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Abstract

In several natural language tasks, labeled sequences are avail-
able in separate domains (say, languages), but the goal is to
label sequences with mixed domain (such as code-switched
text). Or, we may have available models for labeling whole
passages (say, with sentiments), which we would like to
exploit toward better position-specific label inference (say,
target-dependent sentiment annotation). A key characteris-
tic shared across such tasks is that different positions in a
primary instance can benefit from different ‘experts’ trained
from auxiliary data, but labeled primary instances are scarce,
and labeling the best expert for each position entails unac-
ceptable cognitive burden. We propose GIRNet, a unified
position-sensitive multi-task recurrent neural network (RNN)
architecture for such applications. Auxiliary and primary
tasks need not share training instances. Auxiliary RNNs are
trained over auxiliary instances. A primary instance is also
submitted to each auxiliary RNN, but their state sequences
are gated and merged into a novel composite state sequence
tailored to the primary inference task. Our approach is in
sharp contrast to recent multi-task networks like the cross-
stitch and sluice networks, which do not control state trans-
fer at such fine granularity. We demonstrate the superiority
of GIRNet using three applications: sentiment classification
of code-switched passages, part-of-speech tagging of code-
switched text, and target position-sensitive annotation of sen-
timent in monolingual passages. In all cases, we establish new
state-of-the-art performance beyond recent competitive base-
lines.

1 Introduction
Neural networks have shown outstanding results in many
Natural Language Processing (NLP) tasks, particularly in-
volving sequence labeling (Schmid 1994; Lample et al.
2016) and sequence-to-sequence translation (Bahdanau,
Cho, and Bengio 2014). The success is generally attributed
to their ability to learn good representations and recurrent
models in an end-to-end manner. Most deep models require
generous volumes of training data to adequately train their
large number of parameters. Collecting sufficient labeled
data for some tasks entails unacceptably high cognitive bur-
den. To overcome this bottleneck, some form of transfer
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learning, semi-supervised learning or multi-task learning
(MTL) is used.

In the most common form of MTL, related tasks such as
part-of-speech (POS) tagging and named entity recognition
(NER) share representation close to the input, e.g., as char-
acter n-gram or word embeddings, followed by separate net-
works tailored to each prediction task (Søgaard and Gold-
berg 2016; Maurer, Pontil, and Romera-Paredes 2016). Care
is needed to jointly train shared model parameters to prevent
one task from hijacking the representation (Ruder 2017).

Sequence labeling brings a new dimension to MTL. In
many NLP tasks, labeled sequences are readily available in
separate single languages, but our goal may be to label se-
quences from code-switched multilingual text. Or, we may
have trained models for labeling whole sentences or pas-
sages with overall sentiment, but the task at hand is to infer
the sentiment expressed toward a specific entity mentioned
in the text. Ideally, we would like to build a composite state
sequence representation where each position draws state in-
formation from the best ‘expert’ auxiliary sequence, but in-
stances are diverse in terms of where the experts switch, and
annotating these transitions would entail prohibitive cogni-
tive cost. We survey related work in Section 2, and explain
why most of them do not satisfy our requirements.

By abstracting the above requirements into a uni-
fied framework, in Section 3 we present GIRNet (Gated
Interleaved Recurrent Network)1, a novel MTL network tai-
lored for dynamically daisy-chaining at a word level the best
experts along the input sequence to derive a composite state
sequence that is ideally suited for the primary task. The
whole network over all tasks is jointly trained in an end-to-
end manner. GIRNet applies both when we have common
instances for the tasks and when we have only disjoint in-
stances over the tasks. Motivated by low-resource NLP chal-
lenges, we assume that one task is primary but with scant
labeled data, whereas the auxiliary tasks have more labeled
data available. We train standard LSTMs on the auxiliary
models; but when a primary instance is run through the aux-
iliary networks, their states are interleaved using a novel,
dynamic gating mechanism. Remarkably, without access to
any segmentation of primary instances, GIRNet learns gate

1The code is available at
https://github.com/divamgupta/mtl\ girnet
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values such that auxiliary states are daisy-chained to maxi-
mize primary task performance.

