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Abstract

Generating a reasonable ending for a given story context, i.e.,
story ending generation, is a strong indication of story com-
prehension. This task requires not only to understand the con-
text clues which play an important role in planning the plot,
but also to handle implicit knowledge to make a reasonable,
coherent story. In this paper, we devise a novel model for
story ending generation. The model adopts an incremental en-
coding scheme to represent context clues which are spanning
in the story context. In addition, commonsense knowledge
is applied through multi-source attention to facilitate story
comprehension, and thus to help generate coherent and rea-
sonable endings. Through building context clues and using
implicit knowledge, the model is able to produce reasonable
story endings. Automatic and manual evaluation shows that
our model can generate more reasonable story endings than
state-of-the-art baselines1.

Introduction
Story generation is an important but challenging task be-
cause it requires to deal with logic and implicit knowledge
(Li et al. 2013; Soo, Lee, and Chen 2016; Ji et al. 2017;
Jain et al. 2017; Martin et al. 2018; Clark, Ji, and Smith
2018). Story ending generation aims at concluding a story
and completing the plot given a story context. We argue that
solving this task involves addressing the following issues: 1)
Representing the context clues which contain key informa-
tion for planning a reasonable ending; and 2) Using implicit
knowledge (e.g., commonsense knowledge) to facilitate un-
derstanding of the story and better predict what will happen
next.

Comparing to textual entailment or reading comprehen-
sion (Dagan, Glickman, and Magnini 2006; Hermann et al.
2015) story ending generation requires more to deal with the
logic and causality information that may span multiple sen-
tences in a story context. The logic information in story can
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1Our codes and data are available at https://github.com/
JianGuanTHU/StoryEndGen.
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Figure 1: A story example. Words in blue/purple are events
and entities. The bottom-left graph is retrieved from Con-
ceptNet and the bottom-right graph represents how events
and entities form the context clue.

be captured by the appropriate sequence of events2 or enti-
ties occurring in a sequence of sentences, and the chronolog-
ical order or causal relationship between events or entities.
The ending should be generated from the whole context clue
rather than merely inferred from a single entity or the last
sentence. It is thus important for story ending generation to
represent the context clues for predicting what will happen
in an ending.

However, deciding a reasonable ending not only depends
on representing the context clues properly, but also on the
ability of language understanding with implicit knowledge
that is beyond the text surface. Humans use their own experi-
ences and implicit knowledge to help understand a story. As
shown in Figure 1, the ending talks about candy which can
be viewed as commonsense knowledge about Halloween.
Such knowledge can be crucial for story ending generation.

Figure 1 shows an example of a typical story in the ROC-
Stories corpus (Mostafazadeh et al. 2016b). In this exam-
ple, the events or entities in the story context constitute the

2Event in this paper refers to a verb or simple action such as
dress up, trick or treating as shown in Figure 1.
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context clues which reveal the logical or causal relation-
ships between events or entities. These concepts, includ-
ing Halloween, trick or treat, and monster, are connected
as a graph structure. A reasonable ending should consider
all the connected concepts rather than just some individual
one. Furthermore, with the help of commonsense knowledge
retrieved from ConceptNet (Speer and Havasi 2012), it is
easier to infer a reasonable ending with the knowledge that
candy is highly related to Halloween.

To address the two issues in story ending generation, we
devise a model that is equipped with an incremental en-
coding scheme to encode context clues effectively, and a
multi-source attention mechanism to use commonsense
knowledge. The representation of the context clues is built
through incremental reading (or encoding) of the sentences
in the story context one by one. When encoding a current
sentence in a story context, the model can attend not only
to the words in the preceding sentence, but also the knowl-
edge graphs which are retrieved from ConceptNet for each
word. In this manner, commonsense knowledge can be en-
coded in the model through graph representation techniques,
and therefore, be used to facilitate understanding story con-
text and inferring coherent endings. Integrating the context
clues and commonsense knowledge, the model can generate
more reasonable endings than state-of-the-art baselines.

