
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Kernelized Hashcode Representations for Relation Extraction

Sahil Garg,1 Aram Galstyan,1 Greg Ver Steeg,1 Irina Rish,2 Guillermo Cecchi,2 Shuyang Gao1

1USC Information Sciences Institute, Marina del Rey, CA USA
2IBM Thomas J. Watson Research Center, Yorktown Heights, NY USA

sahil.garg.cs@gmail.com, {galstyan, gregv}@isi.edu, {rish, gcecchi}@us.ibm.com, sgao@isi.edu

Abstract

Kernel methods have produced state-of-the-art results for a
number of NLP tasks such as relation extraction, but suf-
fer from poor scalability due to the high cost of computing
kernel similarities between natural language structures. A re-
cently proposed technique, kernelized locality-sensitive hash-
ing (KLSH), can significantly reduce the computational cost,
but is only applicable to classifiers operating on kNN graphs.
Here we propose to use random subspaces of KLSH codes
for efficiently constructing an explicit representation of NLP
structures suitable for general classification methods. Further,
we propose an approach for optimizing the KLSH model for
classification problems by maximizing an approximation of
mutual information between the KLSH codes (feature vec-
tors) and the class labels. We evaluate the proposed approach
on biomedical relation extraction datasets, and observe sig-
nificant and robust improvements in accuracy w.r.t. state-of-
the-art classifiers, along with drastic (orders-of-magnitude)
speedup compared to conventional kernel methods.

1 Introduction
As the field of biomedical research expands very rapidly,
developing tools for automated information extraction from
biomedical literature becomes a necessity. In particular, the
task of identifying biological entities and their relations from
scientific papers has attracted significant attention in the past
several years (Garg et al. 2016; Hahn and Surdeanu 2015;
Krallinger et al. 2008), especially because of its potential
impact on developing personalized cancer treatments (Co-
hen 2015; Rzhetsky ; Valenzuela-Escárcega et al. 2017). See
Fig. 1 for an example of the relation extraction task.

For the relation extraction task, approaches based on con-
volution kernels (Haussler 1999) have demonstrated state-
of-the-art performance (Chang et al. 2016; Tikk et al.
2010). However, despite their success and intuitive ap-
peal, the traditional kernel-trick based methods can suf-
fer from relatively high computational costs, since comput-
ing kernel similarities between two natural language struc-
tures (graphs, paths, sequences, etc.) can be an expen-
sive operation. Furthermore, to build a support vector ma-
chine (SVM) or a k-nearest neighbor (kNN) classifier from
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ZBP2 facilitates binding of ZBP1 to beta-actin, but not to KSRP  or FBP1. 

Valid 
ZBP2 catalyzes binding between 
ZBP1 and Beta-actin. 

Invalid 
Beta-actin catalyzes binding 
between KSRP and FBP1. 

Figure 1: On the left, a parse tree of a sentence is shown. In
the sentence, the tokens corresponding to bio-entities (pro-
teins, chemicals, etc.) or interaction types are underlined.
We highlight the result of extracting one relation from the
sentence, using color-coding for its constituents: an interac-
tion type (green) and bio-entities either participating in the
interaction (red), or catalyzing it (orange). From two extrac-
tion candidates (valid/invalid), we obtain subgraphs from the
parse tree, used as structural features for binary classification
of the candidates.

N training examples, one needs to compute kernel similari-
ties between O(N2) pairs of training points, which can be
prohibitively expensive for large N . Some approximation
methods have been built for scalability of the kernel classi-
fiers. On such approach is kernelized locality-sensitive hash-
ing (KLSH) (Kulis and Grauman ; Joly and Buisson 2011)
that allows to reduce the number of kernel computations to
O(N) by providing efficient approximation for constructing
kNN graphs. However, KLSH only works with classifiers
that operate on kNN graphs. Thus, the question is whether
scalable kernel locality-sensitive hashing approaches can be
generalized to a wider range of classifiers.

The main contribution of this paper is a principled ap-
proach for building explicit representations for structured
data, as opposed to implicit ones employed in prior kNN-
graph-based approaches, by using random subspaces of
KLSH codes. The intuition behind our approach is as fol-
lows. If we keep the total number of bits in the KLSH codes
of NLP structures relatively large (e.g., 1000 bits), and take
many random subsets of bits (e.g., 30 bits each), we can
build a large variety of generalized representations corre-
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sponding to the subsets, and preserve detailed information
present in NLP structures by distributing this information
across those representations.1 The main advantage of the
proposed representation is that it can be used with arbitrary
classification methods, besides kNN such as, for example,
random forests (RF) (Ho 1995; Breiman ). Fig. 2 provides
high-level overview of the proposed approach.

Our second major contribution is a theoretically justi-
fied and computationally efficient method for optimizing the
KLSH representation with respect to: (1) the kernel func-
tion parameters and (2) a reference set of examples w.r.t.
which kernel similarities of data samples are computed for
obtaining their KLSH codes. Our approach maximizes (an
approximation of) mutual information between KLSH codes
of NLP structures and their class labels. 2

Besides their poor scalability, kernels usually involve only
a relatively small number of tunable parameters, as opposed
to, for instance, neural networks, where the number of pa-
rameters can be orders of magnitude larger, thus allowing
for more flexible models capable of capturing complex pat-
terns. Our third important contribution is a nonstationary ex-
tension of the conventional convolution kernels, in order to
achieve better expressiveness and flexibility; we achieve this
by introducing a richer parameterization of the kernel sim-
ilarity function. Additional parameters, resulting from our
non-stationary extension, are also learned by maximizing
the mutual information approximation.

We validate our model on the relational extraction task
using four publicly available datasets. We observe signif-
icant improvements in F1 scores w.r.t. the state-of-the-art
methods, including recurrent neural nets (RNN), convnets
(CNN), and other methods, along with large reductions in
the computational complexity as compared to the traditional
kernel-based classifiers.

