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Abstract

Neural generative models have become popular and achieved
promising performance on short-text conversation tasks.
They are generally trained to build a 1-to-1 mapping from
the input post to its output response. However, a given post is
often associated with multiple replies simultaneously in real
applications. Previous research on this task mainly focuses on
improving the relevance and informativeness of the top one
generated response for each post. Very few works study gen-
erating multiple accurate and diverse responses for the same
post. In this paper, we propose a novel response generation
model, which considers a set of responses jointly and gener-
ates multiple diverse responses simultaneously. A reinforce-
ment learning algorithm is designed to solve our model. Ex-
periments on two short-text conversation tasks validate that
the multiple responses generated by our model obtain higher
quality and larger diversity compared with various state-of-
the-art generative models.

Introduction
Endowing the machine with the ability to converse with
humans using natural language is one of the fundamental
challenges in artificial intelligence (Turing 1950). In partic-
ular, conversation models in open domains have received
increasing attention due to its wide applications including
chatbots, virtual personal assistants and etc. With the vast
amount of conversation data available on web services, gen-
erative models have shown their great potential. Especially,
the Sequence-to-sequence (Seq2seq) framework (Vinyals
and Le 2015; Sordoni et al. 2015), which learns the map-
ping from the input to its corresponding output directly, has
achieved promising performance. Following the most con-
ventional setting for generative short-text conversation mod-
els (Shang, Lu, and Li 2015; Li, Monroe, and Jurafsky 2016;
Mo et al. 2016; Shen et al. 2017), we consider the single
round chi-chat conversation with no context information, i.e.
an input post from a user and the output response given by
the machine.

Despite the popularity of the Seq2seq models, various
problems occur when they are applied for short-text conver-
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sation. One important issue is that they try to model the input
post and the output response as a 1-to-1 mapping. Whereas,
a post is often associated with multiple responses simulta-
neously in real applications, which is a 1-to-n mapping. For
example, for a user’s tweet on Twitter, there are often multi-
ple replies obtained from the other users.

In order to handle a set of replies, a simple method is
to pair each of them with the input as multiple training
instances and then train the Seq2seq models. Previous re-
sults show that this method tends to generate generic re-
sponses (Li et al. 2016a; 2016b). Moreover, only one target
response can be generated in this method. To obtain multi-
ple responses as in the real applications, many approaches
resort to beam search or enhanced beam search for diverse
answers (Li, Monroe, and Jurafsky 2016; Shao et al. 2017).
Recently, Zhou et al. (2017; 2018) introduced multiple la-
tent embeddings as language responding mechanisms into
the Seq2seq framework. By choosing different responding
mechanisms, multiple output responses can be generated.
Zhao et al. (2017) adopted the conditional variational auto-
encoder (CVAE) and generated multiple responses by draw-
ing samples from the prior distribution. Yet, these methods
still decomposed multiple responses into independent ones,
and did not model the fact of multiple responses.

In this paper, we propose a novel response generation
model for short-text conversation, which considers multi-
ple responses jointly. We introduce a latent variable distri-
bution for each post and sample different values from the
learned latent distribution to generate multiple diverse re-
sponses. Our novelty lies in two aspects. First, we model the
post with its various responses as a bag of instances and in-
fer the distribution of the latent variable by considering mul-
tiple responses jointly. Second, unlike in CVAE, we adopt
interpretable latent variables, of which different samplings
should be capable to capture the divergence between dif-
ferent responses. Here, we set the latent variable as a word
in the vocabulary. Each sampling of the latent variable is
then to select a specific word, which drives the generated
response to be more meaningful around this word.