Our contributions are as follows:

• To assess the machinery ability of story comprehension,
we investigate story ending generation from two new an-
gles. One is to modeling logic information via incremental
context clues and the other is the utility of implicit knowl-
edge in this task.

• We propose a neural model which represents context clues
by incremental encoding, and leverages commonsense
knowledge by multi-source attention, to generate logical
and reasonable story endings. Results show that the two
techniques are effective in capturing the coherence and
logic of story.

Related Work
The corpus we used in this paper was first designed for Story
Cloze Test (SCT) (Mostafazadeh et al. 2016a), which re-
quires to select a correct ending from two candidates given
a story context. Feature-based (Chaturvedi, Peng, and Dan
2017; Lin, Sun, and Han 2017) or neural (Mostafazadeh et
al. 2016b; Wang, Liu, and Zhao 2017) classification mod-
els are proposed to measure the coherence between a can-
didate ending and a story context from various aspects
such as event, sentiment, and topic. However, story end-
ing generation (Li, Ding, and Liu 2018; Zhao et al. 2018;
Peng et al. 2018) is more challenging in that the task re-
quires to modeling context clues and implicit knowledge to
produce reasonable endings.

Story generation, moving forward to complete story com-
prehension, is approached as selecting a sequence of events
to form a story by satisfying a set of criteria (Li et al.
2013). Previous studies can be roughly categorized into two
lines: rule-based methods and neural models. Most of the
traditional rule-based methods for story generation (Li et

al. 2013; Soo, Lee, and Chen 2016) retrieve events from a
knowledge base with some pre-specified semantic relations.

Neural models for story generation has been widely stud-
ied with sequence-to-sequence (seq2seq) learning (Roem-
mele 2016). And various contents such as photos and
independent descriptions are largely used to inspire the
story (Jain et al. 2017).To capture the deep meaning of
key entities and events, Ji et al. (2017) and Clark, Ji, and
Smith (2018) explicitly modeled the entities mentioned in
story with dynamic representation, and Martin et al. (2018)
decomposed the problem into planning successive events
and generating sentences from some given events. Fan,
Lewis, and Dauphin (2018) adopted a hierarchical architec-
ture to generate the whole story from some given keywords.

Commonsense knowledge is beneficial for many natural
language tasks such as semantic reasoning and text entail-
ment, which is particularly important for story generation.
LoBue and Yates (2011) characterized the types of com-
monsense knowledge mostly involved in recognizing tex-
tual entailment. Afterwards, commonsense knowledge was
used in natural language inference (R. Bowman et al. 2015)
and language generation (Zhou et al. 2018). Mihaylov and
Frank (2018) incorporated external commonsense knowl-
edge into a neural cloze-style reading comprehension model.
Rashkin et al. (2018) performed commonsense inference
on people’s intents and reactions of the event’s participants
given a short text. Similarly, Knight et al. (2018) introduced
a new annotation framework to explain psychology of story
characters with commonsense knowledge. And common-
sense knowledge has also been shown useful to choose a
correct story ending from two candidate endings (Lin, Sun,
and Han 2017; Li et al. 2018).

Methodology
Overview
The task of story ending generation can be stated as fol-
lows: given a story context consisting of a sentence sequence
X = {X1, X2, · · · , XK}3, where Xi = x

(i)
1 x

(i)
2 · · ·x

(i)
li

represents the i-th sentence containing li words, the model
should generate a one-sentence ending Y = y1y2...yl which
is reasonable in logic, formally as

Y ∗ = argmax
Y

P(Y |X). (1)