In summary, our contributions are as follows: (1) we pro-
pose an explicit representation learning for structured data
based on kernel locality-sensitive hashing (KLSH), and gen-
eralize KLSH-based approaches in information extraction
to work with arbitrary classifiers; (2) we derive an approxi-
mation of mutual information and use it for optimizing our
models; (3) we increase the expressiveness of convolutional
kernels by extending their parameterization via a nonstation-
ary extension; (4) we provide an extensive empirical evalu-
ation demonstrating significant advantages of the approach
versus several state-of-art techniques.

2 Background
As indicated in Fig. 1, we map the relation extraction task to
a classification problem, where each candidate interaction as
represented by a corresponding (sub)structure is classified as
either valid or invalid.

Let S = {Si}Ni=1 be a set of data points representing NLP
structures (such as sequences, paths, graphs) with their cor-
responding class labels, y = {yi}Ni=1. Our goal is to infer the

1Compute cost of KLSH codes is linear in the number of
bits (H), with the number of kernel computations fixed w.r.t. H .

2See our code here: github.com/sgarg87/HFR.

Figure 2: On the left, we show a subgraph from Fig. 1 which
has to be classified (we assume binary classification). We
map the subgraph to a high-dimensional, kernel similarity-
based locality-sensitive hashcode (c), and use it as a feature
vector for an ensemble classifier. For instance, an efficient
and intuitive approach is to train a Random Forest on binary
kernel-hashcodes; in the figure, the nodes in a decision tree
makes decisions simply based on hashcode bit values, where
each bit represents presence or absence of some structural
pattern in the subgraph.

class label of a given test data point S∗. Within the kernel-
based methods, this is done via a convolution kernel sim-
ilarity function K(Si, Sj ;θ) defined for any pair of struc-
tures Si and Sj with kernel-parameter θ, augmented with
an appropriate kernel-based classifier (Garg et al. 2016; Sri-
vastava, Hovy, and Hovy 2013; Culotta and Sorensen 2004;
Zelenko, Aone, and Richardella 2003; Haussler 1999).

2.1 Kernel Locality-Sensitive Hashing (KLSH)
Previously, Kernel Locality-Sensitive Hashing (KLSH) was
used for constructing approximate kernelized k-Nearest
Neighbor (kNN) graphs (Joly and Buisson 2011; Kulis and
Grauman ). The key idea of KLSH as an approximate tech-
nique for finding the nearest neighbors of a data point is
that rather than computing its similarity w.r.t. all other data
points in a given set, the kernel similarity function is com-
puted only w.r.t. the data points in the bucket of its hash-
code (KLSH code). This approximation works well in prac-
tice if the hashing approach is locality sensitive, i.e. data
points that are very similar to each other are assigned hash-
codes with minimal Hamming distance to each other.

Herein, we brief on the generic procedure for mapping
an arbitrary data point Si to a binary kernel-hashcode ci ∈
{0, 1}H , using a KLSH technique that relies upon the con-
volution kernel function K(., .;θ).

Let us consider a set of data points S that might in-
clude both labeled and unlabeled examples. As a first step
in constructing the KLSH codes, we select a random subset
SR ⊂ S of size |SR| = M , which we call a reference set;
this corresponds to the grey dots in the left-most panel of
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Figure 3: An illustration of the KLSH technique, Random
K Nearest Neighbors (RkNN). First, we obtain a small sub-
set (gray dots) from a super set of NLP structures as a refer-
ence set SR that we use for constructing hash functions. For
each hash function, two random subsets from the gray dots
are obtained, denoted by red and blue. For a given structure,
we find its kernel-based 1-nearest neighbor in both of the
subsets as indicated by the arrows. Depending on which of
the two 1-NNs–either the red 1-NN or the blue 1-NN—is the
nearest to the sample, hash function h1(.) assigns value zero
or one to the sample. The same procedure applies to h2(.).
In this manner, we generate hashcodes with a large number
of bits as explicit representations of NLP structures.

Fig. 3. Typically, the size of the reference set is significantly
smaller than the size of the whole dataset, M � N .

Next, let ki be a real-valued vector of size M , whose
j–th component is the kernel similarity between the data
point Si and the j–th element in the reference set, ki,j =
K(Si, S

R
j ;θ). Further, let hl(ki), l = 1, · · · , H , be a set

of H binary valued hash functions that take ki as an input
and map it to binary bits and let h(ki) = {hl(ki)}Hl=1. The
kernel hashcode representation is then given as ci = h(ki).

We now describe a specific choice of hash functions
hl(.) based on nearest neighbors, called as Random k Near-
est Neighbors (RkNN). For a given l, let S1

l ⊂ SR and
S2

l ⊂ S
R be two randomly selected, equal-sized and non-

overlapping subsets of SR, |S1
l | = |S

2
l | = α, S1

l ∩S
2
l = ∅.

Those sets are indicated by red and blue dots in Fig. 3. Fur-
thermore, let k1i,l = maxS∈S1

l
K(Si, S) be the similarity

between Si and its nearest neighbor in S1
l , with k2i,l defined

similarly (indicated by red and blue arrows in Fig. 3). Then
the corresponding hash function is:

hl(ki) =

{
1, if k1i,l < k2i,l
0, otherwise

. (1)

Pictorial illustration of this hashing scheme is provided
in Fig. 3, where Si’s nearest neighbors in either subset are
indicated by the red and blue arrows. 3 4

The same principle of random sub-sampling is applied in
KLSH techniques previously proposed in (Kulis and Grau-
man ; Joly and Buisson 2011). In (Joly and Buisson 2011),
hl(.) is built by learning a (random) maximum margin

3Small value of α, i.e. 1 6� α � M , should ensure that hash-
code bits have minimal redundancy w.r.t. each other.