We can think of GIRNet as emulating an LSTM whose
cell unit changes dynamically with input tokens. E.g., for
each token in a code-switched sentence over two languages,
GIRNet learns to choose the cell unit from an LSTM trained
on text in the language in which that token is written. GIR-
Net achieves this with an end-to-end differentiable network
that does not need supervision about which language is used
for each token.

In Section 4, we instantiate the GIRNet template to
three concrete applications: sentiment labeling of code-
switched passages, POS tagging of code-switched passages,
and target-dependent (monolingual) sentiment classifica-
tion. Where the primary task is to tag code-switched mul-
tilingual sequences, the auxiliary tasks would be to tag
the component monolingual texts. For target-dependent sen-
timent classification, the auxiliary task would be target-
independent whole-passage sentiment classification. In all
three applications, we consistently beat competitive base-
lines to establish new state-of-the-art performance. These
experiments are described in Section 5.

Summarizing, our contributions are four-fold:

• GIRNet, a novel position- and context-sensitive dynamic
gated recurrent network to compose state sequences from
auxiliary recurrent units.

• Three applications that are readily expressed as concrete
instantiations of the GIRNet framework.

• Superior performance in all three applications.

• Thorough diagnostic interpretation of GIRNet’s behavior,
demonstrating the intended gating effect.

2 Related work
The most common neural MTL architecture shares param-
eters in initial layers (near the inputs) and trains separate
task-specific layers for per-task prediction (Caruana 1993;
Søgaard and Goldberg 2016; Maurer, Pontil, and Romera-
Paredes 2016). In applications where tasks are not closely
related, finding a common useful representation for all tasks
is hard. Moreover, jointly training shared model parameters,
while preventing one task from hijacking the representation,
may be challenging (Ruder 2017). In soft parameter sharing
(Duong et al. 2015), each task has its separate set of param-
eters and the distance between the inter-task parameters is
minimized by adding an additional loss while training.

In some cases, rather than just sharing the parameters
(completely or partially), state sequence features extracted
by the model for one task are fed into the model of an-
other task. In shared-private MTL models, there is one com-
mon shared model over all tasks and also separate private
models for each task. The following approaches combine
information from shared and private LSTMs at the granu-
larity of token positions. Liu, Qiu, and Huang (2017) and
Chen et al. (2018b) use one shared LSTM and one private
LSTM per task. Liu, Qiu, and Huang (2017) concatenate
their outputs, whereas Chen et al. (2018b) concatenate the

shared LSTM state with the input embeddings. In the low-
supervision MTL model (Søgaard and Goldberg 2016), aux-
iliary tasks are trained on the lower layers and the primary
task is trained on the higher layer. None of these models
control the amount of information shared between different
tasks. To overcome this problem, various network architec-
tures have been evolved to control more carefully the trans-
fer across different tasks. Cross-stitch (Misra et al. 2016) and
sluice (Ruder et al. 2017b) networks are two such frame-
works. Chen et al. (2018a) have used reinforcement learn-
ing to search for the best patterns of sharing between tasks.
However, transfer happens at the granularity of layers, and
not recurrent positions. Also, transfer happens usually via
vector concatenation. No gating information crosses RNN
boundaries. Meta-MTL (Chen et al. 2018b) uses an LSTM
shared across all tasks to control the parameters of the task-
specific LSTMs. As will become clear, we gain more rep-
resentational power by gating and interleaving of auxiliary
states driven by the input. Further details of some of the
above approaches are discussed along with experiments in
Section 5.

3 Formulation and proposed architecture
Our abstract problem setting consists of a primary task and
m ≥ 1 auxiliary tasks. E.g., the primary task may be part-
of-speech (POS) tagging of code-mixed (say, English and
Spanish) text, and the two auxiliary tasks may be POS tag-
ging of pure English and Spanish text. All tasks involve la-
beling sequences, but the labels may be per-token (e.g., POS
tagging) or global (e.g., sentiment analysis). Labeled data
for the primary task is generally scarce compared to the
auxiliary tasks. Different tasks will generally have disjoint
sets of instances. Our goal is to mitigate the paucity of pri-
mary labeled data by transferring knowledge from auxiliary
labeled data. Our proposed architecture is particularly suit-
able when different parts or spans of a primary instance are
related to different auxiliary tasks, and these primary spans
are too expensive or impossible to identify during training.