As aforementioned, context clue and commonsense
knowledge is important for modeling the logic and casual
information in story ending generation. To this end, we de-
vise an incremental encoding scheme based on the gen-
eral encoder-decoder framework (Sutskever, Vinyals, and Le
2014). As shown in Figure 2, the scheme encodes the sen-
tences in a story context incrementally with a multi-source
attention mechanism: when encoding sentence Xi, the en-
coder obtains a context vector which is an attentive read of
the hidden states, and the graph vectors of the preceding sen-
tence Xi−1. In this manner, the relationship between words
(some are entities or events) in sentence Xi−1 and those in

3Adjacent sentences in story context have much logic connec-
tion, temporal dependency, and casual relationship.
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Figure 2: Model overview. The model is equipped with incremental encoding (IE) and multi-source attention (MSA). x(i)j :

the j-th word in sentence i; c(i)hj : state context vector; c(i)xj : knowledge context vector; g(i)
j : graph vector of word x(i)j ; h(i)

j :
j-th hidden state of sentence i. The state (knowledge) context vectors are attentive read of hidden states (graph vectors) in the
preceding sentence.

Xi is built incrementally, and therefore, the chronological
order or causal relationship between entities (or events) in
adjacent sentences can be captured implicitly. To leverage
commonsense knowledge which is important for generating
a reasonable ending, a one-hop knowledge graph for each
word in a sentence is retrieved from ConceptNet, and each
graph can be represented by a vector in two ways. The in-
cremental encoder not only attends to the hidden states of
Xi−1, but also to the graph vectors at each position ofXi−1.
By this means, our model can generate more reasonable end-
ings by representing context clues and encoding common-
sense knowledge.

Background: Encoder-Decoder Framework
The encoder-decoder framework is a general framework
widely used in text generation. Formally, the model encodes
the input sequenceX = x1x2 · · ·xm into a sequence of hid-
den states, as follows,

ht = LSTM(ht−1, e(xt)), (2)

where ht denotes the hidden state at step t and e(x) is the
word vector of x.

At each decoding position, the framework will generate a
word by sampling from the word distribution P(yt|y<t, X)
(y<t = y1y2 · · · yt−1 denotes the sequences that has been
generated before step t), which is computed as follows:

P(yt|y<t, X) = softmax(W0st + b0), (3)
st = LSTM(st−1, e(yt−1), ct−1), (4)

where st denotes the decoder state at step t. When an at-
tention mechanism is applied, ct−1 is an attentive read of
the context, which is a weighted sum of the encoder’s hid-
den states as ct−1 =

∑m
i=1 α(t−1)ihi, and α(t−1)i measures

the association between the decoder state st−1 and the en-
coder state hi. Refer to (Bahdanau, Cho, and Bengio 2014)
for more details.

Incremental Encoding Scheme
Straightforward solutions for encoding the story context can
be: 1) Concatenating theK sentences to a long sentence and
encoding it with an LSTM ; or 2) Using a hierarchical LSTM
with hierarchical attention (Yang et al. 2016), which firstly
attends to the hidden states of a sentence-level LSTM, and
then to the states of a word-level LSTM. However, these so-
lutions are not effective to represent the context clues which
may capture the key logic information. Such information re-
vealed by the chronological order or causal relationship be-
tween events or entities in adjacent sentences.

To better represent the context clues, we propose an incre-
mental encoding scheme: when encoding the current sen-
tence Xi, it obtains a context vector which is an attentive
read of the preceding sentence Xi−1. In this manner, the or-
der/relationship between the words in adjacent sentences can
be captured implicitly.

This process can be stated formally as follows:

h(i)
j = LSTM(h(i)

j−1, e(x
(i)
j ), c(i)lj ), i ≥ 2. (5)

where h(i)
j denotes the hidden state at the j-th position of

the i-th sentence, e(x
(i)
j ) denotes the word vector of the j-

th word x(i)j . c(i)l,j is the context vector which is an attentive

read of the preceding sentence Xi−1, conditioned on h(i)
j−1.