4In RkNN, sinceα 6� 1, k = 1 should be optimal (Biau, Cérou,
and Guyader 2010).

boundary (RMM) that discriminates between the two sub-
sets, S1

l and S2
l . In (Kulis and Grauman ), hl(.) is obtained

from S1
l ∪S

2
l , which is a (approximately) random linear hy-

perplane in the kernel implied feature space; this is referred
to as “Kulis” here.

In summary, we define klsh(.;θ,SR) as the function, that
is parameterized by θ and SR, and maps a input data point
Si to its KLSH code ci, using the kernel function K(., .;θ)
and the set of hash functions h(.) as subroutines.

ci = klsh(Si;θ,S
R); ci = h(ki); ki,j = K(Si, S

R
j ;θ)

(2)

Next, in Sec. 3, we propose our approach of learning
KLSH codes as generalized representations of NLP struc-
tures for classification problems.

3 KLSH for Representation Learning
We propose a novel use of KLSH where the hash-
codes (KLSH codes) can serve as generalized representa-
tions (feature vectors) of the data points. Since the KLSH
property of being locality sensitive (Indyk and Motwani
1998) 5 ensures the data points in the neighborhood of (or
within the same) hashcode bucket are similar, hashcodes
should serve as a good representation of the data points.

In contrast to the use of KLSH for k-NN, after obtaining
the hashcodes for data points, we ignore the step of comput-
ing kernel similarities between data points in the neighbor-
ing buckets. In kNN classifiers using KLSH, a small num-
ber of hashcode bits (H), corresponding to a small num-
ber of hashcode buckets, generate a coarse partition of the
feature space—sufficient for approximate computation of
a kNN graph. In our representation learning framework,
however, hashcodes must extract enough information about
class labels from the data points, so we propose to generate
longer hashcodes, i.e. H � 1. It is worthwhile noting that
for a fixed number of kernel computations M per structure
Si (|SR| = M ), a large number of hashcode bits (H) can be
generated through the randomization principle with compu-
tational cost linear in H .

Unlike regular kernel methods (SVM, kNN, etc.), we use
kernels to build an explicit feature space, via KLSH. Refer-
ring to Fig. 3, when using RkNN technique to obtain ci for
Si, lth hashcode bit, ci,l, should correspond to finding a sub-
structure in Si, that should also be present in its 1-NN from
either the set S1

l or S2
l , depending on the bit value being 0

or 1. Thus, ci represents finding important substructures in
Si in relation to SR. The same should apply for the other
KLSH techniques.

Random Subspaces of Kernel Hashcodes:
The next question is how to use the binary-valued represen-
tations for building a good classifier.

Intuitively, not all the bits may be matching across the
hashcodes of NLP structures in training and test datasets; a

5See a formal definition of locality-sensitive hashing in (Indyk
and Motwani 1998, Definition 7 in Sec. 4.2).
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single classifier learned on all the hashcode bits may over-
fit to a training dataset. This is especially relevant for bio-
information extraction tasks where there is a high possibil-
ity of mismatch between training and test conditions (Airola
et al. ; Garg et al. 2016); for e.g., in biomedical literature,
the mismatch can be due to high diversity of research top-
ics, limited data annotations, variations in writing styles
including aspects like hedging, etc. So we adopt the ap-
proach of building an ensemble of classifiers, with each
one built on a random subspace of hashcodes (Zhou 2012;
Ho 1998).

For building each classifier in an ensemble of R classi-
fiers, η bits are selected randomly fromH � 1 hash bits; for
inference on a test NLP structure S∗, we take mean statistics
over the inferred probability vectors from each of the clas-
sifiers, as it is a standard practice in ensemble approaches.
Another way of building an ensemble from subspaces of
hashcodes is bagging (Breiman 1996). If we use a decision
tree as a classifier in ensemble, it corresponds to a random
forest (Ho 1995; Breiman ).

It is highly efficient to train a random forest (RF) with a
large number of decision trees (R� 1), even on long binary
hashcodes (H � 1), leveraging the fact that decision trees
can be very efficient to train and test on binary features.

3.1 Supervised Optimization of KLSH
In this section, we propose a framework for optimization of
the KLSH codes as generalized representations for a super-
vised classification task. As described in Sec. 2.1, the map-
ping of a data points (an NLP structure S) to a KLSH code
depends upon the kernel function K(., .;θ) and the refer-
ence set SR (Eq. 2). So, within this framework, we opti-
mize the KLSH codes via learning the kernel parameters θ,
and optionally the reference set SR. One important aspect
of our optimization setting is that the parameters under op-
timization are shared between all the hash functions jointly,
and are not specific to any of the hash functions.

Mutual Information as an Objective Function:
Intuitively, we want to generate KLSH codes that are maxi-
mally informative about the class labels. Thus, for optimiz-
ing the KLSH codes, a natural objective function is the mu-
tual information (MI) between KLSH codes of S and the
class labels, I(c : y) (Cover and Thomas 2012).

θ∗,SR∗ ← arg max
θ, SR:SR⊂S

I(c : y); c = klsh(S;θ,SR) (3)

The advantage of MI as the objective, being a funda-
mental measure of dependence between random variables,
is that it is generic enough for optimizing KLSH codes as
generalized representations (feature vectors) of data points
to be used with any classifier. Unfortunately, exact esti-
mates of MI function in high-dimensional settings is an ex-
tremely difficult problem due to the curse of dimension-
ality, with the present estimators having very high sam-
ple complexity (Kraskov, Stögbauer, and Grassberger 2004;
Walters-Williams and Li 2009; Singh and Póczos 2014; Gao,
Ver Steeg, and Galstyan ; Han, Jiao, and Weissman 2015;

Wu and Yang 2016; Belghazi et al. 2018).6 Instead, here we
propose to maximize a novel, computationally efficient, good
approximation of the MI function.