In this section, we introduce GIRNet (Gated Interleaved
Recurrent Network), our deep multi-task architecture which
learns to skip or select spans in auxiliary RNNs based on
its ability to assist the primary labeling task. We describe
the system by using LSTMs, but similar systems can be
built using other RNNs such as GRUs. Before going into
details, we give a broad outline of our strategy. Auxiliary
labeled instances are input to auxiliary LSTMs to reduce
auxiliary losses (Section 3.2). Each primary instance is in-
put to a ‘gating’ LSTM (Section 3.3) and a variation of each
auxiliary LSTM, which run concurrently with a composite
sequence assembled from the auxiliary state sequences us-
ing the scalar gate values (Section 3.4). In effect, our net-
work learns to dynamically daisy-chain the best auxiliary
experts word by word. Finally, the composite state sequence
is combined with a primary LSTM state sequence to produce
the primary prediction, with its corresponding primary loss
(Section 3.5).

Auxiliary and primary losses are jointly optimized.
Weights of each auxiliary LSTM are updated by its own
loss function and the loss of the primary task, but not any
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other auxiliary task. Remarkably, the scalar gating LSTM
can learn without supervision how to assemble the compos-
ite state sequence. Qualitative inspection of the gate outputs
show that the selection of the auxiliary states indeed gets
tailored to the primary task. A high-level sketch of our ar-
chitecture is shown in Figure 1 with two auxiliary tasks and
one primary task.
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Figure 1: Part of GIRNet that processes primary input xprim
t ,

which is provided to primary LSTM ‘prim’ and auxiliary
LSTMs ‘auxj’ for j = 1, 2 in this example, as well as gating
logic φ. (xprim

t has been elided to reduce clutter.) Training
of auxiliary LSTMs on auxiliary inputs is standard, and has
been omitted for clarity. hcomp

t is the gated composite state
sequence. ⊕ represents elementwise addition and � repre-
sents elementwise multiplication of the vector input with the
scalar gate input.

3.1 Input embedding layer
Each input instance is a sentence- or passage-like sequence
of words or tokens that are mapped to integer IDs. An em-
bedding layer maps each ID to a d-dimensional vector. The
resulting sequence of embedding vectors for a sentence will
be called x. We use a common embedding matrix over all
auxiliary and primary tasks. The embedding matrix is initial-
ized randomly or using pre-trained embeddings (Penning-
ton, Socher, and Manning 2014; Mikolov et al. 2013), and
then trained along with the rest of our network. Labeled in-
stances will be accompanied by a suitable label y.

3.2 Auxiliary LSTMs run on auxiliary input
For each auxiliary task j ∈ [1,m], we train a separate auxil-
iary LSTM using a separate set of labeled instances, which
we call xauxauxj = (x

auxauxj
t : t = 1, . . . , T ), where t indexes

positions, and the ground-truth is yauxauxj . The signature and

dimension of yauxauxj can vary with the nature of the auxil-
iary task (classification, sequence labeling, etc.)

For auxiliary task j, we define the LSTM state at each
position t: input gate iauxauxj

t , output gate oauxauxj
t , forget gate

f
auxauxj
t , memory state cauxauxj

t and hidden state hauxauxj
t , all

vectors in Rd. For all auxiliary task models, we use the same
number of hidden units.
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(For compact notation we have written the operators to be
applied in a column vector.) Using the hidden states of the
LSTM for the auxiliary task, we get the desired output using
another model M auxauxj . E.g., we can use a fully connected
layer over the last hidden states or pooled hidden states for
the whole-sequence classification. We can use a fully con-
nected layer on each hidden state for sequence labeling. Us-
ing generic notation,

outauxauxj =M auxauxj (h
auxauxj
1 , h

auxauxj
2 , . . . , hauxauxj

n ) (4)
For each auxiliary task j, a separate loss

lossauxauxj (outauxauxj , yauxauxj ) (5)
is computed using the model output and the ground-truth.
The losses of all auxiliary tasks are added to the final loss.