We will describe the context vector in the next section.
During the decoding process, the decoder obtains a con-

text vector from the last sentenceXK in the context to utilize
the context clues. The hidden state is obtained as below:
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st = LSTM(st−1, e(yt−1), clt), (6)
where clt is the context vector which is the attentive read of
the last sentence XK , conditioned on st−1. More details of
the context vector will be presented in the next section.

Multi-Source Attention (MSA)
The context vector (cl) plays a key role in representing the
context clues because it captures the relationship between
words (or states) in the current sentence and those in the
preceding sentence. As aforementioned, story comprehen-
sion sometime requires the access of implicit knowledge that
is beyond the text. Therefore, the context vector consists of
two parts, computed with multi-source attention. The first
one c(i)hj is derived by attending to the hidden states of the

preceding sentence, and the second one c(i)xj by attending to
the knowledge graph vectors which represent the one-hop
graphs in the preceding sentence. The MSA context vector
is computed as follows:

c(i)lj = Wl([c
(i)
hj ; c(i)xj ]) + bl, (7)

where ⊕ indicates vector concatenation. Hereafter, c(i)hj is

called state context vector, and c(i)xj is called knowledge con-
text vector.

The state context vector is a weighted sum of the hidden
states of the preceding sentence Xi−1 and can be computed
as follows:

c(i)hj =

li−1∑
k=1

α
(i)
hk,j

h(i−1)
k , (8)

α
(i)
hk,j

=
e
β
(i)
hk,j

li−1∑
m=1

eβ
(i)
hm,j

, (9)

β
(i)
hk,j

= h(i)T
j−1Wsh

(i−1)
k , (10)

where β(i)
hk,j

can be viewed as a weight between hidden state

h(i)
j−1 in sentenceXi and hidden state h(i−1)

k in the preceding
sentence Xi−1.

Similarly, the knowledge context vector is a weighted
sum of the graph vectors for the preceding sentence. Each
word in a sentence will be used as a query to retrieve a one-
hop commonsense knowledge graph from ConceptNet, and
then, each graph will be represented by a graph vector. Af-
ter obtaining the graph vectors, the knowledge context vec-
tor can be computed by:

c(i)xj =

li−1∑
k=1

α
(i)
xk,j

g(x
(i−1)
k ), (11)

α
(i)
xk,j

=
e
β
(i)
xk,j

li−1∑
m=1

eβ
(i)
xm,j

, (12)

β
(i)
xk,j

= h(i)T
j−1Wkg(x

(i−1)
k ), (13)

where g(x
(i−1)
k ) is the graph vector for the graph which is

retrieved for word x(i−1)
k . Different from e(x

(i−1)
k ) which

is the word vector, g(x
(i−1)
k ) encodes commonsense knowl-

edge and extends the semantic representation of a word
through neighboring entities and relations.

During the decoding process, the knowledge context vec-
tors are similarly computed by attending to the last input
sentence XK . There is no need to attend to all the context
sentences because the context clues have been propagated
within the incremental encoding scheme.

Knowledge Graph Representation
Commonsense knowledge can facilitate language under-
standing and generation. To retrieve commonsense knowl-
edge for story comprehension, we resort to Concept-
Net4 (Speer and Havasi 2012). ConceptNet is a semantic
network which consists of triples R = (h, r, t) meaning
that head concept h has the relation r with tail concept t.
Each word in a sentence is used as a query to retrieve a
one-hop graph from ConceptNet. The knowledge graph for
a word extends (encodes) its meaning by representing the
graph from neighboring concepts and relations.

There have been a few approaches to represent common-
sense knowledge. Since our focus in this paper is on using
knowledge to benefit story ending generation, instead of de-
vising new methods for representing knowledge, we adopt
two existing methods: 1) graph attention (Veličković et al.
2018; Zhou et al. 2018), and 2) contextual attention (Mi-
haylov and Frank 2018). We compared the two means of
knowledge representation in the experiment.