Approximation of Mutual Information:
To derive the approximation, we express the mutual infor-
mation function as, I(c : y) = H(c) − H(c|y), with H(.)
denoting the Shannon entropy. For binary classification, the
expression simplifies to:

I(c : y) = H(c)−p(y=0)H(c|y=0)−p(y=1)H(c|y=1).

To compute the mutual information, we need to efficiently
compute joint entropy of KLSH code bits, H(c). We pro-
pose a good approximation of H(c), as described below;
same applies forH(c|y=0) andH(c|y=1).

H(c) =

H∑
l=1

H(cl)−T C(c) ≈
H∑
l=1

H(cl)−T C(c; z∗); (4)

T C(c; z) = T C(c)− T C(c|z). (5)

In Eq. 4, the first term is the sum of marginal entropies
for the KLSH code bits. Marginal entropies for binary vari-
ables can be computed efficiently. Now, let us understand
how to compute the second term in the approximation (Eq.
4). Herein, T C(c; z) describes the amount of Total Correla-
tions (Multi-variate Mutual Information) 7 within c that can
be explained by a latent variables representation z.

z∗ ← arg max
z:|z|=|c|

T C(c; z) (6)

An interesting aspect of the quantity T C(c; z) is that
one can compute it efficiently for optimized z∗ that ex-
plains maximum possible Total Correlations present in c, s.t.
T C(c|z) ≈ 0. In (Ver Steeg and Galstyan 2014), an unsu-
pervised algorithm called CorEx 8 is proposed for obtaining
such latent variables representation. Their algorithm is effi-
cient for binary input variables, demonstrating a low sample
complexity even in very high dimensions of input variables.
Therefore it is particularly relevant for computing the pro-
posed joint entropy approximation on hashcodes. For prac-
tical purposes, the dimension of latent representation z can
be kept much smaller than the dimension of KLSH codes,
i.e. |z| � H . This helps to reduce the cost for computing
the proposed MI approximation to negligible during the op-
timization (Eq. 3).

Denoting the joint entropy approximation as H̄(c), we ex-
press the approximation of the mutual information as:

6The sample complexity of an entropy estimator for a discrete
variable distribution is characterized in terms of its support size s,
and it is proven to be not less than s/ log(s) (Wu and Yang 2016).
Since the support size for hashcodes is exponential in the number
of bits, sample complexity would be prohibitively high unless de-
pendence between the hash code bits is exploited.

7“Total correlation” was defined in (Watanabe 1960).
8https://github.com/gregversteeg/CorEx
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Algorithm 1 Optimizing Reference Set for KLSH

Require: Train dataset, {S,y}; size of the reference set,
M ; β, γ are number of samples from S, as candidates
for SR, and for computing the objective, respectively.

1: SR ← randomSubset(S, M ) % M samples from S
2: % optimizing the reference set up to size M greedily
3: for j = 1→M do
4: Seo,yeo ← randomSubset({S,y}, γ) % γ samples

from S for estimating the objective Ī(.).
5: Scr ← randomSubset(S, β) % β samples from S as

choices for selection to SR

6: % iterate over candidates elements for greedy step
7: for q = 1→ β do
8: SR

j ← Scr
q % Scr

q is a choice for selection to SR

9: ceoi ← klsh(Seo
i ; θ, SR) ∀Seo

i ∈ S
eo % Eq. 2

10: miq ← Ī(Ceo,yeo) % estimating objective
11: end for
12: SR

j ← chooseElementWithMaxMI(mi, Scr)
13: end for
14: return SR

Ī(c : y) = H̄(c)−p(y=0)H̄(c|y=0)−p(y=1)H̄(c|y=1).

For computation efficiency as well as robustness w.r.t.
overfitting, we use small random subsets (of size γ) from a
training set for stochastic empirical estimates of Ī(c : y),
motivated by the idea of stochastic gradients (Bottou 2010).
For a slight abuse of notation, when obtaining an empirical
estimate of Ī(c : y) using samples set {C,y}, we simply
denote the estimate as: Ī(C : y). Here it is also interesting
to note that computation of Ī(c : y) is very easy to paral-
lelize since the kernel matrices and hash functions can be
computed in parallel.

It is worth noting that in our proposed approximation of
the MI, both terms need to be computed. In contrast, in the
previously proposed variational lower bounds for MI (Bar-
ber and Agakov 2003; Chalk, Marre, and Tkacik 2016;
Alemi et al. 2017), MI is expressed as, I(c : y) = H(y) −
H(y|c), so as to obtain a lower bound simply by upper
bounding the conditional entropy term with a cross entropy
term while ignoring the first term as a constant. Clearly,
these approaches are not using MI in its true sense, rather
using conditional entropy (or cross entropy) as the objec-
tive. Further, our approximation of MI also allows semi-
supervised learning as the first term is computable even for
hashcodes of unlabeled examples.

Algorithms for Optimization:
Using the proposed approximate mutual information func-
tion as an objective, one can optimize the kernel parameters
either using grid search or an MCMC procedure.

For optimizing the reference set SR (of size M ) as a sub-
set ofS, via maximization of the same objective, we propose
a greedy algorithm with pseudo code in Alg. 1. Initially, SR

is initialized with a random subset of S (line 1). Thereafter,
Ī(.) is maximized greedily, updating one element in SR in

each greedy step (line 3); greedy maximization of MI-like
objectives has been successful (Gao, Ver Steeg, and Gal-
styan 2016; Krause, Singh, and Guestrin 2008). Employing
the paradigm of stochastic sampling, for estimating Ī(.), we
randomly sample a small subset of S (of size γ) along with
their class labels (line 4). Also, in a single greedy step, we
consider only a small random subset of S (of size β) as can-
didates for selection into SR (line 5); for β � 1, with high
probability, each element in S should be seen as a candidate
at least once by the algorithm. Alg. 1 requires kernel com-
putations of order, O(γM2 + γβM), with β, γ being the
sampling size constants; in practice, M � N . Note that θ
and SR can be optimized in an iterative manner.

