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Abstract

Natural Language Inference (NLI) is an active research area,
where numerous approaches based on recurrent neural net-
works (RNNs), convolutional neural networks (CNNs), and
self-attention networks (SANs) has been proposed. Although
obtaining impressive performance, previous recurrent ap-
proaches are hard to train in parallel; convolutional models
tend to cost more parameters, while self-attention networks
are not good at capturing local dependency of texts. To ad-
dress this problem, we introduce a Gaussian prior to self-
attention mechanism, for better modeling the local structure
of sentences. Then we propose an efficient RNN/CNN-free
architecture named Gaussian Transformer for NLI, which
consists of encoding blocks modeling both local and global
dependency, high-order interaction blocks collecting the ev-
idence of multi-step inference, and a lightweight compari-
son block saving lots of parameters. Experiments show that
our model achieves new state-of-the-art performance on both
SNLI and MultiNLI benchmarks with significantly fewer pa-
rameters and considerably less training time. Besides, evalu-
ation using the Hard NLI datasets demonstrates that our ap-
proach is less affected by the undesirable annotation artifacts.

Introduction
Natural Language Inference (NLI), also known as Recog-
nizing Textual Entailment (RTE), is a fundamental prob-
lem in the research field of natural language understand-
ing, which could help tasks like questions answering, read-
ing comprehension and summarization (Dagan et al. 2013).
In NLI settings, the model is presented with a pair of sen-
tences, namely premise and hypothesis, and asked to deter-
mine the reasoning relationship between them from a set
including entailment, contradiction and neutral. Numerous
efforts have been dedicated to this task, where the dominant
trend is to build complex neural models using millions of pa-
rameters which cost lots of time to train. Although achieved
impressive accuracy, previous works using recurrent models
are hard to train in parallel while convolutional models often
need more parameters to learn.

To address this problem, we propose an efficient
RNN/CNN-free architecture named Gaussian Transformer,
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Figure 1: Probabilities of each token attending to current
central word ‘book’: (a) illustrates the vanilla self-attention,
where the word ‘new’ appeared in different positions obtain
the same importance, which is inconsistent with our expe-
rience that adjacent words matters; (b) depicts a Gaussian
distribution over distance (x-axis) that encourages focusing
on neighboring tokens; (c) draws the attention corrected by
the Gaussian prior, where the first ‘new’ is more important.

which is adapted from the Transformer model in machine
translation tasks(Vaswani et al. 2017). The original Trans-
former is based on the self-attention mechanism, eschewing
the disadvantages of recurrence and convolution. However,
it cannot capture local structure of texts, which is enhanced
with a Gaussian prior probability in our approach accord-
ing to the following observation: adjacent words contribute
more semantically to current phrase than distant ones. For
example, in the sentence ‘I bought a new book yesterday
with a new friend in New York.’, the first ‘new’ is more im-
portant to the word ‘book’ than the other two. Indeed, RNNs
tend to forget distant inputs, while CNNs exclude words out-
side the current convolutional window. This ‘chunking’ phe-
nomenon is naturally modeled in RNNs and CNNs but is ne-
glected in the original Transformer. As shown in Figure 1(a),
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same words at various distances are treated almost equally
when computing self-attention. We correct this problem us-
ing a Gaussian prior probability over the distance to the
central word, as depicted in Figure 1(b)&(c). Although po-
sitional encoding might help to alleviate this problem, ex-
periments show that the Gaussian prior works better. Mean-
while, long-term dependency is also taken into consideration
by using multiple layers of Gaussian attention in our model.

Besides using Gaussian self-attention networks to model
sentences, we also introduce the high-order interaction
blocks to collect evidence of multi-step inference and an effi-
cient comparison mechanism for NLI tasks, helping us to es-
tablish a new state-of-the-art performance using one order of
magnitude fewer parameters. Thanks to the CNN/RNN-free
architecture, our model is also faster than previous works.

Recently, annotation artifacts were found in existing
datasets, i.e., SNLI (Bowman et al. 2015) and MultiNLI
(Williams, Nangia, and Bowman 2017), and the more chal-
lenging Hard NLI benchmark was proposed (Gururangan et
al. 2018). Our model outperforms previous works by about
5 percent accuracy on this benchmark, showing that the pro-
posed Gaussian Transformer is less affected by the undesir-
able annotation artifacts.