Since open-domain conversations cover a wide range of
topics and areas, we require a large vocabulary to adequately
include the possible latent words in all responses. Thus, it is
impractical to compute the exact gradient from the fully fac-
torized probabilities over all latent variables and apply the

6383



standard back-propagation training procedure. We propose
to treat each latent word as an action, and use a reinforce-
ment learning(RL) algorithm to solve the large latent space
issue. We first use the latent word inference network to esti-
mate the distribution over all words for an input post. Based
on this probability distribution, we sample multiple latent
words, which are then combined as parts of inputs in the
generation network. The generation network will return the
reward of each sampled latent words by considering all gen-
erated responses jointly. Specifically, we design a sampling
scheme to select multiple diverse latent words for our RL
algorithm to converge effectively.

To summarize, our contributions are threefold:
1. We propose a response generation model which directly

considers an input post with its multiple responses jointly.
Our model could automatically generate multiple diverse re-
sponses for a single post.
2. We consider latent words as actions and propose to use

a reinforcement learning algorithm to solve our model.
3. Experimental results show that our model outperforms

existing state-of-the art generative methods in generating
multiple high-quality and diverse responses. All our code
and datasets are available are https://ai.tencent.com/ailab/
nlp/dialogue.html.

Related Work
The Seq2seq framework has been widely used for conver-
sational response generation (Vinyals and Le 2015; Sordoni
et al. 2015; Shang, Lu, and Li 2015). Such models learn the
mapping from an input x to one output y by maximizing the
pairwise probability of p(y|x). During testing, these mod-
els only target for one response. In order to obtain multiple
responses, beam search can be used. However, the resulting
multiple sequences are often very similar. Many approaches
have been proposed to re-rank diverse meaningful answers
into higher positions. For example, Li et al. (2016) proposed
a simple fast decoding algorithm to directly encourage re-
sponse diversity in the scoring function used in beam search.
Shao et al. (2017) heuristically re-ranked the responses seg-
ment by segment to inject diversity earlier in the decoding
process. These methods only modified the decoding steps
and still often generated responses using different words but
with similar semantics.

A few works have explored different factors that decide
the generation of diverse responses. For task-oriented dia-
logue systems, Wen et al. (2017) proposed to model a latent
space to represent intentions. Zhao et al. (2017) adopted
the CVAE for learning discourse-level diversity for dialog
models. They further incorporated a distribution over poten-
tial dialogue acts for better discourse-level diversity. Unlike
them, our work targets for the single round open-domain
conversation task, which assumes no discourse level infor-
mation. Also, it is observed that in CVAE with a fixed Gaus-
sian prior, the learned conditional posteriors tend to collapse
to a single mode, yielding little diversity in the generated re-
sults (Wang, Schwing, and Lazebnik 2017). In our model, if
we choose two latent words with far different meanings, the
generated responses should be different.

The most relevant work to ours is from Zhou et al. (2017;
2018). They introduced latent embeddings as the language
responding mechanisms into the Seq2seq model. By choos-
ing different responding mechanisms, multiple responses
can be generated. However, their model decomposed the
joint probability of multiple responses into a product of in-
dividual probabilities: p({y}|x) =

∏
y p(y|x). Despite that

the latent embedding has no interpretable meaning, they
have to set a very small number of mechanisms in order to
optimize the fully factorized probabilities over the latent em-
beddings in a standard back-propagation training procedure.
Our model assumes a much larger latent space with interpret
ability. Thus, it is impractical to compute the exact gradient,
which we will show in later section. We then propose a rein-
forcement learning algorithm to train our model.

We notice that Yao et al. (2017) proposed to generate
an informative reply based on a cue word. In our model,
we utilize a latent word to guide the response generation,
which shares certain similarities. Their results also validates
our model assumption that it should be effective to integrate
auxiliary word-level information for generating high-quality
responses. However, they simply computed the cue word for
each post using the point-wise mutual information (PMI)
from the word concurrence statistics, and focused on design-
ing a better decoding cell to deal with the cue word. Our
work considers another problem, which is to infer multiple
diverse latent words from a parametric model to generate
multiple responses with satisfying quality and diversity.

Most of the related methods mentioned above will be
compared in our experiments and our results show that our
proposed method outperforms them in terms of generating
multiple relevant and diverse responses.