3.2 Nonstationary Extension for Kernels
One common principle applicable to all the convolution ker-
nel functions, K(., .), defining similarity between any two
NLP structures is: K(., .) is expressed in terms of a kernel
function, k(., .), that defines similarity between any two to-
kens (node/edge labels in Fig. 1). Some common examples
of k(., .), from previous works (Culotta and Sorensen 2004;
Srivastava, Hovy, and Hovy 2013), are:

Gaussian: k(a, b) = exp(−||wa −wj ||2b),

Sigmoid: k(a, b) = (1 + tanh(wT
awb))/2.

Herein, a, b are tokens, and wa, wb are the corresponding
word vectors. The first kernels is stationary, i.e. translation
invariant (Genton 2001), and the second one is nonstation-
ary, although lacking nonstationarity-specific parameters for
learning nonstationarity in a data-driven manner.

There are generic nonstationarity-based parameteriza-
tions, unexplored in NLP, applicable for extending any ker-
nel, k(., .), to a nonstationary one, kNS(., .), so as to achieve
higher expressiveness and generalization in model learn-
ing (Paciorek and Schervish 2003; Rasmussen 2006). For
NLP, nonstationarity of K(., .) can be formalized as in The-
orem 1; see the longer version of this paper for a proof.
Theorem 1. A convolution kernel K(., .), a function of
the kernel k(., .), is stationary if k(., .) is stationary. From
a nonstationary kNS(., .), the corresponding extension of
K(., .), KNS(., .), is also guaranteed to be a valid nonsta-
tionary convolution kernel.

One simple and intuitive nonstationary extension of
k(., .) is: kNS(a, b) = σak(a, b)σb. Here, σ ≥ 0,
are nonstationarity-based parameters; for more details, see
(Rasmussen 2006); another choice for the nonstationary ex-
tension is based on the concept of process convolution, as
proposed in (Paciorek and Schervish 2003). If σa = 0, it
means that the token a should be completely ignored when
computing a convolution kernel similarity of an NLP struc-
ture (tree, path, etc.) that contains the token a (node or edge
label a) w.r.t. another NLP structure. Thus, the additional
nonstationary parameters allow convolution kernels to be
expressive enough for deciding if some substructures in an
NLP structure should be ignored explicitly.9

9This approach is explicit in ignoring sub-structures irrelevant
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Models (A, B) (B, A)
SVM1 (Airola08) 0.25 0.44
SVM2 (Airola08) 0.47 0.47

SVM (Miwa09) 0.53 0.50

SVM (Tikk10) 0.41 0.42
(0.67, 0.29) (0.27, 0.87)

CNN (Peng17) 0.48 0.50
(0.40, 0.61) (0.40, 0.66)

RNN (Hsieh17) 0.49 0.51

CNN-RevGrad (Ganin16-Rios18) 0.43 0.47

Bi-LSTM-RevGrad (Ganin16-Rios18) 0.40 0.46

Adv-CNN (Rios18) 0.54 0.49

Adv-Bi-LSTM (Rios18) 0.57 0.49

KLSH-kNN 0.51 0.51
(0.41, 0.68) (0.38, 0.80)

KLSH-RF 0.57 0.55
(0.46, 0.75) (0.45, 0.71)

Table 1: Cross-corpus evaluation results for (training, test)
pairs of PPI datasets, AIMed (A) and BioInfer (B) datasets.
For each model, we report F1 score in the first row corre-
sponding to it. In some of the previous works, precision,
recall numbers are not reported; wherever available, we
show precision, recall numbers as well, in brackets. Here,
“Ganin16-Rios18” means that the model is originally pro-
posed in (Ganin et al. 2016), and evaluated for these datasets
by (Rios, Kavuluru, and Lu 2018).

While the above proposed idea of nonstationary kernel ex-
tensions for NLP structures remains general, for the experi-
ments, the nonstationary kernel for similarity between tuples
with format (edge-label, node-label) is defined as the prod-
uct of kernels on edge labels, ea, eb, and node labels, na, nb,

kNS((ei, ni),(ej , nj)) = σeike(ei, ej)σejkn(ni, nj),

with σ operating only on edge labels. Edge labels come
from syntactic or semantic parses of text with small size vo-
cabulary (see syntactic parse-based edge labels in Fig. 1); we
keep σ ∈ {0, 1} as a measure for robustness to over-fitting.
These parameters are learned by maximizing the same ob-
jective, Ī(.), using the well known Metropolis-Hastings
MCMC procedure (Hastings 1970).

4 Experiments
We evaluate our model “KLSH-RF” (kernelized locality-
sensitive hashing with random forest) for the biomedical
relation extraction task using four public datasets, AIMed,
BioInfer, PubMed45, BioNLP, as briefed below.10 Fig. 1 il-
lustrates that the task is formulated as a binary classification
of extraction candidates. For evaluation, it is standard prac-
tice to compute precision, recall, and F1 score on the positive
class (i.e., identifying valid extractions).

for a given task unlike the (complementary) standard skipping over
non-matching substructures in a convolution kernel.