The contributions of this paper are listed as follows:

• We propose the novel Gaussian self-attention inspired by
the ‘chunking’ phenomenon, which could better capture
both local structure and global dependency of sequences
without introducing recurrence or convolution.

• We propose an efficient NLI model, i.e, Gaussian Trans-
former, consisting of Gaussian encoding blocks, high-
order interaction blocks and efficient comparison blocks,
obtaining new state-of-the-art performance with signifi-
cant fewer parameters and considerably less training time.

Gaussian Self-attention
As shown in Figure 1, the original transformer treats the
same words at various distances almost equally1, which is
inconsistent with our experience of natural language texts
that adjacent words contribute more semantically to central
words. While CNNs / RNNs model this ‘chunking’ phe-
nomenon internally, the vanilla self-attention mechanism in
Transformer could not capture the local structure of texts.

Supposing that xi represents the central word from the
sentence x, the vanilla dot-product self-attention works as
Figure 2(a): It soft-aligns each token xj from x to xi, ac-
cording to the compatibility function computed by the soft-
max of dot products, i.e., Compi,j = Softmaxj(xi · xj),
and then sums the attended values together, i.e.,

x̃i =
∑
j

Compi,jxj . (1)

For better modeling the local structure of texts, we in-
crease the importance of neighboring tokens and decay the
weight of distant ones. We hypothesize that the semantic

1For simplicity, we omit the positional encoding here and dis-
cuss it later.
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Figure 2: Illustration of attentions: (a) depicts the original
dot-product attention of Transformer, (b) & (c) are Gaussian
prior extended self-attention.
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Figure 3: Examples of Gaussian multiplier: (a) illustrates the
vanilla version; (b) shows the variant introduced in Eq. (4).

contribution to central word from tokens at different dis-
tance obey a normal distribution, and then use a variant of
Gaussian prior to correct the importance of tokens align-
ing to the current central word. The reason to choose nor-
mal distribution is that it is hard to statistically measure the
semantic importance of a word according to another one,
and comparison experiments with different decaying mech-
anisms, e.g., linear decaying according to distance (Im and
Cho 2017), and other distributions such as Zipf Distribution,
demonstrate that the Gaussian assumption works better.

For simplicity, we use the (Stigler 1982) definition of a
standard normal distribution with variance σ2 = 1/(2π),
whose probability density function is: φ(d) = e−πd

2

, where
d is the random variable, i.e., the distance between tokens.
Then, we insert φ(di,j) to Eq. (1) just like Figure 2(b) to
correct the importance of tokens at various distances:

x̃i =
∑
j

φ(di,j)compi,j
Z1

xj =
∑
j

e−d
2
i,j · e(xi·xj)

Z2
xj

=
∑
j

e−d
2
i,j+(xi·xj)

Z2
xj

=
∑
j

Softmax(−d2i,j + (xi · xj))xj ,

(2)

where Z1 =
∑
k φ(di,k)compi,k, Z2 =

∑
k e

−d2i,k+(xi·xk)

are normalization factors. Eq. (2) converts the normal dis-
tribution to a Gaussian bias term (Figure 2(c)), which saves
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additional operations of multiplication. Since the Gaussian
variance (σ2) might not incidentally equal 1/(2π), we intro-
duce a scalar variable w to Eq. (2) to loose the restriction:

x̃i =
∑
j

Softmax(−wd2i,j + (xi · xj))xj . (3)

Instead of applying the vanilla Gaussian prior, we found it
beneficial to introduce a punishment term b to the weight of
the central word attending itself, as depicted in Figure 3(b):

x̃i =
∑
j

Softmax(−|wd2i,j + b|+ (xi · xj))xj , (4)

where | · | represents the absolute value, w > 0, b ≤ 0
are scalar parameters. This policy is inspired by (Shen et al.
2017), which disables the attention to itself, while we only
reduce the weight instead to keep information of the central
word which is also important to current chunk.

