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Abstract

We address two challenges in topic models: (1) Context infor-
mation around words helps in determining their actual mean-
ing, e.g., “networks” used in the contexts artificial neural net-
works vs. biological neuron networks. Generative topic mod-
els infer topic-word distributions, taking no or only little con-
text into account. Here, we extend a neural autoregressive
topic model to exploit the full context information around
words in a document in a language modeling fashion. The
proposed model is named as iDocNADE. (2) Due to the small
number of word occurrences (i.e., lack of context) in short
text and data sparsity in a corpus of few documents, the ap-
plication of topic models is challenging on such texts. There-
fore, we propose a simple and efficient way of incorporating
external knowledge into neural autoregressive topic models:
we use embeddings as a distributional prior. The proposed
variants are named as DocNADEe and iDocNADEe.
We present novel neural autoregressive topic model variants
that consistently outperform state-of-the-art generative topic
models in terms of generalization, interpretability (topic co-
herence) and applicability (retrieval and classification) over 7
long-text and 8 short-text datasets from diverse domains.

Introduction
Probabilistic topic models, such as LDA (Blei, Ng, and
Jordan 2003), Replicated Softmax (RSM) (Salakhutdinov
and Hinton 2009) and Document Autoregressive Neural
Distribution Estimator (DocNADE) (Larochelle and Lauly
2012) are often used to extract topics from text collections
and learn document representations to perform NLP tasks
such as information retrieval (IR), document classification
or summarization.

To motivate our first task of incorporating full contex-
tual information, assume that we conduct topic analysis on a
collection of research papers from NIPS conference, where
one of the popular terms is “networks”. However, without
context information (nearby and/or distant words), its ac-
tual meaning is ambiguous since it can refer to such dif-
ferent concepts as artificial neural networks in computer
science or biological neural networks in neuroscience or
Computer/data networks in telecommunications. Given the
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context, one can determine the actual meaning of “net-
works”, for instance, “Extracting rules from artificial neural
networks with distributed representations”, or “Spikes from
the presynaptic neurons and postsynaptic neurons in small
networks” or “Studies of neurons or networks under noise
in artificial neural networks” or “Packet Routing in Dynam-
ically Changing Networks”.

Generative topic models such as LDA or DocNADE infer
topic-word distributions that can be used to estimate a doc-
ument likelihood. While basic models such as LDA do not
account for context information when inferring these distri-
butions, more recent approaches such as DocNADE achieve
amplified word and document likelihoods by accounting
for words preceding a word of interest in a document.
More specifically, DocNADE (Larochelle and Lauly 2012;
Zheng, Zhang, and Larochelle 2016) (Figure 1, Left) is
a probabilistic graphical model that learns topics over se-
quences of words, corresponding to a language model (Man-
ning and Schütze 1999; Bengio et al. 2003) that can be in-
terpreted as a neural network with several parallel hidden
layers. To predict the word vi, each hidden layer hi takes
as input the sequence of preceding words văi. However, it
does not take into account the following words vąi in the se-
quence. Inspired by bidirectional language models (Mousa
and Schuller 2017) and recurrent neural networks (Elman
1990; Gupta, Schütze, and Andrassy 2016; Vu et al. 2016b;
2016a), trained to predict a word (or label) depending on its
full left and right contexts, we extend DocNADE and incor-
porate full contextual information (all words around vi) at
each hidden layer hi when predicting the word vi in a lan-
guage modeling fashion with neural topic modeling.

While this is a powerful approach for incorporating con-
textual information in particular for long texts and cor-
pora with many documents, learning contextual informa-
tion remains challenging in topic models with short texts
and few documents, due to (1) limited word co-occurrences
or little context and (2) significant word non-overlap in
such short texts. However, distributional word representa-
tions (i.e. word embeddings) have shown to capture both
the semantic and syntactic relatedness in words and demon-
strated impressive performance in natural language process-
ing (NLP) tasks. For example, assume that we conduct
topic analysis over the two short text fragments: “Goldman
shares drop sharply downgrade” and “Falling market homes
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Figure 1: DocNADE (left), iDocNADE (middle) and DocNADEe (right) models. Blue colored lines signify the connections that
share parameters. The observations (double circle) for each word vi are multinomial. Hidden vectors in green and red colors
identify the forward and backward network layers, respectively. Symbols ÝÑv i andÐÝv i represent the autoregressive conditionals
ppvi|văiq and ppvi|vąiq, respectively. Connections between each vi and hidden units are shared, and each conditional ÝÑv i (or
ÐÝv i) is decomposed into a tree of binary logistic regressions, i.e. hierarchical softmax.