Graph Attention Formally, the knowledge graph of word
(or concept) x is represented by a set of triples, G(x) =
{R1, R2, · · · , RNx

} (where each triple Ri has the same
head concept x), and the graph vector g(x) for word x can
be computed via graph attention, as below:

g(x) =

Nx∑
i=1

αRi
[hi; ti], (14)

αRi
=

eβRi

Nx∑
j=1

eβRj

, (15)

βRi
= (Wrri)T tanh(Whhi + Wtti), (16)

where (hi, ri, ti) = Ri ∈ G(x) is the i-th triple in the
graph. We use word vectors to represent concepts, i.e. hi =
e(hi), ti = e(ti), and learn trainable vector ri for relation
ri, which is randomly initialized.

Intuitively, the above formulation assumes that the knowl-
edge meaning of a word can be represented by its neighbor-
ing concepts (and corresponding relations) in the knowledge
base. Note that entities in ConceptNet are common words
(such as tree, leaf, animal), we thus use word vectors to rep-
resent h/r/t directly, instead of using geometric embedding

4https://conceptnet.io
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methods (e.g., TransE) to learn entity and relation embed-
dings. In this way, there is no need to bridge the representa-
tion gap between geometric embeddings and text-contextual
embeddings (i.e., word vectors).

Contextual Attention When using contextual attention,
the graph vector g(x) can be computed as follows:

g(x) =

Nx∑
i=1

αRi
MRi

, (17)

MRi
= BiGRU(hi, ri, ti), (18)

αRi =
eβRi

Nx∑
j=1

eβRj

, (19)

βRi
= hT

(x)WcMRi
, (20)

where MRi
is the final state of a BiGRU connecting the el-

ements of triple Ri, which can be seen as the knowledge
memory of the i-th triple, while h(x) denotes the hidden state
at the encoding position of word x.

Loss Function
As aforementioned, the incremental encoding scheme is
central for story ending generation. To better model the
chronological order and causal relationship between adja-
cent sentences, we impose supervision on the encoding net-
work. At each encoding step, we also generate a distribution
over the vocabulary, very similar to the decoding process:

P(yt|y<t, X) = softmax(W0h(i)
j + b0), (21)

Then, we calculate the negative data likelihood as loss func-
tion:

Φ = Φen + Φde (22)

Φen =

K∑
i=2

li∑
j=1

− logP(x
(i)
j = x̃

(i)
j |x

(i)
<j , X<i), (23)

Φde =
∑
t

− logP(yt = ỹt|y<t, X), (24)

where x̃(i)j means the reference word used for encoding at
the j-th position in sentence i, and ỹt represents the j-th
word in the reference ending. Such an approach does not
mean that at each step there is only one correct next sen-
tence, exactly as many other generation tasks. Experiments
show that it is better in logic than merely imposing supervi-
sion on the decoding network.

Experiments
Dataset
We evaluated our model on the ROCStories corpus
(Mostafazadeh et al. 2016a). The corpus contains 98,162
five-sentence stories for evaluating story understanding and
script learning. The original task is designed to select a cor-
rect story ending from two candidates, while our task is to
generate a reasonable ending given a four-sentence story

context. We randomly selected 90,000 stories for training
and the left 8,162 for evaluation. The average number of
words in X1/X2/X3/X4/Y is 8.9/9.9/10.1/10.0/10.5 re-
spectively. The training data contains 43,095 unique words,
and 11,192 words appear more than 10 times. For each word,
we retrieved a set of triples from ConceptNet and stored
those whose head entity and tail entity are noun or verb,
meanwhile both occurring in SCT. Moreover, we retained
at most 10 triples if there are too many. The average number
of triples for each query word is 3.4.