It is worth noting that, besides the local structures, long-
range dependency also matters to the semantics of sentences.
RNNs, e.g., LSTMs, use gates and memory to capture the
long-term dependency, while CNNs build deep models with
multiple convolution layers for this phenomenon. In our
case, we choose the CNNs-style, that is, stacking Gaussian
attention layers to track global dependency.

Gaussian Transformer
In this section, we provide a detailed description of
the Gaussian Transformer. The input is a pair of sen-
tences {pi}

lp
i=1 / {hj}lhj=1, where pi / hj ∈ RV is

the one-hot vector representing i-th / j-th word of the
premise / hypothesis with length lp / lh, and V is
the vocabulary size. The goal is to predict labels from
{entailment, contradiction, neutral}. Figure 4 presents
an overview of the architecture, including the following
components:

Embedding Blocks
The embedding blocks convert each word of a sentence to
a dense vector and combine them to construct a matrix rep-
resentation. We employ pre-trained word vectors, random
initialized character n-grams embeddings and positional en-
coding to project sentences to high-dimensional space.

Besides commonly used pre-trained word vectors, we uti-
lize a lightweight character-level representation of tokens.
Unlike using trainable character embeddings and additional
CNNs/LSTMs in previous work, we choose static random
initialized character n-gram embeddings to save parameters,
and then represent each token as the max-over-time pooling
of its embedded character n-grams. This allows us to han-
dle typos and out-of-vocabulary words at minimum compu-
tational cost without any additional parameters. The sinu-
soidal positional encoding is used to exploit the information
about the order of sequences since Transformer contains no
recurrence and convolution (Vaswani et al. 2017).

All the three embeddings remain fixed during training.
The only trainable parameter here is the projection matrix
that reduces the dimension of token representation to dmodel,
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Figure 4: The overall architecture of Gaussian Transformer.

which is the dimension number used internally in the rest of
model.

The process of the embedding blocks could be formally
described as follows:

x
(w)
i = xiEw, (5)

x
(c)
i = Maxt({x(c)i,tEc}

lxi
t=1), (6)

x
(p)
i,2k = sin(i/100002k/dmodel), (7)

x
(p)
i,2k+1 = cos(i/100002k/dmodel), (8)

x
(e)
i = x

(p)
i + [x

(w)
i : x

(c)
i ]We, (9)

where x is a placeholder of sentence p or h, xi ∈ RV is
the one-hot representation of i-th word of x, which consists
of lxi

character n-grams, x(c)i,t ∈ RVc indicates the t-th one,
x(w), x(c), x(p) and x(e) are the word-level representation,
character-level representation, positional encoding, and the
final representation of token xi in this block respectively,
Ew ∈ RV×dw is initialized from pre-trained word vectors,
Ec ∈ RVc×dc is a randomly initialized character n-gram em-
beddings, 2k, 2k+1 ∈ [0, dmodel) indicates the correspond-
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ing dimension, [· : ·] represents the operation of concate-
nation, V is the vocabulary size of tokens, Vc is the vocab-
ulary size of character n-grams, We ∈ R(dw+dc)×dmodel is
the trainable projection matrix of encodings.

Encoding Blocks
In this part, we employ a stack ofM encoding blocks to cap-
ture the local and global dependency of words in sentences,
which is similar with the encoder of the original Transformer
except that we introduce the Gaussian prior probability ac-
cording to the ‘chunking’ phenomenon.

Each encoding block consists of two sub-layers: a multi-
head Gaussian self-attention sub-layer and a position-wise
feedforward layer. Sub-layers are stacked using residual
connections and layer normalizations (Ba, Kiros, and Hin-
ton 2016), so that the output of a sub-layer becomes y =
LayerNorm(x + Sublayer(x)), where x, y respectively
represents the input and output, Sublayer is either the H-
head Gaussian self-attention or position-wise feedforward
networks.