Models
Problem Formulation and Model Overview
We are given training samples {(x, {y})}, with x denoting
the input post and {y} its set of output responses. We as-
sume an unobserved latent variable z for each input x. Be-
fore introducing our model, we first discuss how to construct
a proper latent space Z in short-text conversation tasks:

• For any z ∈ Z, it should be interpretable, which can
show its relevance to the input x as well as the responses
{y}. Thus, we are easy to identify whether a good unob-
servable z is assigned for a sample (x, {y}).
• Each z ∈ Z should be capable of capturing the sentence-

level discrepancy such that given distinct x’s, the inferred
z’s can be different and given distinct z’s, the generated re-
sponses can be different.

To meet these two criteria, we set the latent space Z as the
vocabulary used in each task and each z corresponds to one
of its words. In terms of the first criterion, we can directly
check the relevance from the plain text of z, x and {y}. For
the second one, the vocabulary defines a large enough latent
space for a given x to select out multiple distinct and diverse
z’s to generate multiple responses.

We observe that it is often the case that not all responses
relate to one single latent word z. For example, with a query
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“I feel boring in the weekends. How do you spend your
time?”, it has two responses “I play guitar sometimes” and
“My favorite is camping and you can join me next time.”.
Both “guitar” and “camping” are valid latent words of the
query, but each of them is relevant to only one of the re-
sponses. Thus, we get inspired from multi-instance learn-
ing (Zhou 2004), in which a positive bag of instances con-
tains at least one positive instance. Here, a query with its
multiple responses is considered as a bag of instances. That
is, if a given x is assigned with a latent word z, its bag of
instances contains at least one response y relevant to this z.
In turn, if multiple responses are relevant to different z’s,
multiple z’s can be inferred with relatively large probabil-
ities simultaneously for a single x. Our training objective
is to minimize the average risk of generating the bag of re-
sponses {y} over the probability distribution of z given x,
which is defined as:

J(Θ) = L({y}|x) = Ep(z|x)[L({y}|x, z)], (1)

where p(z|x) is the probability of a latent z given x, and
L({y}|x, z) is the loss of generating the bag of responses
{y} given both x and z. In our model, we use deep neu-
ral networks to parameterize p(z|x) and L({y}|x, z), de-
noted as W and G respectively. Θ = {W,G} contains all
model parameters. Note that unlike previous works (Zhou et
al. 2017; 2018), we do not decompose {y} into individual
y’s and infer the latent z for each of them separately.

The overall framework of our model is shown in Fig. 1.
It consists of two key components: a latent word inference
network for p(z|x), from which multiple words can be sam-
pled out to drive the generation of diverse responses; a re-
sponse generation network forL({y}|x, z), which generates
the given multiple responses according to the input x and
sampled words. We iteratively update the two networks in
that: the latent word inference network starts with an initial
policy, i.e. p(z|x), revise its strategy based on the reward and
improve the accuracy of the inferred latent words; the gener-
ation network receives more accurate latent words as inputs
to facilitate generating the given responses, and output the
reward for each sampled z for updating the latent word in-
ference network. In the following subsections, we describe
these two networks, the RL algorithm for their joint training
and prediction in detail.

Latent Word Inference Network
This network estimates the probability distribution p(z|x).
We first encode the input x with a bidirectional GRU to ob-
tain an input representation hx and then compute the proba-
bility of each latent word as follows:

p(z|x) = softmax(W2 · tanh(W1hx + b1) + b2), (2)

where parameters in the bidirectional GRU, W1, b1, W2

and b2 are jointly trained in our model.