weaken economy”. Traditional topic models will not be able
to infer relatedness between word pairs across sentences
such as (economy, shares) due to the lack of word-overlap
between sentences. However, in embedding space, the word
pairs (economy, shares), (market, shares) and (falling, drop)
have cosine similarities of 0.65, 0.56 and 0.54.

Therefore, we incorporate word embeddings as fixed
prior in neural topic models in order to introduce com-
plementary information. The proposed neural architectures
learn task specific word vectors in association with static
embedding priors leading to better text representation for
topic extraction, information retrieval, classification, etc.

The multi-fold contributions in this work are: (1) We pro-
pose an advancement in neural autoregressive topic model
by incorporating full contextual information around words
in a document to boost the likelihood of each word (and
document). This enables learning better (informed) docu-
ment representations that we quantify via generalization
(perplexity), interpretability (topic coherence) and applica-
bility (document retrieval and classification). We name the
proposed topic model as Document Informed Neural Autore-
gressive Distribution Estimator (iDocNADE). (2) We pro-
pose a further extension of DocNADE-like models by incor-
porating complementary information via word embeddings,
along with the standard sparse word representations (e.g.,
one-hot encoding). The resulting two DocNADE variants
are named as Document Neural Autoregressive Distribution
Estimator with Embeddings (DocNADEe) and Document
Informed Neural Autoregressive Distribution Estimator with
Embeddings (iDocNADEe). (3) We also investigate the two
contributions above in the deep versions of topic models.
(4) We apply our modeling approaches to 8 short-text and
7 long-text datasets from diverse domains. With the learned
representations, we show a gain of 5.2% (404 vs 426) in
perplexity, 11.1% (.60 vs .54) in precision at retrieval frac-
tion 0.02 and 5.2% (.664 vs .631) in F1 for text categoriza-
tion, compared to the DocNADE model (on average over 15
datasets). Code and supplementary material are available at
https://github.com/pgcool/iDocNADEe.

Neural Autoregressive Topic Models
RSM (Salakhutdinov and Hinton 2009), a probabilistic undi-
rected topic model, is a generalization of the energy-based
Restricted Boltzmann Machines RBM (Hinton 2002) that
can be used to model word counts. NADE (Larochelle and
Murray 2011) decomposes the joint distribution of observa-
tions into autoregressive conditional distributions, modeled
using non-linear functions. Unlike for RBM/RSM, this leads
to tractable gradients of the data negative log-likelihood but
can only be used to model binary observations.

DocNADE (Figure 1, Left) is a generative neural autore-
gressive topic model to account for word counts, inspired
by RSM and NADE. For a document v “ rv1, ..., vDs of
size D, it models the joint distribution ppvq of all words
vi, where vi P t1, ...,Ku is the index of the ith word in
the dictionary of vocabulary size K. This is achieved by de-
composing it as a product of conditional distributions i.e.
ppvq “

śD
i“1 ppvi|văiq and computing each autoregressive

conditional ppvi|văiq via a feed-forward neural network for
i P t1, ...Du,

ÝÑ
h ipvăiq “ gpc`

ř

kăiW:,vkq (1)

ppvi “ w|văiq “
exppbw`Uw,:

ÝÑ
h ipvăiqq

ř

w1 exppbw1`Uw1,:

ÝÑ
h ipvăiqq

where văi P tv1, ..., vi´1u. gp¨q is a non-linear activation
function, W P RHˆK and U P RKˆH are weight matrices,
c P RH and b P RK are bias parameter vectors. H is the
number of hidden units (topics). W:,ăi is a matrix made of
the i ´ 1 first columns of W. The probability of the word
vi is thus computed using a position-dependent hidden layer
ÝÑ
h ipvăiq that learns a representation based on all previous
words văi; however it does not incorporate the following
words vąi. Taken together, the log-likelihood of any docu-
ment v of arbitrary length can be computed as:

LDocNADEpvq “
D
ÿ

i“1

log ppvi|văiq (2)
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iDocNADE (Figure 1, Right), our proposed model, ac-
counts for the full context information (both previous văi
and following vąi words) around each word vi for a doc-
ument v. Therefore, the log-likelihood LiDocNADE for a
document v in iDocNADE is computed using forward and
backward language models as:

log ppvq “
1

2

D
ÿ

i“1

log ppvi|văiq
loooooomoooooon

forward

` log ppvi|vąiq
loooooomoooooon

backward

(3)

i.e., the mean of the forward (ÝÑL ) and backward (ÐÝL ) log-
likelihoods. This is achieved in a bi-directional language
modeling and feed-forward fashion by computing position
dependent forward (ÝÑh i) and backward (ÐÝh i) hidden layers
for each word i, as:

ÝÑ
h ipvăiq “ gpÝÑc `

ÿ

kăi

W:,vkq (4)

ÐÝ
h ipvąiq “ gpÐÝc `

ÿ

kąi

W:,vkq (5)

where ÝÑc P RH and ÐÝc P RH are bias parameters in for-
ward and backward passes, respectively. H is the number of
hidden units (topics).

Two autoregressive conditionals are computed for each
ith word using the forward and backward hidden vectors,

ppvi “ w|văiq “
expp

ÝÑ
b w `Uw,:

ÝÑ
h ipvăiqq

ř

w1 expp
ÝÑ
b w1 `Uw1,:

ÝÑ
h ipvăiqq

(6)

ppvi “ w|vąiq “
expp

ÐÝ
b w `Uw,:

ÐÝ
h ipvąiqq

ř

w1 expp
ÐÝ
b w1 `Uw1,:

ÐÝ
h ipvąiqq

(7)

for i P r1, ..., Ds where ÝÑb P RK and ÐÝb P RK are biases
in forward and backward passes, respectively. Note that the
parameters W and U are shared between the two networks.

DocNADEe and iDocNADEe with Embedding priors:
We introduce additional semantic information for each word
into DocNADE-like models via its pre-trained embedding
vector, thereby enabling better textual representations and
semantically more coherent topic distributions, in particular
for short texts. In its simplest form, we extend DocNADE
with word embedding aggregation at each autoregressive
step k to generate a complementary textual representation,
i.e.,

ř

kăiE:,vk . This mechanism utilizes prior knowledge
encoded in a pre-trained embedding matrix E P RHˆK
when learning task-specific matrices W and latent repre-
sentations in DocNADE-like models. The position depen-
dent forward

ÝÑ
hei pvăiq and (only in iDocNADEe) backward

ÐÝ
hei pvąiq hidden layers for each word i now depend on E as:

ÝÑ
hei pvăiq “ gpÝÑc `

ÿ

kăi

W:,vk ` λ
ÿ

kăi

E:,vkq (8)

ÐÝ
hei pvąiq “ gpÐÝc `

ÿ

kąi

W:,vk ` λ
ÿ

kąi

E:,vkq (9)

where, λ is a mixture coefficient, determined using valida-
tion set. As in equations 6 and 7, the forward and backward

Algorithm 1 Computation of log ppvq in iDocNADE or
iDocNADEe using tree-softmax or full-softmax

Input: A training document vector v, Embedding matrix
E
Parameters: {ÝÑb ,ÐÝb , ÝÑc ,ÐÝc , W, U}
Output: log ppvq

1: ÝÑa Ð ÝÑc
2: if iDocNADE then
3: ÐÝa ÐÐÝc `

ř

ią1 W:,vi

4: if iDocNADEe then
5: ÐÝa ÐÐÝc `

ř

ią1 W:,vi ` λ
ř

ią1 E:,vi

6: qpvq “ 1
7: for i from 1 to D do
8:

ÝÑ
h i Ð gpÝÑa q; ÐÝh i Ð gpÐÝa q

9: if tree-softmax then
10: ppvi|văiq “ 1; ppvi|vąiq “ 1
11: for m from 1 to |πpviq| do
12: ppvi|văiq Ð ppvi|văiqppπpviqm|văiq
13: ppvi|vąiq Ð ppvi|vąiqppπpviqm|vąiq

14: if full-softmax then
15: compute ppvi|văiq using equation 6
16: compute ppvi|vąiq using equation 7
17: qpvq Ð qpvqppvi|văiqppvi|vąiq
18: if iDocNADE then
19: ÝÑa Ð ÝÑa `W:,vi ; ÐÝa ÐÐÝa ´W:,vi

20: if iDocNADEe then
21: ÝÑa Ð ÝÑa `W:,vi ` λ E:,vi
22: ÐÝa ÐÐÝa ´W:,vi ´ λ E:,vi

23: log ppvq Ð 1
2 log qpvq

autoregressive conditionals are computed via hidden vectors
ÝÑ
hei pvăiq and

ÐÝ
hei pvąiq, respectively.

Deep DocNADEs with/without Embedding Priors:
DocNADE can be extended to a deep, multiple hidden layer
architecture by adding new hidden layers as in a regular deep
feed-forward neural network, allowing for improved perfor-
mance (Lauly et al. 2017). In this deep version of DocNADE
variants, the first hidden layers are computed in an analogous
fashion to iDocNADE (eq. 4 and 5). Subsequent hidden lay-
ers are computed as:

ÝÑ
hi
pdq
pvăiq “ gpÝÑc pdq `Wpdq ¨

ÝÑ
hi
pd´1q

pvăiqq

and similarly, ÐÝhi
pdq
pvąiq for d “ 2, ..., n, where n is the

total number of hidden layers. The exponent “pdq” is used
as an index over the hidden layers and parameters in the
deep feed-forward network. Forward and/or backward con-
ditionals for each word i are modeled using the forward
and backward hidden vectors at the last layer n. The deep
DocNADE or iDocNADE variants without or with embed-
dings are named as DeepDNE, iDeepDNE, DeepDNEe and
iDeepDNEe, respectively where Wp1q is the word represen-
tation matrix. However in DeepDNEe (or iDeepDNEe), we
introduce embedding prior E in the first hidden layer, i.e.,

ÝÑ
hi
e,p1q

“ gpÝÑc p1q `
ÿ

kăi

Wp1q
:,vk

` λ
ÿ

kăi

E:,vkq
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for each word i via embedding aggregation of its context

văi (and vąi). Similarly, we computeÐÝhi
e,p1q

.
Learning: Similar to DocNADE, the conditionals ppvi “

w|văiq and ppvi “ w|vąiq in DocNADEe, iDocNADE or
iDocNADEe are computed by a neural network for each
word vi, allowing efficient learning of informed represen-
tations ÝÑh i and ÐÝh i (or

ÝÑ
hei pvăiq and

ÐÝ
hei pvąiq), as it con-

sists simply of a linear transformation followed by a non-
linearity. Observe that the weight W (or prior embedding
matrix E) is the same across all conditionals and ties con-
textual observables (blue colored lines in Figure 1) by com-
puting each ÝÑh i orÐÝh i (or

ÝÑ
hei pvăiq and

ÐÝ
hei pvąiq).

Binary word tree (tree-softmax) to compute condi-
tionals: To compute the likelihood of a document, the au-
toregressive conditionals ppvi “ w|văiq and ppvi “ w|vąiq
have to be computed for each word i P r1, 2, ...Ds, requiring
time linear in vocabulary size K. To reduce computational
cost and achieve a complexity logarithmic in K we follow
Larochelle and Lauly (2012) and decompose the computa-
tion of the conditionals using a probabilistic tree. All words
in the documents are randomly assigned to a different leaf
in a binary tree and the probability of a word is computed as
the probability of reaching its associated leaf from the root.
Each left/right transition probability is modeled using a bi-
nary logistic regressor with the hidden layer ÝÑh i or ÐÝh i (

ÝÑ
hei

or
ÐÝ
hei ) as its input. In the binary tree, the probability of a

given word is computed by multiplying each of the left/right
transition probabilities along the tree path.