10PubMed45 dataset is available here: github.com/sgarg87/
big mech isi gg/tree/master/pubmed45 dataset; the other three
datasets are here: corpora.informatik.hu-berlin.de

Models PubMed45 PubMed45-ERN BioNLP
SVM (Garg16) 0.45±0.25 0.33±0.16 0.46

(0.58, 0.43) (0.33, 0.45) (0.35, 0.67)
LSTM (Rao17) N.A. N.A. 0.46

(0.51, 0.44)

KLSH-kNN 0.46±0.21 0.23±0.13 0.60
(0.44, 0.53) (0.23, 0.29) (0.63, 0.57)

KLSH-RF 0.57±0.25 0.45±0.22 0.63
(0.63, 0.55) (0.51, 0.52) (0.78, 0.53)

Table 2: Evaluation results for PubMed45 and BioNLP
datasets. For each model, we report F1 score (mean ± stan-
dard deviation) in the first row corresponding to it, and show
mean-precision, mean-recall numbers as well, in brackets.
For BioNLP, we don’t show standard deviation since there
is only one fixed test subset.

Details on Datasets and Structural Features:
AIMed and BioInfer: For AIMed and BioInfer datasets,
cross-corpus evaluation has been performed in many previ-
ous works (Airola et al. ; Tikk et al. 2010; Peng and Lu 2017;
Hsieh et al. ). Herein, the task is of identifying pairs of in-
teracting proteins (PPI) in a sentence while ignoring the in-
teraction type. We follow the same evaluation setup, using
Stanford Dependency Graph parses of text sentences to ob-
tain undirected shortest paths as structural features for use
with a path kernel (PK) to classify protein-protein pairs.
PubMed45 & BioNLP: We use PubMed45 and BioNLP
datasets for an extensive evaluation of our KLSH-RF model;
for more details on the two datasets, see (Garg et al. 2016)
and (Kim et al. 2009; ; Nédellec et al. 2013). Annotations
in these datasets are richer in the sense that a bio-molecular
interaction can involve up to two participants, along with
an optional catalyst, and an interaction type from an unre-
stricted list. In PubMed45 (BioNLP) dataset, 36% (17%) of
the “valid” interactions are such that an interaction must in-
volve two participants and a catalyst. For both datasets, we
use abstract meaning representation (AMR) to build sub-
graph or shortest path-based structural features (Banarescu
et al. 2013), for use with graph kernels (GK) or path ker-
nels (PK) respectively, as done in the recent works eval-
uating these datasets (Garg et al. 2016; Rao et al. 2017).
For a fair comparison of the classification models, we use
the same bio-AMR parser (Pust et al. 2015) as in the pre-
vious works. In (Garg et al. 2016), the PubMed45 dataset
is split into 11 subsets for evaluation, at paper level. Keep-
ing one of the subsets for testing, we use the others for
training a binary classifier. This procedure is repeated for
all 11 subsets in order to obtain the final F1 scores (mean
and standard deviation values are reported from the num-
bers for 11 subsets). For BioNLP dataset (Kim et al. 2009;
; Nédellec et al. 2013), we use training datasets from years
2009, 2011, 2013 for learning a model, and the development
dataset from year 2013 as the test set; the same evaluation
setup is followed in (Rao et al. 2017).

In addition to the models previously evaluated on these
datasets, we also compare our KLSH-RF model to KLSH-
kNN (kNN classifier with KSLH approximation).
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Figure 4: Detailed Evaluation of KLSH-RF model, using PubMed45 and BioNLP datasets. Here, orange and blue bars are for
precision and recall numbers respectively. “NSK” refers to nonstationary kernel learning; PK & GK denote Path Kernels and
Graph Kernels respectively; NS-PK and NS-GK are extensions of PK and GK respectively, with addition of nonstationarity
based binary parameters; “M30” represents SR of size 30 selected randomly, and the suffix “RO” in “M30-RO” refers to
optimization of SR (Reference optimization) in contrast to random selection of SR.

Parameter Settings:
We use GK and PK, both using the same word vectors,
with kernel parameter settings same as in (Garg et al. 2016;
Mooney and Bunescu 2005).

Reference set size, M , doesn’t need tuning in our pro-
posed model; there is a trade-off between compute cost and
accuracy; by default, we keep M = 100. For tuning any
other parameters in our model or competitive models, in-
cluding the choice of a kernel similarity function (PK or
GK), we use 10% of training data, sampled randomly, for
validation purposes. From a preliminary tuning, we set pa-
rameters, H = 1000, R = 250, η = 30, α = 2, and choose
RMM as the KLSH technique from the three choices dis-
cussed in Sec. 2.1; same parameter values are used across
all the experiments unless mentioned otherwise.

When selecting reference set SR randomly, we perform
10 trials, and report mean statistics. (Variance across these
trials is small, empirically.) The same applies for KLSH-
kNN. When optimizing SR with Alg. 1, we use β=1000,
γ=300 (sampling parameters are easy to tune). We employ
4 cores on an i7 processor, with 16GB memory.

4.1 Main Results for KLSH-RF
In the following we compare the simplest version of our
KLSH-RF model that is optimized by learning the kernel
parameters via maximization of the MI approximation, as
described in Sec. 3.1 (γ = 1000). In summary, our KLSH-
RF model outperforms state-of-the-art models consistently
across the four datasets, along with very significant speedups
in training time w.r.t. traditional kernel classifiers.

Results for AIMed and BioInfer Datasets:
In reference to Tab. 1, KLSH-RF gives an F1 score signif-
icantly higher than state-of-the-art kernel-based models (6
pts gain in F1 score w.r.t. KLSH-kNN), and consistently out-
performs the neural models. When using AIMed for train-
ing and BioInfer for testing, there is a tie between Adv-Bi-
LSTM (Rios, Kavuluru, and Lu 2018) and KLSH-RF. How-
ever, KLSH-RF still outperforms their Adv-CNN model by
3 pts; further, the performance of Adv-CNN and Adv-Bi-
LSTM is not consistent, giving a low F1 score when train-
ing on the BioInfer dataset for testing on AIMed. For the

latter setting of AIMed as a test set, we obtain an F1 score
improvement by 4 pts w.r.t. the best competitive models,
RNN & KLSH-kNN. Overall, the performance of KLSH-
RF is more consistent across the two evaluation settings, in
comparison to any other competitive model.