Baselines
We compared our models with the following state-of-the-art
baselines:
Sequence to Sequence (Seq2Seq): A simple encoder-
decoder model which concatenates four sentences to a long
sentence with an attention mechanism (Luong, Pham, and
Manning 2015).
Hierarchical LSTM (HLSTM): The story context is rep-
resented by a hierarchical LSTM: a word-level LSTM for
each sentence and a sentence-level LSTM connecting the
four sentences (Yang et al. 2016). A hierarchical attention
mechanism is applied, which attends to the states of the two
LSTMs respectively.
HLSTM+Copy: The copy mechanism (Gu et al. 2016) is
applied to hierarchical states to copy the words in the story
context for generation.
HLSTM+Graph Attention(GA): We applied multi-source
attention HLSTM where commonsense knowledge is en-
coded by graph attention.
HLSTM+Contextual Attention(CA): Contextual attention
is applied to represent commonsense knowledge.

Experiment Settings
The parameters are set as follows: GloVe.6B (Pennington,
Socher, and Manning 2014) is used as word vectors, and
the vocabulary size is set to 10,000 and the word vector di-
mension to 200. We applied 2-layer LSTM units with 512-
dimension hidden states. These settings were applied to all
the baselines.

The parameters of the LSTMs (Eq. 5 and 6) are shared by
the encoder and the decoder.

Automatic Evaluation
We conducted the automatic evaluation on the 8,162 stories
(the entire test set). We generated endings from all the mod-
els for each story context.

Evaluation Metrics We adopted perplexity(PPL) and
BLEU (Papineni et al. 2002) to evaluate the generation per-
formance. Smaller perplexity scores indicate better perfor-
mance. BLEU evaluates n-gram overlap between a gener-
ated ending and a reference ending. However, since there
is only one reference ending for each story context, BLEU
scores will become extremely low for larger n. We thus ex-
perimented with n = 1, 2. Note also that there may exist
multiple reasonable endings for the same story context.
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Model PPL BLEU-1 BLEU-2 Gram. Logic.

Seq2Seq 18.97 0.1864 0.0090 1.74 0.70
HLSTM 17.26 0.2459 0.0242 1.57 0.84
HLSTM+Copy 19.93 0.2469 0.0248 1.66 0.90
HLSTM+MSA(GA) 15.75 0.2588 0.0253 1.70 1.06
HLSTM+MSA(CA) 12.53 0.2514 0.0271 1.72 1.02
IE (ours) 11.04 0.2514 0.0263 1.84 1.10
IE+MSA(GA) (ours) 9.72 0.2566 0.0284 1.68 1.26
IE+MSA(CA) (ours) 8.79 0.2682 0.0327 1.66 1.24

Table 1: Automatic and manual evaluation results.

Results The results of the automatic evaluation are shown
in Table 1, where IE means a simple incremental encoding
framework that ablated the knowledge context vector from
cl in Eq. (7). Our models have lower perplexity and higher
BLEU scores than the baselines. IE and IE+MSA have re-
markably lower perplexity than other models. As for BLEU,
IE+MSA(CA) obtained the highest BLEU-1 and BLEU-2
scores. This indicates that multi-source attention leads to
generate story endings that have more overlaps with the ref-
erence endings.

Manual Evaluation
Manual evaluations are indispensable to evaluate the coher-
ence and logic of generated endings. For manual evaluation,
we randomly sampled 200 stories from the test set and ob-
tained 1,600 endings from the eight models. Then, we re-
sorted to Amazon Mechanical Turk (MTurk) for annotation.
Each ending will be scored by three annotators and majority
voting is used to select the final label.

Evaluation Metrics We defined two metrics - grammar
and logicality for manual evaluation. Score 0/1/2 is applied
to each metric during annotation.

Grammar (Gram.): Whether an ending is natural and flu-
ent. Score 2 is for endings without any grammar errors, 1 for
endings with a few errors but still understandable and 0 for
endings with severe errors and incomprehensible.

Logicality (Logic.): Whether an ending is reasonable and
coherent with the story context in logic. Score 2 is for rea-
sonable endings that are coherent in logic, 1 for relevant end-
ings but with some discrepancy between an ending and a
given context, and 0 for totally incompatible endings.