3.3 LSTM on primary instance to produce gating
signal

A primary input instance is written as xprim =

(xprim
1 , . . . , xprim

n ) and the ground-truth label as yprim. At each
token position t, the gating LSTM has internal representa-
tions as follows: input gate iprim

t , output gate oprim
t , forget

gate f prim
t , memory state cprim

t and hidden state hprim
t . All

these vectors are in Rd′
, where d′ is the number of hidden

units in the gating LSTM.
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t

oprim
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iprim
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t

 =
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xprim
t
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])
(6)

cprim
t = c̃prim

t � iprim
t + cprim

t−1 � f
prim
t (7)

hprim
t = oprim

t � tanh cprim
t (8)

Here we describe the RNN that produces the gating signal
as a uni-directional LSTM, but, depending on the applica-
tion, we could use bi-directional LSTMs. Using the hidden
state of the gating LSTM and its input at token position t,
we compute gate vector gt ∈ Rm, where m is the number
of auxiliary tasks. I.e., for each auxiliary task, we predict a
scalar gate value.

gt = φ

(
W gator

[
xprim
t

hprim
t−1

])
(9)

6499



Here φ is an activation function which should ensure∑m
j=1 gt[j] ≤ 1. The rationale for this stipulation will be-

come clear shortly from Equations (10) and (11). We imple-
ment φ by including a fully-connected layer that generates
m+1 scalar values, followed by applying soft-max, and dis-
carding the last value.

3.4 Auxiliary and gated composite LSTMs run on
primary input

For prediction on a primary instance to benefit from aux-
iliary models, the primary instance is also processed by a
variant of each auxiliary LSTM. The model weights W auxj

of each auxiliary LSTM will be borrowed from the corre-
sponding auxiliary task, but the input is xprim

t and the states
will be composite states over all auxiliary LSTMs. Therefore
the internal cell variables will have different values, which
we therefore give different names: input gate i

primauxj
t , output

gate o
primauxj
t , forget gate f

primauxj
t , memory state c

primauxj
t

and hidden state h
primauxj
t . All these vectors are in Rd.

A key innovation in our architecture is that, along
with these auxiliary states, we will compute, position-by-
position, a gated, composite state sequence comprised of
ccomp
t and hcomp

t . The idea is to draw upon that auxiliary task,
if any, that is best qualified to lend representation to the pri-
mary task, position by position. Recall from Section 3.3 that
gt[j] denotes the relevance of the auxiliary model j at token
position t of the primary instance. If gt[j] → 1, then the
state of auxiliary model j strongly influences hcomp in the
next step. If, for all j, gt[j] → 0, then no auxiliary model is
helpful at position t. Therefore, the previous composite state
is passed to the next time step as is. The skip possibility also
makes training easier by countering vanishing gradients.

hcomp
t =

m∑
j=1

h
primauxj
t gt[j] +

1−
m∑
j=1

gt[j]
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t−1 (10)
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c
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1−
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j=1

gt[j]
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t−1 (11)

E.g., in target-dependent sentiment analysis, the auxiliary
LSTM may identify sentiment-bearing words irrespective of
target, and the composite state sequence prepares the stage
for detecting the polarity of sentiment at a designated target.
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The overall flow of information between many embedding
variables is complicated. Therefore, we have sketched it for
clarity in Figure 2. To elaborate further, at step t − 1, we

xaux

hauxauxoutauxaux

xprim

W aux

hprimaux

hprim M prim outprim

g

hcomp

lossauxaux

yaux

lossprim

yprim

Figure 2: Variables defined using other variables and ob-
served constants. Auxiliary and primary tasks are tied
via W aux. Self-loops indicate recurrence. Only states h
shown for simplicity; c assumed to accompany them.

compute hcomp
t−1 by combining all hprimaux using gate signals.

The composite state is then fed into each auxiliary cell in the
current step t.

3.5 Combining gating and composite states for
primary prediction

Using the hidden states from the axillary LSTMs and the pri-
mary LSTM, we get the desired output using another model
M prim. For example, we can use a fully connected layer over
the last hidden states or pooled hidden states for classifica-
tion. We can use a fully connected layer on all hidden states
for sequence labeling tasks.

outprim =M prim(hprim
1 , . . . , hprim

n ;hcomp
1 , . . . , hcomp

n ) (15)

The loss of the primary task,

lossprim(outprim, yprim), (16)

is computed using the model output and the ground truth of
the primary task data point.