The models based on adversarial neural networks (Ganin
et al. 2016; Rios, Kavuluru, and Lu 2018), Adv-CNN, Adv-
Bi-LSTM, CNN-RevGrad, Bi-LSTM-RevGrad, are learned
jointly on labeled training datasets and unlabeled test sets,
whereas our model is purely supervised. In contrast to our
principled approach, there are also system-level solutions
using multiple parses jointly, along with multiple kernels,
and knowledge bases (Miwa et al. 2009; Chang et al. 2016).
We refrain from comparing KLSH-RF w.r.t. such system
level solutions, as it would be an unfair comparison from
a modeling perspective.

Results for PubMed45 and BioNLP Datasets:
A summary of main results is presented in Tab. 2.
“PubMed45-ERN” is another version of the PubMed45
dataset from (Garg et al. 2016), with ERN referring to en-
tity recognition noise. Clearly, our model gives F1 scores
significantly higher than SVM, LSTM, and the KLSH-kNN
model. For PubMed45 and BioNLP, the F1 score for KLSH-
RF is higher by 12 pts and 3 pts respectively w.r.t. state
of the art; KLSH-RF is the most consistent in its perfor-
mance across the datasets and significantly more scalable
than SVM. Note that standard deviations of F1 scores are
high for the PubMed45 dataset (and PubMed45-ERN) be-
cause of the high variation in distribution of text across the
11 test subsets (the F1 score improvements with our model
are statistically significant, p-value=4.4e-8).

For the PubMed45 dataset, there are no previously pub-
lished results with a neural model (LSTM). The LSTM
model of (Rao et al. 2017), proposed specifically for the
BioNLP dataset, is not directly applicable for the PubMed45
dataset because the list of interaction types in the latter
is unrestricted. F1 score numbers for SVM classifier were
also improved in (Garg et al. 2016) by additional contribu-
tions such as document-level inference, and the joint use of
semantic and syntactic representations; those system-level
contributions are complementary to ours, so excluded from
the comparison.
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4.2 Detailed Analysis of KLSH-RF
While we are able to obtain superior results with our ba-
sic KLSH-RF model w.r.t. state-of-the-art methods using
just core optimization of the kernel parameters θ, in this
subsection we analyze how we can further improve the
model. In Fig. 4 we present our results from optimization
of other aspects of the KLSH-RF model: reference set op-
timization (RO) and non-stationary kernel parameters learn-
ing (NS). (In the longer version of this paper, we also ana-
lyze the effect of parameters, H,R, and the choice of KLSH
technique, under controller experiment settings.) We report
mean values for precision, recall, F1 scores. For these exper-
iments, we focus on PubMed45 and BioNLP datasets.

Reference Set Optimization: In Fig. 4(a) and 4(b), we
analyze the effect of the reference set optimization (RO),
in comparison to random selection, and find that the opti-
mization leads to significant increase in recall (7-13 pts) for
PubMed dataset along with a marginal increase/decrease in
precision (2-3 pts); we used PK for these experiments. For
the BioNLP dataset, the improvements are not as significant.
Further, as expected, the improvement is more prominent for
smaller size of reference set (M ). To optimize reference set
SR for M = 100, it takes approximately 2 to 3 hours (with
β = 1000, γ = 300 in Alg. 1).

Nonstationary Kernel Learning (NSK): In Fig. 4(c) and
4(d), we compare performance of non-stationary kernels,
w.r.t. traditional stationary kernels (M=100). As proposed
in Sec. 3.2, the idea is to extend a convolution kernel (PK
or GK) with non-stationarity-based binary parameters (NS-
PK or NS-GK), optimized using our MCMC procedure via
maximizing the proposed MI approximation based objec-
tive (γ = 300). For the PubMed45 dataset with PK, the
advantage of NSK learning is more prominent, leading to
high increase in recall (7 pts), and a very small drop in pre-
cision (1 pt). Compute time for learning the non-stationarity
parameters in our KLSH-RF model is less than an hour.

Compute Time: Compute times to train all the models are
reported in Fig. 4(e) for the BioNLP dataset; similar time
scales apply for other datasets. We observe that our basic
KLSH-RF model has a very low training cost, w.r.t. mod-
els like LSTM, KLSH-kNN, etc. (similar analysis applies
for inference cost). The extensions of KLSH-RF, KLSH-RF-
RO and KLSH-RF-NS, are more expensive yet cheaper than
LSTM and SVM.

5 Related Work
Besides some related work mentioned in the previous sec-
tions, this section focuses on relevant state-of-the-art litera-
ture in more details.

Other Hashing Techniques: In addition to hashing tech-
niques considered in this paper, other locality-sensitive
hashing techniques (Grauman and Fergus 2013; Zhao, Lu,
and Mei 2014; Wang et al. 2017) are either not kernel based,
or they are defined for specific kernels that are not applica-
ble for hashing of NLP structures (Raginsky and Lazebnik

2009). In deep learning, hashcodes are used for similarity
search but classification of objects (Liu et al. 2016).

Hashcodes for Feature Compression: Binary hash-
ing (not KLSH) has been used as an approximate feature
compression technique in order to reduce memory and com-
puting costs (Li et al. 2011; Mu et al. 2014). Unlike prior
approaches, this work proposes to use hashing as a represen-
tation learning (feature extraction) technique.

Using Hashcodes in NLP: In NLP, hashcodes were
used only for similarity or nearest neighbor search for
words/tokens in various NLP tasks (Goyal, Daumé III, and
Guerra ; Li, Liu, and Ji 2014; Shi and Knight 2017); our
work is the first to explore kernel-hashing of various NLP
structures, rather than just tokens.