The multi-head attention mechanism projects representa-
tions into H sub-spaces of dimension dh = dmodel/H and
computes attention in parallel. Then a position-wise feed-
forward network (FFN) is applied to the output of attention
sub-layer at each position separately and identically:

FFN(x) = Dense2(Relu(Dense1(x))), (10)
Densek(x) = xWk + bk, k ∈ {1, 2}, (11)
Relu(x) = max(0, x), (12)

where Wk ∈ Rdmodel×dmodel , bk ∈ Rdmodel .
In CNNs, the concept of receptive field is defined as the

region in the input space that affects a particular CNN’s fea-
ture, because inputs outside the filter window are excluded.
Similarly, we could informally define the concept of ‘focus
field’ of Gaussian attention since most values drawn from
a normal distribution are within one or two standard devi-
ations (σ) away from the mean, so that the Gaussian atten-
tion mainly focuses on that field, although σ is not explicitly
provided. Like multilayer CNNs, the bottom Gaussian atten-
tion captures the local structure while higher-level attentions
track the ‘global’ dependency. This is why we stack M en-
coding blocks. Thanks to residual connections, both local
and global information could easily flow to upper modules.

Interaction Blocks
Unlike encoding blocks extract semantics from a single se-
quence, the interaction blocks take the alignment between
sentences into account. Besides Gaussian self-attentions to
model current sentence and the position-wise feedforward
nets to perform non-linear projection, the interaction block
inserts a multi-head inter-attention sub-layer between them
to align the sentences and collect the evidence of inference.

The inter-attention works similarly with the self-attention.
Supposing that vector pi represents the current central
word from the premise p, while qj indicates the j-th to-
ken of the hypothesis, the (single-head) dot-product inter-
attention between pi and h soft-aligns each token hj from
h to pi, according to a compatibility function computed

by the softmax of dot products, i.e., Comp(pi, hj) =
Softmaxj(pi · hj), and then sums the attended values
together, i.e., p̃i =

∑
j Comp(pi, hj)hj . Similarly, we

have h̃j =
∑
i Comp(hj , pi)pi, where Comp(hj , pi) =

Softmaxi(hj · pi).
The attended p̃i, as a representation of pi using its soft-

aligned tokens in h, contains information of the relationship
between the central token pi and its most compatible phrases
from h, which could be viewed as the evidence of local in-
ference (Parikh et al. 2016), i.e., a single-step inference.

(Liu, Duh, and Gao 2018) point out that some sentence
pairs needs more than one-step inference to determine their
reasoning relationship, and took the average of multiple soft-
max layers as their prediction. In this work, we employ a
stack of N interaction blocks to perform high-order inter-
attention, i.e., attention over attention, to collect evidence
of multi-step inference. Thanks to the residual connections
between sub-layers, evidence of both single-step alignment
and multi-step inference could easily flow to upper modules.

Since the rest parts of interaction blocks, e.g., multi-head
Gaussian self-attention, are already introduced in previous
sections, we will not repeat them here.

Comparison Block
The comparison block consists of aggregation layers and
prediction layers. The aggregation layers combine the out-
put of encoding and interaction blocks, aggregate the
alignments of words / phrases and then compares the
difference between the two sentences to form a fixed-
length feature vector for classification. The prediction
layer projects that feature vector to the target space, i.e.,
{entailment, contradiction, neutral}, and predicts the
probability distribution over them.

As depicted in Figure 4, the comparison block uses a
Siamese architecture – two identical parameter-tied aggre-
gation networks are applied to premise and hypothesis re-
spectively, and then a multilayer perceptron classifier is em-
ployed to determine the relationship between them:

Aggregation Networks The encoder blocks build a se-
mantic representation of sentence x ∈ {p, h}, denoted as
{xi}lxi=1, according to the local and global dependency of
tokens modeled by multilayer Gaussian self-attention; the
interaction blocks, on the other hand, output the cross-
sentence information, denoted as {x̃i}lxi=1 , according to
high-order alignments and multi-step inferences collected
by the stack of inter-attention. The aggregation networks
collect these information to extract the feature-space repre-
sentation x̄ as follows:

vi = Dense4(Relu(Dense3([xi : x̃i]))), (13)

Densek(x) = xWk + bk, k ∈ {3, 4}, (14)

x̄ =
1√
lx

lx∑
i=1

(vi), (15)

where W3 ∈ R2dmodel×dmodel , W4 ∈ Rdmodel×dmodel , and
b3, b4, xi, x̃i, x̄ ∈ Rdmodel .
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It first concatenates token xi and its attentive alignments
x̃i, and then applies position-wise feedforward networks to
compare the aligned phrases, and finally aggregates the com-
parison vectors vi by summation. We use the reciprocal
square root of sentence length to alleviate the problem that
longer sequences have larger features vectors.