Generation Network
We assume that L({y}|x, z) can be estimated from individ-
ual loss `(y|x, z)’s for y ∈ {y} through a simple parameter-
free and differentiable function f(·):

L({y}|x, z) = fy∈{y}(`(y|x, z)). (3)

𝑆𝑎𝑚𝑝𝑙𝑒 {𝑧1, 𝑧2, … , 𝑧𝐾}

𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑝(𝑧|𝒙)

𝑂𝑏𝑡𝑎𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑤𝑎𝑟𝑑

Latent Word Inference Network

𝑝(𝑧|𝒙)

Encoder Encoder

𝒚𝟏 𝒚𝟐 𝒚𝟑

Softmax

𝒙

Generation Network

𝑜𝑓 𝑒𝑎𝑐ℎ 𝑧

𝒙

Encoder

𝑧

Decoder

Figure 1: An overview of the proposed model. The given x
is associated with three output responses {y1,y2,y3}. Each
latent z is a word in the vocabulary.

We first introduce the detailed network structure to estimate
`(y|x, z), and then discuss proper choices of f(·).

With a sampled z, we first encode x through another bidi-
rectional GRU for an input representation hg

x. At the same
time, we obtain the representation hg

z of z using an embed-
ding layer followed by a fully connected layer. Both repre-
sentations are then leveraged to decode the output sequence
y. Here, our decoding function is constructed as follows. We
compute the attention between hg

z and x and construct the
context vector cz:

aj =
exp(hg

z
Thg

x(j))∑
t exp(h

g
z
T
hg
x(t))

, cz =
∑
t

ath
g
x(t), (4)

where {hg
x(t)} is the series of hidden vectors obtained in the

encoder for each word in x. Intuitively, cz is a weighted sum
of the input representations, which captures the information
of x relevant to the selected z.

We use GRU as the decoding cell with {hy(t)} denoting
its series of hidden vectors. In each decoding step, we cal-
culate the attention and the context vector cy(t) for hy(t),
which can be obtained by replacing hg

z with hy(t) in Eq. 4.
Then, we concatenate hy(t), cz and cy(t) together and for-
ward this vector into a fully connected layer followed by
a softmax output layer. `(y|x, z) is set as the negative log
likelihood of p(y|x, z). Comparing with the decoding step
in traditional Seq2seq models (Bahdanau, Cho, and Bengio
2015), we integrate more information from the input repre-
sentations relevant to the selected word z to help predict the
current output word y(t).

Next, we discuss how to design a proper function f(·)
with `(y|x, z)’s estimated from the above network structure.
Typically, f(·) is set to be the average function:

Lavg({y}|x, z) =
1

|{y}|
∑

y∈{y}

`(y|x, z), (5)

where |{y}| is the cardinality of {y}. However Lavg may
not be proper in our setting. As discussed in Section , not
all responses may relate to a single z. Thus, the loss terms
`(y|x, z)’s for those y’s relevant to z will be small, whereas
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the remaining will be large. The overall loss Lavg({y}|x, z)
could still be large. Hence, we propose to use the minimum
function as the f(·) function:

Lmin({y}|x, z) = min
y∈{y}

`(y|x, z). (6)

If the sampled z paired with x can generate one of its re-
sponses very well, its overall loss value now will be small.

Joint Training with Reinforcement Learning
To update the networks, we generally compute the gradient
of J(Θ) in Eq. 1 with respect to Θ:

∇ΘJ(Θ)

= ∇Θ

∑
z∈Z

p(z|x)L({y}|x, z)

=
∑
z∈Z

[L({y}|x, z)∇Wp(z|x) + p(z|x)∇GL({y}|x, z)]

= Ep(z|x;W)[L({y}|x, z)∇W log p(z|x)+∇GL({y}|x, z)].

A major difficulty faced by our model is the intractability in
calculating the above gradient since the expectation involves
a huge number of terms for a large latent space Z. To address
this problem, we propose to use reinforcement learning for
optimization, which is shown in Algorithm 1.

