attentive Reader
(EA Reader) to answer cloze-style questions. The reader

4Corresponding query: @entity0, @placeholder visit young
patients at @entity3. Concrete Meanings for entity1: Captain
America; entity0: Chris Evans; entity3: Seattle Children’s Hos-
pital; entity6: Guardians of the Galaxy; entity5: Chris Pratt.
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Figure 5: A visualized example of interactive aligning.
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Figure 6: A visualized example of average importance score.

has three special virtues: (1) it performs multiple spaces
of attention, each of which reveals some aspects of seman-
tic interactions; (2) it measures interactions at fine-grained
bit level; (3) it equips the iterative inference process with a
novel memory update rule, which is vital to filter out noisy
informantion. Our model yields a significant performance
gain on several large-scale benchmark datasets over compet-
itive baselines. We demonstrate that both multi-space mech-
anism and multi-hop architecture are integral parts of EA
Reader. We also show empirically that the bit-wise atten-
tion outperforms token-wise attention. In the future, we will
explore ways to solve span-extractive question answering
tasks, which includes designing a novel memory-based an-
swer pointing mechanism.
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