Note that the two metrics are scored independently. To
produce high-quality annotation, we prepared guidelines
and typical examples for each metric score.

Results The results of the manual evaluation are also
shown in Table 1. Note that the difference between IE and
IE+MSA exists in that IE does not attend to knowledge
graph vectors in a preceding sentence, and thus it does use
any commonsense knowledge. The incremental encoding
scheme without MSA obtained the best grammar score and
our full mode IE+MSA(GA) has the best logicality score.
All the models have fairly good grammar scores (maximum
is 2.0), while the logicality scores differ remarkably, much

lower than the maximum score, indicating the challenges of
this task.

More specifically, incremental encoding is effective
due to the facts: 1) IE is significantly better than
Seq2Seq and HLSTM in grammar (Sign Test, 1.84 vs.
1.74/1.57, p-value=0.046/0.037, respectively), and in log-
icality (1.10 vs. 0.70/0.84, p-value< 0.001/0.001). 2)
IE+MSA is significantly better than HLSTM+MSA in log-
icality (1.26 vs. 1.06, p-value=0.014 for GA; 1.24 vs.
1.02, p-value=0.022 for CA). This indicates that incremen-
tal encoding is more powerful than traditional (Seq2Seq)
and hierarchical (HLSTM) encoding/attention in utilizing
context clues. Furthermore, using commonsense knowl-
edge leads to significant improvements in logicality.
The comparison in logicality between IE+MSA and IE
(1.26/1.24 vs. 1.10, p-value=0.028/0.042 for GA/CA, re-
spectively), HLSTM+MSA and HLSTM (1.06/1.02 vs.
0.84, p-value< 0.001/0.001 for GA/CA, respectively), and
HLSTM+MSA and HLSTM+Copy (1.06/1.02 vs. 0.90, p-
value=0.044/0.048, respectively) all approve this claim. In
addition, similar results between GA and CA show that com-
monsense knowledge is useful but multi-source attention is
not sensitive to the knowledge representation scheme.

More detailed results are listed in Table 2. Comparing to
other models, IE+MSA has a much larger proportion of end-
ings that are good both in grammar and logicality (2-2). The
proportion of good logicality (score=2.0) from IE+MSA is
much larger than that from IE (45.0%+5.0%/41.0%+4.0%
vs. 36.0%+2.0% for GA/CA, respectively), and also remark-
able larger than those from other baselines. Further, HLSTM
equipped with MSA is better than those without MSA, in-
dicating that commonsense knowledge is helpful. And the
kappa measuring inter-rater agreement is 0.29 for three an-
notators, which implies a fair agreement.

Gram.-Logic. Score 2-2 2-1 1-2 1-1

Seq2seq 20.0% 22.0% 6.5% 1.5%
HLSTM 21.0% 17.0% 10.0% 3.5%
HLSTM+Copy 28.0% 19.0% 7.0% 5.5%
HLSTM+MSA(GA) 33.5% 25.0% 5.0% 4.0%
HLSTM+MSA(CA) 30.0% 26.0% 2.0% 8.0%

IE (ours) 36.0% 34.0% 2.0% 4.0%
IE+MSA(GA) (ours) 45.0% 24.0% 5.0% 2.0%
IE+MSA(CA) (ours) 41.0% 27.0% 4.0% 2.0%

Table 2: Data distribution over Gram.-Logic. scores. a-b de-
notes that the grammar score is a and the logicality score is
b. Each cell denotes the proportion of the endings with score
a-b.

Examples and Attention Visualization
We presented an example of generated story endings in Ta-
ble 3. Our model generates more natural and reasonable end-
ings than the baselines.

In this example, the baselines predicted wrong
events in the ending. Baselines (Seq2Seq, HLSTM,
and HLSTM+Copy) have predicted improper entities
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Context: Martha is cooking a special meal for
her family.
She wants everything to be just right
for when they eat.
Martha perfects everything and puts
her dinner into the oven.
Martha goes to lay down for a quick
nap.