We also explored other aggregation mechanisms. For ex-
ample, max-pooling and average-pooling over the concate-
nation [xi : x̃i : xi−x̃i : xi�x̃i] in (Chen et al. 2017b) could
not further improve over our model but almost consumes as
4 times parameters as our aggregation network.

Prediction Layers We employ the vanilla MLP classifier
to predict the final label of sentence pairs as follows:

y = Softmax(Dense6(Relu(Dense5([p̄ : h̄])))), (16)

Densek(x) = xWk + bk, k ∈ {5, 6}, (17)

where W5 ∈ R2dmodel×dmodel , W6 ∈ Rdmodel×3, b5 ∈
Rdmodel , b6 ∈ R3.

We also tried more complex prediction layers, such as re-
placing [p̄ : h̄] with [p̄ : h̄ : p̄+ h̄ : p̄− h̄] (Kim et al. 2018),
and found it makes no significant difference but costs more
additional parameters. According to the law of Occam’s ra-
zor, we choose the simple comparison block as above.

Experiments and Analyses
We conduct experiments on SNLI and MultiNLI datasets,
which consists of 570k / 433k English sentence pairs, to train
and evaluate the proposed model. We first use the MultiNLI
validation datasets to find the optimal settings of the pro-
posed Gaussian Transformer and conduct ablation test to
verify the effectiveness of each component of our model.
Then we report the performance on both the vanilla and hard
version of SNLI / MultiNLI, of models trained from scratch
or by leveraging external resources, followed by the details
of our implementation. Besides the accuracy of classifica-
tion, we also compare the number of parameters, training
time and inference time with previous work.

Effectiveness of Each Component

M
N

M
N

Matched Misatched

M
N

M
N

Figure 5: Heatmap of accuracy (%) on MultiNLI validation
sets. Multiple encoding / interaction blocks (M > 1 / N >
1) performing better demonstrates the usefulness of global
dependency and multi-step inference.

Global Dependency and Multi-step Inference Figure 5
shows the accuracy on MultiNLI validation sets w.r.t. the
various combination of numbers of encoding (M ) and inter-
action (N ) blocks, i.e., the depth of model, where the label
‘matched’ indicates the accuracy of in-domain data, while
‘mismatched’ represents out-domain. Performance becom-
ing better when increasing M and N initially and peaking
at M = 3 and N = 2, demonstrates the effectiveness of the
global dependency, which is captured by multiple Gaussian
self-attentions (M > 1), and the superiority of multi-step
inference modeled by high-order interactions (N > 1).

Although continuing deepening the network does not re-
sult in a significant accuracy regression, we keep the values
(3, 2) in the rest of experiments, since the training time rises
linearly as the depth increases.

Model Matched Mismatched
Vanilla Transformer (i) 79.3 79.3
+ Zipf prior (ii) 79.7 79.5
+ trainable distance bias (iii) 79.5 79.6
+ linear decay bias (iv) 79.9 79.8
+ Conv. layers (v) 80.1 80.0
+ Gaussian prior (vi) 80.2 80.3
+ Gaussian prior variant (vii) 80.3 80.5

Table 1: Accuracy (%) of different variants of Gaussian
Transformer on the MultiNLI development datasets.