3.6 Training and regularization
The system is trained jointly across auxiliary and primary
tasks. We sample {xprim, yprim} from the primary task dataset
and {xauxaux1 , yauxaux1}, {xauxaux2 , yauxaux2}, . . . , {xauxauxm ,
yauxauxm} from the auxiliary task datasets respectively. We
compute the loss for the primary task and the auxiliary tasks
as defined above. The total loss is the weighted sum of the
loss of the primary task and the auxiliary tasks, where αj is
the weight of the auxiliary task (a tuned hyperparameter).

lossall = lossprim +

m∑
j=1

αj lossauxauxj (17)

Optionally, we can use activity regularization on gt, such
that it is either close to 1 or close to 0. The regularization
loss is:

lossreg = λ

n∑
t=1

‖min(gt, 1− gt)‖1 (18)

which discourages g from “sitting on the fence” near 0.5.
Regularization loss is added to lossall.
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4 Concrete instantiations of GIRNet
In this section, we present three concrete instantiations of
GIRNet, and their detailed architecture.

4.1 Sentiment classification of code-switched
passages

In code-switched text, words from two languages are used.
Code switching is common in informal conversations and
in social media where participants are multilingual users.
Usually, ‘imported’ tokens are transliterated into a charac-
ter set commonly used in the ‘host’ language, making span
language identification (the ‘language identification task’)
non-trivial. Let the languages be A and B with vocabu-
laries DA and DB , respectively. We are given a word se-
quence (w1, w2, . . . , wN ), where each wordwi ∈ DA∪DB .
Our goal is to infer a sentiment label from {−1, 0,+1} for
the whole sequence. As stipulated in Section 3, labeled in-
stances and classification techniques are readily available for
text in single languages (auxiliary task) (Tang et al. 2015a;
Wang et al. 2017), but rare for code-switched text (pri-
mary task). Recent sequence models for sentiment classifi-
cation in one language essentially recognize the sentiments
in words or short spans. For such monolingual models to
work well for code-switched text, the words and spans must
be labeled with their languages, which is difficult and error-
prone. Combining signals from auxiliary models is not triv-
ial because some words in language A (e.g., ‘not’ in En-
glish) could modify sentiments expressed by other words in
language B.

Datasets: For the primary task we use the sentiment clas-
sification dataset of English-Spanish code-switched sen-
tences (Vilares, Alonso, and Gómez-Rodrı́guez 2015). Each
sentence has a human labeled sentiment class in {−1, 0, 1}.
The training and test sets contain 2,449 and 613 instances,
respectively. We use two disjoint auxiliary task datasets. For
sentiment classification of English sentences, we use the
Twitter dataset provided by Sentistrength2, which has 7,217
labeled instances. For sentiment classification of Spanish
sentences, we use the Twitter dataset by Villena Roman et
al. (2015), containing 4,241 labeled instances.

Model description: We use two LTSMs with 64 hidden
units for the auxiliary task of English and Spanish senti-
ment classification. The output of only the last step is fed
into a fully connected layer with 3 units and softmax ac-
tivation. We use three separate fully connected layers for
English, Spanish and English-Spanish tasks. For the pri-
mary RNN which produces the gating signal, we use a bi-
directional LSTM with 32 units. The gating signal is pro-
duced by adding a fully connected layer of 3 units with soft-
max activation on each step of the primary RNN. The word
embeddings are initialized randomly and trained along with
the model.

4.2 POS tagging of code-switched sentences
Our second application is part-of-speech (POS) tagging of
code-switched sentences. Unlike sentiment classification,

2http://sentistrength.wlv.ac.uk

here a label is associated with each token in the input se-
quence. As in sentiment classification, we can use auxiliary
models built from learning to tag monolingual sentences. A
word in language A may have multiple POS tags depend-
ing on context, but context information may be provided
by neighboring words in language B. E.g., in the sentence
“mein iss car ko like karta hu” (meaning “I like this car”),
the POS tag of ‘like’ depends on the Hindi text around it.
The input sentence is again denoted by (w1, w2, . . . , wN ),
with each word wi ∈ DA ∪DB . The goal is to infer a label
sequence (y1, y2, . . . , yN ), where yi comes from the set of
all POS tags over the languages. To predict the POS tag at
each word, we apply a fully connected layer to the compos-
ite hidden state.