In Step 1, we use existing keyword extraction tools to ex-
tract keywords for each post as the latent words to pre-train
the latent word inference network. Then we use the top one
inferred word from the latent word inference network as the
input z to pre-train the generation network with the standard
loss function Eq. 5 used in Seq2seq models. During train-
ing, the REINFORCE algorithm (Williams 1992) is used to
train the latent word inference network, and standard back-
propagation is adopted for updating the generation network.

Two key issues remains when we perform the joint train-
ing. First, when we perform K trials to sample multiple z’s,
it may be difficult and time-consuming for the algorithm to
explore the large latent space, if we directly use the sampling
distribution in Eq. 2. Second, the loss function in Eq. 5/Eq. 6
is not bounded and thus will introduce a large variance in
policy gradients, which affects the stability of the algorithm.

To address the first issue, we design a two-step sampling
scheme, which can effectively limit the word sampling in a
much smaller latent space. For the second issue, we propose
to replace L({y}|x, z) in the policy gradient with a bounded
rewardR({y}|z,x).
Sampling multiple diverse latent words Firstly, we notice
that each input post x is often relevant to only a few z’s,
since the information provided by a short text should be very
limited. Thus, we maintain a small candidate set Zx for each
x, and only sample the latent z in Zx using their p(z|x;W).
In our experiment, the candidate set Zx is constructed using
outputs from existing keyword extraction methods on the in-
put x and its output sequences {y}. 1

Second, it is desirable that K diverse z’s can be selected
out for each x. Thus we perform clustering on the candidate
set Zx using their context vector cz’s in Eq. 4. For z’s in

1We have tried using all words in Z as Zx and the performance
is much worse.

Algorithm 1: RL Training Algorithm
Input: (x, {y}), Z
Output: Θ

1: Θ← Pre-trained from baseline methods.
2: for each (x, {y}) do
3: for k = 1, . . . ,K do
4: Sample a word z according to the proposed

sampling scheme.
5: Obtain the generated sentence

ŷ = argminy∗`(y∗|x, z).
6: Compute the reward according toR({y}|x, z).
7: Update the latent word inference network via the

policy gradientR({y}|x, z)∇W log p(z|x).
8: Update the generation network via the gradient

∇GL({y}|x, z).
9: end for

10: end for

different clusters, they tend to have different attentions on
the input post. For each trial of sampling, we only select
latent words from clusters, from which no words has been
selected before.
Reward function design A few recent works have been
proposed to learn a discriminator for a data-driven reward
function (Li et al. 2017; 2018). However, these methods in-
volve more model modules and complex parameter tuning.
To keep our model simple, we make use of the generated
sentence ŷ from the generation network (Step 5 in Algo-
rithm 1), and compute the reward with respect to a single y
using the parameter-free F1 score between y and ŷ which
measures the average overlap by treating the two sequences
as bags of tokens:

R(y|z,x) =
{

F1(y, ŷ), y ∩ ŷ 6= ∅,
−1, else.

The reward with respect to {y} is computed as:

R({y}|x, z) =
{

1
|{y}|

∑
yR(y|x, z), Eq. 5 is used,

maxyR(y|x, z), Eq. 6 is used.

Experimental results show that our model with the use of
this simple reward function works very well.

Generating Multiple Responses
With a trained model, we discuss how to generate K diverse
responses for a testing input x. We set the top 1000 z’s of
p(z|x) from the latent word inference network as the can-
didate set. Next, we perform clustering on the candidate set
similarly as in training and select out the centroid z’s of the
largest K clusters. Finally, each of the selected z’s is com-
bined x to generate the response.

Experiments
In this experiment, we first present our two datasets and in-
troduce the compared methods. The training details includ-
ing the keyword extraction, clustering and network config-
urations, are provided in Appendix. Next, we evaluate the
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performance of the various compared methods. We further
show some analyses to validate the effectiveness of our RL
training algorithm.