Effectiveness of Gaussian Assumption Since the sinu-
soidal positional encoding in the original Transformer could
already represent the relative position of tokens, it is neces-
sary to evaluate the usefulness of the Gaussian assumption,
which encourages self-attention to focus on locally close to-
kens. We evaluate several models with different prior prob-
abilities and present the results in Table 1. We could ob-
serve that adding Gaussian prior to the vanilla Transformer
improves about 1 percent accuracy on MultiNLI validation
datasets, and using a punishment bias to reduce the impor-
tance of central word attending to itself brings additional
enhancement, where (vi) and (vii) indicate the model using
Eq. (3) and (4) respectively. Next, we found that depthwise
separable convolutions (v) which is used in QANet (Yu et
al. 2018) is competitive with Gaussian prior but extra pa-
rameters are introduced by convolutions. Besides Gaussian
prior, we also evaluate the Zipf distribution (ii), since many
linguistics statistics, such as word / phrase frequency, obey
the famous Zipf’s Law. To follow the Zipf’s law, we assume
the semantic contribution of a token to current phrase is in-
versely proportional to its distance to the central word, and
use Eq. (18) to compute self-attention:

x̃i =
∑
j

1

|di,j |+ 1

compi,j
Zz

xj ; (18)

model (iii) uses trainable distance bias term bdi,j to model
the relative distance (Parikh et al. 2016) :

Compi,j = Softmaxj(xi · xj + bdi,j ); (19)
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while model (iv) adds a linear function of the distance to the
compatibility function (Im and Cho 2017):

Compi,j = Softmaxj(xi · xj + wl|di,j |), (20)

where wl(< 0) and bdi,j are scalar parameters, Zz =∑
k compi,k/(|di,k|+ 1) is the normalization factor.
In summary, it is necessary to encourage self-attention to

focus on local structures (model ii - vii), and the proposed
Gaussian prior (variant) performs the best.

Experimental Results
In this section, we present the experimental results of Gaus-
sian Transformer comparing with not only models trained
from scratch but also approaches leveraging external re-
sources. Then, we evaluate our model on the more challeng-
ing Hard NLI benchmarks.

Comparison with Models Training from Scratch We
first evaluate the capability of the Gaussian Transformer it-
self to resolve NLI problems, by training our model from
scratch, i.e., using only NLI training sets without any exter-
nal resources except word embeddings, and report the accu-
racy on SNLI and MultiNLI, in Table 2 and 3 respectively.

It can be observed that Gaussian Transformer achieves
state-of-the-art performance on both SNLI and MultiNLI
benchmarks, improving 1 percent accuracy at most. How-
ever, our Gaussian Transformer only costs 665k parame-
ters, which is one order of magnitude fewer than previ-
ous approaches. Among them, ESIM(Chen et al. 2017b),
BiMPM(Wang, Hamza, and Florian 2017), MwAN(Tan
et al. 2018), SAN(Liu, Duh, and Gao 2018), DR-
BiLSTM(Ghaeini et al. 2018), CAFE(Tay, Tuan, and Hui
2017), DRCN(Kim et al. 2018) are recurrent models, while
DIIN(Gong, Luo, and Zhang 2017) is a convolutional model
and DecAtt(Parikh et al. 2016) is a self-attention network.

Model |θ| Acc.(S./E.)
200D DecAtt 580k 86.8 / -
BiMPM 1.6m 87.5 / 88.8
600D ESIM 4.3m 88.0 / 88.6
448D DIIN 4.4m 88.0 / 88.9
150D MwAN 14m 88.3 / 89.4
SAN 3.5m 88.5 / -
450D DR-BiLSTM 7.5m 88.5 / 89.3
300D CAFE 4.7m 88.5 / 89.3
DCRN 6.7m 88.9 / 90.1
120D Gaussian Transformer 665k 89.2 / 90.3

Table 2: Accuracy (%) on SNLI test set of approaches train-
ing from scratch by single / ensemble models, where |θ| indi-
cates the number of parameters. Gaussian Transformer out-
performs previous state-of-the-arts with one order of magni-
tude fewer parameters.

In addition, we compare the time cost of Gaussian Trans-
former with that of ESIM, a classic recurrent NLI model
with publicly available codes, on the same hardware. We
evaluate them by two metrics: the time to train one epoch
on the SNLI training data and the inference time to iterate

Model Matched Mismatched
ESIM 76.8 / - 75.8 / -
MwAN 78.5 / 79.8 77.7 / 79.4
DIIN 78.8 / 80.0 77.8 / 78.7
CAFE 78.7 / 80.2 77.9 / 79.0
DCRN 79.1 / 80.6 78.4 / 79.5
SAN 79.3 / 80.6 78.7 / 80.1
Gaussian Transformer 80.0 / 81.6 79.4 / 80.7

Table 3: Performance on MultiNLI test set of single / ensem-
ble approaches training from scratch. Gaussian Transformer
improves the state-of-the-art accuracy by 1 percent at most.