Weighting Substructures: Our idea of skipping substruc-
tures, due to our principled approach of nonstationary ker-
nels, is somewhat similar to sub-structure mining algo-
rithms (Suzuki and Isozaki 2006; Severyn and Moschitti
2013). Learning the weights of sub-structures was recently
proposed for regression problems, but not yet for classifica-
tion (Beck et al. 2015).

Kernel Approximations: Besides the proposed model,
there are other kernel-based scalable techniques in the lit-
erature, which rely on approximation of a kernel matrix or a
kernel function (Williams and Seeger 2001; Moschitti 2006;
Rahimi and Recht 2008; Pighin and Moschitti 2009; Zan-
zotto and Dell’Arciprete 2012; Severyn and Moschitti 2013;
Felix et al. 2016). However, those approaches are only used
as computationally efficient approximations of the tradi-
tional, computationally-expensive kernel-based classifiers;
unlike those approaches, our method is not only computa-
tionally more efficient but also yields considerable accuracy
improvements.

Nonstationary Kernels: Nonstationary kernels have been
explored for modeling spatio-temporal environmental dy-
namics or time series relevant to health care, finance, etc,
though expensive to learn due to a prohibitively large num-
ber of latent variables (Paciorek and Schervish 2003; Snel-
son, Rasmussen, and Ghahramani 2003; Assael et al. 2014).
Ours is the first work proposing nonstationary convolution
kernels for natural language modeling; the number of pa-
rameters is constant in our formulation, so highly efficient
in contrast to the previous works.

6 Conclusions
In this paper we propose to use a well-known technique, ker-
nelized locality-sensitive hashing (KLSH), in order to de-
rive feature vectors from natural language structures. More
specifically, we propose to use random subspaces of KLSH
codes for building a random forest of decision trees. We find
this methodology particularly suitable for modeling natural
language structures in supervised settings where there are
significant mismatches between the training and the test con-
ditions. Moreover we optimize a KLSH model in the context
of classification performed using a random forest, by maxi-
mizing an approximation of the mutual information between
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the KLSH codes (feature vectors) and the class labels. We
apply the proposed approach to the difficult task of extract-
ing information about bio-molecular interactions from the
semantic or syntactic parsing of scientific papers. Experi-
ments on a wide range of datasets demonstrate the consider-
able advantages of our method.
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Kraskov, A.; Stögbauer, H.; and Grassberger, P. 2004. Esti-
mating mutual information. Physical Review E.
Krause, A.; Singh, A.; and Guestrin, C. 2008. Near-optimal
sensor placements in gaussian processes: Theory, efficient
algorithms and empirical studies. JMLR.
Kulis, B., and Grauman, K. Kernelized locality-sensitive
hashing for scalable image search. In Proc. of CVPR.
Li, P.; Shrivastava, A.; Moore, J. L.; and König, A. C. 2011.
Hashing algorithms for large-scale learning. In Proc. of
NIPS.
Li, H.; Liu, W.; and Ji, H. 2014. Two-stage hashing for fast
document retrieval. In Proc. of ACL.
Liu, H.; Wang, R.; Shan, S.; and Chen, X. 2016. Deep
supervised hashing for fast image retrieval. In Proc. of CVPR.
Miwa, M.; Sætre, R.; Miyao, Y.; and Tsujii, J. 2009.
Protein–protein interaction extraction by leveraging multi-
ple kernels and parsers. International Journal of Medical In-
formatics.
Mooney, R. J., and Bunescu, R. C. 2005. Subsequence ker-
nels for relation extraction. In Proc. of NIPS.
Moschitti, A. 2006. Making tree kernels practical for natural
language learning. In Proc. of EACL.
Mu, Y.; Hua, G.; Fan, W.; and Chang, S.-F. 2014. Hash-
svm: Scalable kernel machines for large-scale visual classi-
fication. In Proc. of CVPR.
Nédellec, C.; Bossy, R.; Kim, J.-D.; Kim, J.-J.; Ohta, T.;
Pyysalo, S.; and Zweigenbaum, P. 2013. Overview of bionlp
shared task 2013. In Proc. of BioNLP Workshop.
Paciorek, C. J., and Schervish, M. J. 2003. Nonstation-
ary covariance functions for gaussian process regression. In
Proc. of NIPS.
Peng, Y., and Lu, Z. 2017. Deep learning for extracting
protein-protein interactions from biomedical literature. In
Proc. of BioNLP Workshop.
Pighin, D., and Moschitti, A. 2009. Efficient linearization
of tree kernel functions. In Proc. of CoNLL.
Pust, M.; Hermjakob, U.; Knight, K.; Marcu, D.; and May, J.
2015. Parsing english into abstract meaning representation
using syntax-based machine translation. In Proc. of EMNLP.
Raginsky, M., and Lazebnik, S. 2009. Locality-sensitive
binary codes from shift-invariant kernels. In Proc. of NIPS.
Rahimi, A., and Recht, B. 2008. Random features for large-
scale kernel machines. In Proc. of NIPS.
Rao, S.; Marcu, D.; Knight, K.; and III, H. D. 2017. Biomed-
ical event extraction using abstract meaning representation.
In Proc. of BioNLP Workshop.
Rasmussen, C. E. 2006. Gaussian processes for machine
learning.

Rios, A.; Kavuluru, R.; and Lu, Z. 2018. Generalizing
biomedical relation classification with neural adversarial do-
main adaptation. Bioinformatics.
Rzhetsky, A. The big mechanism program: Changing how
science is done. In DAMDID/RCDL.
Severyn, A., and Moschitti, A. 2013. Fast linearization of
tree kernels over large-scale data. In Proc. of IJCAI.
Shi, X., and Knight, K. 2017. Speeding up neural machine
translation decoding by shrinking run-time vocabulary. In
Proc. of ACL.
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