Datasets
We perform experiments on two short-text conversation
tasks in which each input post is generally associated with
multiple output sequences. Weibo: We used the bench-
mark dataset (Shang, Lu, and Li 2015) and pre-processed
it for high-quality data pairs. In total, we have above 4 mil-
lion training pairs. Twitter: We crawled post-response pairs
using the Twitter API. With several data cleaning steps,
we have around 750 thousand training pairs. Both datasets
have the vocabulary size 50,000. Details of the data pre-
processing and statistics are in Appendix.

Compared Methods
Beam Search(BS): We use the vanilla Seq2seq model with
attention employed in decoding (Bahdanau, Cho, and Ben-
gio 2015). Standard beam search is applied in testing.
Diverse Beam Search(DBS) (Li, Monroe, and Jurafsky
2016): We use the same Seq2seq model for training. In test-
ing, a modified ranking score is used in beam search to en-
courage diverse results. We set a fixed diversity rate as 0.5.
Maximum Mutual Information(MMI) (Li, Monroe, and
Jurafsky 2016): We generate the N-best list using the same
Seq2Seq model, and then rerank the results by this method.
Multiple-Mechanism(MultiMech) (Zhou et al. 2017) : It
introduced latent embeddings for diverse response genera-
tion. Following their setting, we use 4 latent mechanisms.
Then we select top 3 mechanisms and perform beam search
to obtain one response for each top mechanism.
CVAE (Zhao, Zhao, and Eskenazi 2017): As stated in Sec-
tion , it adopted CVAE for diverse response generation. We
replace the dialogue acts used in their original model as the
keyword used in our pre-trained step.
HGFU (Yao et al. 2017): This model used the PMI to ex-
tract a cue word for a post and then incorporate it for gener-
ating a more informative response. However, we find calcu-
lating the PMI is very time-consuming for a testing sample,
which involves O(the sequence length × vocabulary size ×
the number of the training data) operations. Thus we change
to apply the keyword used in our pre-trained step.
Ours: We explore our model using the pre-trained networks
only (Ours(Pretrain)) and two variants utilizing the two
loss functions in Eq. 5 and 6 in the generation network, de-
noted as Ours(Avg) and Ours(Min).

Evaluation
Top 3 results of each method are collected for evaluation.
For automatic evaluations, we report:
BLEU (Papineni et al. 2002): A widely used metric to mea-
sure the response relevance;
Distinct-1/2: Number of distinct unigrams/bigrams in the
generated multiple responses scaled by the total number of
generated unigrams/bigrams for each post, which can be
considered an automatic metric for evaluating the diversity
among the multiple responses generated for a single post.

Since automatic metrics for open-domain generative mod-
els may not be consistent with human perceptions (Liu et al.
2016), we also do human annotations to further evaluate the
generated results. We randomly select 200 testing posts for
each dataset and recruit 3 annotators from a professional la-
beling company to label the following two aspects for results
of all compared methods:
Quality: Each post-response pair is evaluated with: bad (un-
grammatical or irrelevant), normal (basically grammatical
and relevant) or good (grammatical and highly relevant with
specific meaning and information); responses on normal and
good levels are treated as “acceptable”;
Diversity: Number of fundamentally distinct responses
among the output responses of each method; thus the largest
diversity score of a post is 3 in our setting.

Results on Weibo
Overall Performance Results of automatic evaluations and
human annotations are shown in Table 1 and 2 respec-
tively. In terms of BLEU, HGFU performs the best, while
Ours(Min) achieves the second best on BLEU-2/3/4. How-
ever, BLEU only evaluates how much overlapped words the
generated responses have towards the given references. In
open-domain conversations, responses not close to the refer-
ences may not necessarily be poor. Thus, the quality scores
from the human annotations are more reliable. As shown,
Ours(Min) obtains the highest acceptable ratio. More im-
portantly, our model achieves a much higher good ratio,
with approximately 195% improvement over HGFU. This
indicates that our method can output more high-quality re-
sponses. In terms of distinct-1/2 and diversity, Ours(Min)
performs the best. Especially from the human evaluation re-
sults, Ours(Min) obtains about 110% improvement over the
Seq2seq baselines (BS, DBS and MMI), as well as 70% over
the enhanced methods (MultiMech and HGFU). This val-
idates that our method can output more diverse responses
while maintaining each of them to be relevant to the post.