ESIM Gauss. Trans. Speedup
Training time 29 mins 8 mins 3.6x
Inference time 31s 4s 7.8x

Table 4: Time consumed for training / predicting on the
SNLI datasets for one epoch.

through the test set once. Thanks to its RNN/CNN-free ar-
chitecture, Gaussian Transformer gains 3.6x / 7.8x speedup
versus ESIM, as shown in Table 4.

Comparison with Approaches using External Knowledge
Reasoning between sentences requires common sense,
which might not be learned only using the training set. To fill
the knowledge gap, approaches directly leveraging external
knowledge, such as KIM (Chen et al. 2017a) using WordNet
(Miller 1995), or indirectly transfer knowledge from other
tasks, e.g., language modeling [ELMo (Peters et al. 2018),
OpenAI Transformer (Radford et al. 2018)], machine trans-
lation [CoVe (McCann et al. 2017)] and discourse marker
prediction [DMAN (Pan et al. 2018)], were proposed. We
explore the feasibility of extending Gaussian Transformer
with a pre-trained language model, i.e., ELMo. We follow
the instructions (Peters et al. 2018), replacing word and char-
acter embeddings with ELMo and concatenating the output
of encoding blocks with ELMo, and present the results in
Table 5.

The ensemble version of Gaussian Transformer achieves
state-of-the-art results among those approaches. However,
compared with pre-trained word embeddings, the improve-
ment by ELMo on SNLI (0.2) is less than that on MultiNLI
(1.0/1.2). The reason might be that the training data in SNLI
is larger than MultiNLI, where each genre contains only
about 80k sentence pairs, while SNLI could be treated as a
single genre including 550k examples. The best performing
individual model, OpenAI Transformer, was trained from
datasets containing billions of words on 8 GPUs for 1 month.
In contrast, our single ELMo-integrated model obtains com-
petitive results using a more lightweight architecture.

Evaluation on Hard NLI Benchmarks Annotation arti-
facts were found in the original NLI datasets and more chal-
lenging benchmarks, i.e., Hard SNLI and MultiNLI were
proposed. As shown in Table 6, Gaussian Transformer im-
proves about 5 percent on average on the Hard NLI datasets,
suggesting that our model is less affected by the undesirable
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Model SNLI M-ma M-mis
KIM 88.6 77.2 76.4
CoVe 88.1 - -
ESIM(ELMo) 88.7 - -
DMAN 88.8 78.9 78.2
DMAN* 89.6 80.3 79.4
OpenAI Transformer 89.9 82.1 81.4
Gaussian Transformer(ELMo) 89.4 81.0 80.6
Gaussian Transformer* 90.5 83.0 82.5

Table 5: Experimental results of approaches using exter-
nal resources. ‘*’ indicates ensemble models. The ensem-
ble Gaussian Transformer improves the state-of-the-art ac-
curacy by 0.6 / 1.0 percent on SNLI / MultiNLI.

annotation artifacts. Integration with ELMo brings about 1.0
percent additional enhancement, showing the usefulness of
knowledge transferred from language models.

Model SNLI M-ma M-mis
DecAtt 69.4 55.8 56.2
ESIM 71.3 59.3 58.9
DIIN 72.7 64.1 64.4
Gaussian Transformer 78.1 69.8 68.5
Gaussian Transformer(ELMo) 79.2 70.7 71.3
Gaussian Transformer* 79.9 73.0 72.8

Table 6: Experimental results on the Hard NLI benchmarks.
‘*’ indicates ensemble models. Gaussian Transformer gains
an improvement of 5.0 percent accuracy on average.