Datasets: For the primary task we use a Hindi-English
code-switch dataset provided in a shared task of ICON’16
(Patra, Das, and Das 2018). It contains sentences from Face-
book, Twitter and Whatsapp. It has 19 POS tags, and the
training and test sets have 2102 and 528 instances, respec-
tively. For the auxiliary dataset of Hindi POS tagging, we
use the data released by (Sachdeva et al. 2014), containing
14,084 instances with 25 POS tags. For the auxiliary dataset
of English POS tagging, we use the data released in a shared
task of CoNLL 2000 (Tjong Kim Sang and Buchholz 2000),
containing 8,936 instances with 45 POS tags.

Model description: We use two LTSMs with 64 hidden
units for the auxiliary task of English and Hindi POS tag-
ging. For the primary task, hcomp

t at each position is fed into
a fully connected layer with 19 units with softmax activa-
tion. For the two auxiliary tasks, hauxaux1

t and hauxaux2
t are fed

into the two separate fully connected layers of 25 and 45
units at each word for Hindi and English tags, respectively.
For the primary RNN which produces the gating signal, we
use a bi-directional LSTM with 32 units. The gating signal is
produced by adding a fully connected layer of 3 units with
softmax activation in each step of the primary RNN. The
first two elements are the English and Hindi gates. The word
embeddings are initialized randomly and trained along with
the model.

4.3 Target-dependent sentiment classification
Our third application is target-dependent sentiment classifi-
cation (TDSC), where we are given a sentence or short (as-
sumed monolingual here) passage (w1, w2, . . . , wN ) with
a designated span [i, j] that mentions a named-entity tar-
get. The primary task is to infer the polarity of sentiment
expressed toward the target. Our auxiliary task is whole-
passage sentiment classification, for which collecting la-
beled instances is easier (Go, Bhayani, and Huang 2009;
Sanders 2011). The passage-level task has a label associated
with the whole passage, rather than a specific target posi-
tion. E.g., in the tweet “I absolutely love listening to elec-
tronic music, however artists like Avici & Tiesta copy it from
others”, the overall sentiment is positive, but the sentiments
associated with both targets ‘Avici’ and ‘Tiesta’ are negative.

Datasets: For the primary task i.e., target-dependent sen-
timent classification, we use dataset of the SemEval 2014
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task 4 (Pontiki et al. 2014). It contains reviews from two do-
mains – Laptops (2,328 training and 638 testing instances)
and Restaurants (3,608 training and 1120 testing instances).
The dataset for its corresponding auxiliary task is Yelp2014,
consisting of similar types of 183,019 reviews. All of these
datasets have three classes {+1, 0,−1}.

Model description: This application is another useful in-
stantiation of GIRNet, because (i) by training on whole-
passage instances, the auxiliary RNN learns to identify the
polarity of words and their local combinations (“not very
good”), (ii) the primary RNN learns to focus on the span
related to the target entity.

In order to infer the sentiment of the target entity, the
model would have to find the regions which are related to the
given target entity and use the information learned from the
auxiliary task. For qualitative analysis of our model, we will
visualize the values of the scalar gates and find that words
related to the target entity are passed through the auxiliary
RNN and others are skipped/blocked. Here we implement
GIRNet on top of TD-LSTM (Tang et al. 2015b). We can
think of it as two separate instances, for the left and right
context spans of the target.

For the primary task i.e., target-dependent sentiment clas-
sification, we use two separate RNNs to produce the gating
signals and capture primary features which are not captured
by the auxiliary RNN. Since there is only one auxiliary task,
the controller either skips the RNN at a particular word or it
may pass it to the auxiliary RNN. Given an input sentence
and a target entity, we split the sentence at the position of
the target entity. We input the left half of the sentence to the
left primary and auxiliary RNN and the right half to the right
auxiliary and primary RNN. Rather than pooling the states,
we do a weighted pool where we sum the hidden states after
multiplying with the gate values. Similar to TD-LSTM, The
pooling of left and right is done separately and then concate-
nated.