Comparing with Ours(Pretrain), Ours(Avg) cannot obtain
consistent improvement on both quality and diversity. This
shows that the loss in Eq. 6 is more suitable for our problem
setting as discussed in Section 3.

We notice that the re-ranking methods (DBS and MMI)
do not outperform BS considering both quality and diver-
sity. As stated in introduction, these methods may have lim-
ited effectiveness by only encouraging responses with differ-
ent words to be ranked into higher positions during testing.
Also, the diversity of CVAE is much worse than the other
methods. This is consistent with our discussion in Section
that directly sampling from a fixed Gaussian prior tends to
cause mode collapse and yields little response diversity.
Analysis and Case study We first evaluate the overall rel-
evance between the latent words selected by three variants
of our methods and their corresponding post/generated re-
sponse. We use a simple method to obtain the sentence em-
beddings of the posts/ generated responses, which takes the
average of all the word embeddings in the sentences (Adi et
al. 2016; Zhao, Lee, and Eskenazi 2018). We use pre-trained
word embeddings trained with the C-BOW model (Mikolov
et al. 2013) on the Chinese Wikipedia corpus. Then we com-
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 distinct-1 distinct-2
BS 24.784 18.923 13.362 7.866 44.316 53.250
DBS 24.187 18.437 13.016 7.674 44.962 54.114
MMI 25.683 19.597 13.845 8.187 43.369 52.265
CVAE 26.575 18.290 12.302 6.510 38.158 47.272
MultiMech 24.436 18.952 13.644 8.403 41.321 49.592
HGFU 43.530 32.356 22.826 14.043 36.262 42.323
Ours(Pretrain) 31.135∗ 23.361 16.889 10.594 58.534∗ 76.023∗
Ours(Avg) 30.435 23.187 16.511 10.086 43.618 51.769
Ours(Min) 31.067 23.523∗ 16.893∗ 10.945∗ 62.407 76.767

Table 1: Automatic evaluation results on Weibo. The best/second best results are bold/starred.

Figure 2: Examples showing the generated responses on Weibo. Words in the brackets are the selected latent words.

Method Quality Diversity%Acceptable %Good
BS 44.611 4.333 0.678
DBS 44.667 4.389 0.683
MMI 44.611 4.056 0.680
CVAE 29.833 1.888 0.380
MultiMech 60.388 5.000 0.806
HGFU 60.833 7.111 0.846
Ours(Pretrain) 46.722 9.611 1.148
Ours(Avg) 49.278 8.556 0.843
Ours(Min) 63.000 20.944 1.436

Table 2: Human evaluation results on Weibo.

pute the cosine similarity between the latent word and the
sentence embedding, and normalize the score into [0,1]. Re-
sults are shown in Fig. 3(a). As can be seen, both Ours(Avg)
and Ours(Min) can select out latent words that are more rel-
evant to both the posts and responses than Ours(Pretrain).
Meanwhile, the improvement of Ours(Min) is much larger
than that of Ours(Avg).

Fig. 2 illustrates two example posts with their gener-
ated responses. 2 As can be seen, the responses with dif-
ferent mechanisms can be identical. The reason may be that
the number of mechanisms is very small and each mecha-
nism can only capture high-level responding characteristics
shared by many input data. A given post may not be sen-
sitive to different responding mechanisms so that the same

2Full results of all methods are shown in Appendix.
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Figure 3: (a) Cosine similarity between the latent word and
the query/response. (b) Visualization of the attention paid
to the relevant parts of the input post in Fig. 2 for each of
the selected words; a large version of this figure is shown in
Appendix for better readability.

response will be generated. Whereas, the responses by our
methods are driven by different latent words, which contain
more specific data-dependent information. If the selected
words have far different meanings, the generated responses
are highly probable to be different.