Golden
Ending:

She oversleeps and runs into the
kitchen to take out her burnt dinner.

Seq2Seq: She was so happy to have a new cake.
HLSTM: Her family and her family are very

happy with her food.
HLSTM+
Copy:

Martha is happy to be able to eat her
family.

HLSTM+
GA:

She is happy to be able to
cook her dinner.

HLSTM+
CA:

She is very happy that she has made a
new cook .

IE: She is very happy with her family.
IE+GA: When she gets back to the kitchen, she

sees a burning light on the stove.
IE+CA: She realizes the food and is happy she

was ready to cook .

Table 3: Generated endings from different models. Bold
words denote the key entity and event in the story. Improper
words in ending is in italic and proper words are underlined.

(cake), generated repetitive contents (her family), or copied
wrong words (eat). The models equipped with incremental
encoding or knowledge through MSA(GA/CA) perform
better in this example. The ending by IE+MSA is more
coherent in logic, and fluent in grammar. We can see that
there may exist multiple reasonable endings for the same
story context.

In order to verify the ability of our model to utilize the
context clues and implicit knowledge when planning the
story plot, we visualized the attention weights of this exam-
ple, as shown in Figure 3. Note that this example is produced
from graph attention.

In Figure 3, phrases in the box are key events of the sen-
tences that are manually highlighted. Words in blue or pur-
ple are entities that can be retrieved from ConceptNet, re-
spectively in story context or in ending. An arrow indicates
that the words in the current box (e.g., they eat in X2) all
have largest attention weights to some words in the box
of the preceding sentence (e.g., cooking a special meal in
X1). Black arrows are for state context vector (see Eq.8) and
blue for knowledge context vector (see Eq.11). For instance,
eat has the largest knowledge attention to meal through the
knowledge graph (<meal, AtLocation, dinner>,<meal, Re-
latedTo, eat>). Similarly, eat also has the second largest at-
tention weight to cooking through the knowledge graph. For
attention weights of state context vector, both words in per-
fects everything has the largest weight to some of everything

Martha is cooking a special meal for her family . 

She wants everything to be just right for when they eat . 

Martha perfects everything and puts her dinner into the oven .

Martha goes to lay down for a quick nap . 

When she gets back to the kitchen , she sees a burning light on the stove . 

𝑋1:

𝑋2:

𝑋3:

𝑋4:

𝑌: 

Entity commonsense knowledge

cook
(cook, AtLocation, kitchen)
(cook, HasLastSubevent, eat)

meal
(meal, AtLocation, dinner)
(meal, RelatedTo, eat)

eat (eat, AtLocation, dinner)

oven
(oven, AtLocation, stove)
(oven, RelatedTo, kitchen)
(oven, UsedFor, burn)

Figure 3: An example illustrating how incremental encoding
builds connections between context clues.

to be just right (everything→everything, perfect→ right).
The example illustrates how the connection between con-

text clues are built through incremental encoding and use
of commonsense knowledge. The chain of context clues,
such as be cooking → want everything be right →
perfect everything → lay down → get back, and
the commonsense knowledge, such as <cook, AtLocation,
kitchen> and <oven, UsedFor, burn>, are useful for gener-
ating reasonable story endings.

Conclusion and Future Work
We present a story ending generation model that builds con-
text clues via incremental encoding and leverages common-
sense knowledge with multi-source attention. It encodes a
story context incrementally with a multi-source attention
mechanism to utilize not only context clues but also com-
monsense knowledge: when encoding a sentence, the model
obtains a multi-source context vector which is an attentive
read of the words and the corresponding knowledge graphs
of the preceding sentence in the story context. Experiments
show that our models can generate more coherent and rea-
sonable story endings.

As future work, our incremental encoding and multi-
source attention for using commonsense knowledge may be
applicable to other language generation tasks.
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