For the auxiliary task i.e., sentiment classification of the
complete sentence, we use a left RNN and a right RNN so
that we can couple them with the two primary RNNs. We
run both the left and right auxiliary RNNs on the input text
and the reversed input text respectively. At each token of the
input sentence we concatenate the hidden state of the left
RNN and the right RNN. For sentiment classification of the
complete sentence, we take an average pool the features of
all the token positions and pass it to a fully connected layer
with softmax activation for classification of the sentiment
score.

5 Comparative Evaluation
In this section, we first describe baseline approaches, fol-
lowed by a comparison between them and GIRNet over the
three concrete tasks we set up in Section 4.

5.1 Baseline Methods
Here we briefly describes several MTL-based baselines
(along with their variants) used in all three applications men-
tioned in Section 4. A few other application-specific base-
lines are mentioned in Section 5.2.

Model Accuracy Macro F1 Precision Recall
LSTM (No MTL) 59.22 58.34 58.86 58.01
HardShare 1L 60.36 59.65 60.28 59.23
HardsShare 2L 57.10 55.21 56.59 54.88
LowSupShare 55.95 54.42 55.42 54.23
LowSupConcat 56.61 55.84 57.22 55.25
XStitch 1L 59.71 58.59 59.94 58.08
XStitch 2L 56.44 48.31 58.76 51.35
Sluice 58.56 57.71 57.61 58.18
PSP-MTL 59.22 59.23 59.04 59.62
SSP-MTL 59.71 59.75 59.45 60.33
Meta-MTL 57.59 54.56 58.39 54.24
Coupled RNN 56.77 55.69 55.85 55.70
GIRNet 1L 63.30 62.36 63.35 61.83
GIRNet 2L 61.99 61.23 61.79 61.13

Table 1: Accuracy of the competing models for the senti-
ment classification of code-switched passages. F1 score, pre-
cision and recall are macro-averaged.

LSTM (no MTL): LSTM trained on just the primary task.

Hard Parameter Sharing (HardShare): This model
(Caruana 1993) uses the same LSTM for all the tasks along
with the separate task-specific classifiers. We show results
for both 1-layer LSTM (HardShare 1L) and 2-layer LSTM
(HardShare 2L).

Low Supervision (LowSup): This model (Søgaard and
Goldberg 2016) uses a 2-layer LSTM, where the auxiliary
tasks are trained on the lower layer LSTM, and the primary
task is trained on the higher layer LSTM. Here we show
results on two schemes: 1) LowSupShare: same LSTM is
used for all auxiliary tasks, 2) LowSupConcat: outputs of
separate layer-1 LSTM concatenated.

Cross-stitch Network (XStitch): This model (Misra et al.
2016) has separate LSTM for each task. The amount of in-
formation shared to the next layer is controlled by trainable
scalar parameters. We show results for both 1-layer LSTM
(XStitch 1L) and 2-layer LSTM (XStitch 2L).

Sluice Network (Sluice): This is an extension (Ruder et
al. 2017a) of cross-stitch network, where the outputs of the
intermediate layers are fed to the final classifier. Here, rather
than applying the stitch module on the LSTM outputs at a
layer, they split the channels of each LSTM and apply the
stitch module.

Shared-private sharing scheme: In this architecture
there is a common shared LSTM over all tasks and sepa-
rate LTSMs for each task. We show results on two schemes
1) parallel shared-private sharing scheme (PSP-MTL) as
described by (Liu, Qiu, and Huang 2017), where the outputs
of the private LSTM and shared LSTM are concatenated;
and 2) stacked shared-private sharing scheme (SSP-MTL)
as described by (Chen et al. 2018b), where output of the
shared LSTM is concatenated with the sentence which is fed
to the private LSTM.

Meta multi-task learning (Meta-MTL): In this model
(Chen et al. 2018b), the weight of the task specific LSTM
is a function of a vector produced by the Meta LSTM which
is shared across all the tasks.
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Model Accuracy Macro F1 Precision Recall
LSTM (no MTL) 61.46 40.55 47.18 40.84
HardShare 1L 62.19 40.55 45.00 39.18
HardShare 2L 62.10 42.33 47.77 40.87
LowSupShare 61.99 43.62 46.88 42.53
LowSupConcat 62.66 43.82 50.17 41.75
XStitch 1L 63.28 44.39 54.51 42.11
XStitch 2L 62.88 41.78 48.03 39.75
Sluice 60.90 40.81 43.95 40.35
PSP-MTL 62.93 41.88 47.85 39.98
SSP-MTL 62.90 37.63 46.36 35.49
Meta-MTL 62.25 41.33 47.4 39.77
Coupled RNN 62.44 41.91 52.73 40.20
GIRNet 1L 64.29 47.58 53.51 45.48
GIRNet 2L 63.13 45.75 51.34 43.65

Table 2: Accuracy of the competing models for the POS tag-
ging of code-switched sentences. F1 score, Precision and Re-
call are macro averaged.