We further examine the relationship between the latent
words selected in our method and the generated results.
Fig. 3(b) shows the attention vector of each selected word
over its corresponding post. The first two latent words for
both posts are highly aligned to one word in the post, which
is often the case that this word appears in the post. Then
our method probably generates specific responses about that
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 distinct-1 distinct-2
BS 39.595 34.331 27.727 22.857 51.867 63.951
DBS 37.004 32.075 25.836 21.198 53.703 66.226
MMI 44.306 38.727 31.760 26.661 48.678 60.135
CVAE 35.071 29.487 22.509 17.380 52.451 64.876
MultiMech 75.164 50.679 30.897 19.434 42.717 48.153
HGFU 28.145 18.214 12.963 9.488 5.786 6.609
Ours(Pretrain) 82.751 64.902 47.177 34.282 52.281 66.642
Ours(Avg) 82.886∗ 66.586∗ 48.288∗ 34.891∗ 55.371 67.210∗

Ours(Min) 86.682 74.356 60.294 49.965 53.904∗ 67.301

Table 3: Automatic evaluation results on Twitter. The best/second best results are bold/starred.

Figure 4: Examples showing the generated responses on Twitter. Words in the brackets are the selected latent words.

Method Quality Diversity%Acceptable %Good
BS 28.055 3.778 0.657
DBS 29.000 3.722 0.697
MMI 31.667 4.667 0.678
CVAE 20.666 3.055 0.475
MultiMech 21.166 3.500 0.536
HGFU 14.000 2.722 0.245
Ours(Pretrain) 27.389 4.333 0.585
Ours(Avg) 30.667 4.444 0.570
Ours(Min) 42.000 7.944 0.713

Table 4: Human evaluation results on Twitter.

word. If the word is aligned with multiple words as the third
one for both posts, the generated response is relevant to the
these attended words but not the latent word itself. Over-
all, since we select words from different clusters, which are
computed using the context vector cz , our method tends to
select words attended on different parts of the post and the
generated responses are generally with diverse meanings.

Results on Twitter
Table 3 shows the automatic evaluation annotation results
on Twitter. On all metrics, our proposed models outperform
the other compared methods. The human evaluation results
are provided in Table 4, and our method is still the best
among all compared methods. Especially on the the Good
ratio, Ours(Min) has an increase of 70% over MMI (the
best re-ranking method) and 126% over MultiMech (the best
diversity-promoting method). Generated responses of two
posts are provided in Fig. 4. Full results of all methods are
again provided in Appendix.

Analysis of RL Training
We vary the size of the latent space on Twitter to test if a
large latent space is needed in our model. In Fig. 5(a), we

show the results of Ours(min) with the latent space using
the top 1k, 10k and all words in the vocabulary. We find out
that all metric scores decrease drastically with the use of a
smaller latent space. Thus, it is critical to use a large latent
space for our model to perform well.

In Fig. 5(b), we plot the average training reward of
Ours(Min) obtained by each epoch on Twitter. The reward
increases as the training algorithm iterates. It indicates our
designed RL training algorithm is capable of revising its pol-
icy to obtain more accurate latent variable distributions to
generate better responses.
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Figure 5: (a) BLEU and distinct-1/2 with the size of latent
space as 1k, 10k and 50k. (b) Training rewards with different
epochs.

Conclusion
We propose a new response generation model that learns the
post with its set of responses jointly for short-text conversa-
tion. Our model can be optimized in a reinforcement learn-
ing algorithm, which can deal with the large latent space
assumed in our model. By sampling multiple diverse latent
words from the latent word inference network, the gener-
ation network can output different responses. We perform
extensive experiments on two real datasets collected from
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Weibo and Twitter. Results show that, our method can effec-
tively increase both the quality and diversity of the multiple
generated responses compared with existing baselines and
several state-of-the-art generative methods.
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