Implementation Details
We implement our model using Tensorflow (Abadi et al.
2016), with the library tensor2tensor (Vaswani et al. 2018).
All experiments are conducted on a single Nvidia Titan
Xp GPU. The best performing individual model consists of
M = 3 encoding blocks, N = 2 interaction blocks, using
H = 4 heads attention with dmodel = 120, dw = 300,
dc = 30. Word embeddings are initialized from the pre-
trained fasttext word vectors (Bojanowski et al. 2016), while
character-level 5-grams embeddings are randomly initial-
ized, and all embeddings remain fixed during training. We
share the parameters of encoding and interaction blocks be-
tween premise and hypothesis, where the parameters at var-
ious depth, however, are different. Dropout (Srivastava et
al. 2014) (rate = 0.1) is applied to all sub-layers. We em-
ploy the AdamWR algorithm (Loshchilov and Hutter 2017)
to train our model on SNLI and MultiNLI separately, with
batch size 64, learning rate range [4E − 5, 3E − 4], normal-
ized weight decay wnorm = 1/600, restarting term T = 10.

Related Work
Neural models became popular in NLI field since large
annotated datasets, i.e., SNLI (Bowman et al. 2015) and
MultiNLI (Williams, Nangia, and Bowman 2017), were re-
leased. The dominant trend of NLI models is employing
deep complex neural models including RNNs (Chen et al.
2017b; Wang, Hamza, and Florian 2017; Tan et al. 2018;

Liu, Duh, and Gao 2018; Ghaeini et al. 2018; Tay, Tuan,
and Hui 2017; Kim et al. 2018), CNNs (Gong, Luo, and
Zhang 2017), SANs (Parikh et al. 2016; Shen et al. 2017;
Im and Cho 2017). Although obtained state-of-the-art re-
sults, those models often cost millions of parameters and lots
of time to train.

Transformer was proposed by Vaswani et al. for machine
translation as an encoder-decoder architecture, which based
solely on attention mechanisms, eschewing recurrence and
convolution. QANet (Yu et al. 2018) was the first model try-
ing to improve the capability of Transformer to model lo-
cal structure of texts, which utilizes convolution layers be-
fore self-attention to capture local dependency. However,
a convolution layer could not model words outside cur-
rent filter window and costs additional parameters. Besides
QANet, Gaussian transformer is also inspired by the fol-
lowing two works: Parikh et al. first introduced a distance-
sensitive bias term to attention mechanisms to capture se-
quential information of sentences. Im and Cho further re-
stricted the distance-based bias to a linearly decaying man-
ner. We also re-implemented those strategies as our base-
lines and found that Gaussian prior probability performs the
best among these enhanced self-attention networks.

Besides training a neural model using only NLI datasets
from scratch, approaches leveraging external resources
(Chen et al. 2017a; Peters et al. 2018; Radford et al. 2018;
McCann et al. 2017; Pan et al. 2018) emerged recently and
further improved the performance of NLI. We also explored
the feasibility of extending the Gaussian Transformer via a
pre-trained language model, i.e., ELMo (Peters et al. 2018).

Gururangan et al. demonstrated that annotation artifacts
in SNLI and MultiNLI inflated NLI models’ performance,
and proposed the Hard NLI benchmarks. We employ their
datasets to evaluate our models besides the original ones.

Lastly, the lightweight character-level n-grams word en-
coding used in this work is inspired by (Tomar et al. 2017).
They used the sum of character n-grams to represent tokens.
We employ max-over-time pooling instead because in this
way our model performs better in preliminary experiments.

Conclusion
In this paper, we propose a novel attention mechanism in-
spired by the ‘chunking’ phenomenon, i.e., Gaussian self-
attention, which could better capture both local structure and
global dependency of sequences without introducing recur-
rence or convolution.

Then we present an efficient NLI model named Gaussian
Transformer, consisting of Gaussian encoding blocks, high-
order interaction blocks and efficient comparison blocks,
outperforming previous state-of-the-art approaches on both
SNLI and MultiNLI benchmarks with significantly fewer
parameters and considerably less training time.

Additional evaluation using the Hard NLI datasets
demonstrates that the proposed approach is less affected by
the undesirable annotation artifacts than previous works.

We also explore the feasibility of extending Gaussian
Transformer using external resources, and obtain further im-
provement brought by the transferred knowledge from a pre-
trained language model.
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