Coupled RNN: This model (Liu, Qiu, and Huang 2016)
has an LSTM for each task which uses the information of
the other task.

5.2 Experimental Results

Tables 1, 2 and 3 show the results for GIRNet and other MTL
baselines for three applications mentioned in Section 4. We
observe a significant improvement of GIRNet over all other
models. For a fair comparison with multi-layer LSTM MTL
models, we show results of GIRNet with two LSTM layers.
This is because some models like Sluice and LowSup can
only be implemented with > 1 LSTM layers. We see that
for three applications, all the 2-layer LSTM based models
have worse performance compared to the single layer LSTM
models. However, GIRNet with two layers outperforms all
other 2-layer LSTM models. The Coupled RNN and the
Meta-MTL are defeated by GIRNet. It uses scalar gates and
has fewer degrees of freedom, which helps in learning with
less data. GIRNet beats XStitch and Sluice as they do not
have any sharing of information at a granularity of words.

We also compare GIRNet with some single-task base-
lines in Table 3. These methods are designed particularly
for target-specific sentiment classification. TD-LSTM (Tang
et al. 2015b) is the no-MTL baseline for the task of TDSC
as in this case, GIRNet is implemented on top of TDSC. In
the TD-LSTM + Attention model (Wang et al. 2016), atten-
tion score at each token is computed which is used to do a
weighted pooling of the hidden states. In Memory network
(MemNet) (Tang, Qin, and Liu 2016), multiple modules of
memory are stacked and the initial key is the target entity.

5.3 Visualization

To get insight into GIRNet’s success, we studied the scalar
gate values at each word of input sentences. Table 4 shows
scalar gate values for a few TDSC instances. We see that
words associated with the target entity get larger gate val-
ues, which is particularly beneficial for multiple entities and
diverse sentiments.

Model Laptop Restaurant
Accuracy F1 Accuracy F1

TD-LSTM 71.38 68.42 78.00 66.73
TD-LSTM + Att. 72.14 67.45 78.89 69.01
MemNet 70.33 64.09 78.16 65.83
HardShare 1L 72.27 66.71 78.66 66.08
HardShare 2L 70.72 63.70 78.13 66.16
LowSupShare 71.65 65.74 79.64 68.46
XStitch 1L 71.81 65.5 79.02 68.55
XStitch 2L 73.05 67.63 78.93 68.24
Sluice 71.50 66.10 78.84 69.62
PSP-MTL 71.65 65.45 79.55 68.75
SSP-MTL 70.87 65.93 79.11 69.32
Meta-MTL 71.34 66.19 78.66 68.17
Coupled RNN 71.34 64.68 79.19 65.98
GIRNet 1L 74.92 69.67 82.41 74.35
GIRNet 2L 75.86 71.39 80.18 69.14

Table 3: Accuracy and macro F1 of the competing models
for the target-dependent sentiment classification.

Target Gate heatmap
Soup the service is great, my soup always ar-

rives nice and hot.
Appetizers appetizers are ok, but the service is slow.
Service appetizers are ok, but the service is slow.

Table 4: Gating heatmaps of Target-dependent sentiment
classification. In each case, words associated with the target
get the largest gate values.

6 Conclusion
Sequence labeling tasks are often applied to multi-domain
(such as code-switched) sequences. But labeled multi-
domain sequences are more difficult to collect compared to
single-domain (such as monolingual) sequences. We there-
fore need sequence MTL, which can train auxiliary sequence
models on single-domain instances, and learn, in an unsu-
pervised manner, how to interleave composite sequences by
drawing on the best auxiliary sequence model cell at each
token position. We tested our model on three concrete ap-
plications and obtained larger accuracy gains compared to
other MTL architectures.
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