Algorithm 1 shows the computation of log ppvq using
iDocNADE (or iDocNADEe) structure, where the autogres-
sive conditionals (lines 14 and 15) for each word vi are ob-
tained from the forward and backward networks and mod-
eled into a binary word tree, where πpviq denotes the se-
quence of binary left/right choices at the internal nodes
along the tree path and lpviq the sequence of tree nodes on
that tree path. For instance, lpviq1 will always be the root
of the binary tree and πpviq1 will be 0 if the word leaf vi
is in the left subtree or 1 otherwise. Therefore, each of the
forward and backward conditionals are computed as:

ppvi “ w|văiq “

|πpviq|
ź

m“1

ppπpviqm|văiq

ppvi “ w|vąiq “

|πpviq|
ź

m“1

ppπpviqm|vąiq

ppπpviqm|văiq “gp
ÝÑ
b lpviqm `Ulpviqm,:

ÝÑ
h pvăiqq

ppπpviqm|vąiq “gp
ÐÝ
b lpviqm `Ulpviqm,:

ÐÝ
h pvąiqq

where U P RTˆH is the matrix of logistic regressions
weights, T is the number of internal nodes in binary tree,
and ÝÑb andÐÝb are bias vectors.

Each of the forward and backward conditionals ppvi “
w|văiq or ppvi “ w|vąiq requires the computation of its
own hidden layers ÝÑh ipvăiq and ÐÝh ipvąiq (or

ÝÑ
hei pvăiq and

ÐÝ
hei pvąiq), respectively. WithH being the size of each hidden

Algorithm 2 Computing gradients of ´ log ppvq in iDoc-
NADE or iDocNADEe using tree-softmax

Input: A training document vector v
Parameters: {ÝÑb ,ÐÝb , ÝÑc ,ÐÝc , W, U}
Output: δÝÑb , δÐÝb , δÝÑc , δÐÝc , δW, δU

1: ÝÑa Ð 0;ÐÝa Ð 0; ÝÑc Ð 0;ÐÝc Ð 0; ÝÑb Ð 0;ÐÝb Ð 0
2: for i from D to 1 do
3: δ

ÝÑ
h i Ð 0 ; δ

ÐÝ
h i Ð 0

4: for m from 1 to |πpviq| do
5: ÝÑ

b lpviqm Ð
ÝÑ
b lpviqm ` pppπpviqm|văiq ´ πpviqmq

6: ÐÝ
b lpviqm Ð

ÐÝ
b lpviqm ` pppπpviqm|vąiq ´ πpviqmq

7: δ
ÝÑ
h i Ð δ

ÝÑ
h i ` pppπpviqm|văiq ´ πpviqmqUlpviqm,:

8: δ
ÐÝ
h i Ð δ

ÐÝ
h i ` pppπpviqm|vąiq ´ πpviqmqUlpviqm,:

9: δUlpviqm Ð δUlpviqm ` pppπpviqm|văiq ´

πpviqmq
ÝÑ
h

T

i ` pppπpviqm|vąiq ´ πpviqmq
ÐÝ
h

T

i

10: δÝÑg Ð
ÝÑ
h i ˝ p1´

ÝÑ
h iq # for sigmoid activation

11: δÐÝg Ð
ÐÝ
h i ˝ p1´

ÐÝ
h iq # for sigmoid activation

12: δÝÑc Ð δÝÑc ` δ
ÝÑ
h i ˝ δÝÑg ; δÐÝc Ð δÐÝc ` δ

ÐÝ
h i ˝ δÐÝg

13: δW:,vi Ð δW:,vi ` δ
ÝÑa ` δÐÝa

14: δÝÑa Ð δÝÑa ` δ
ÝÑ
h i ˝ δÝÑg ; δÐÝa Ð δÐÝa ` δ

ÐÝ
h i ˝ δÐÝg

layer and D the number of words in v, computing a single
layer requires OpHDq, and since there are D hidden lay-
ers to compute, a naive approach for computing all hidden
layers would be in OpD2Hq. However, since the weights
in the matrix W are tied, the linear activations ÝÑa and ÐÝa
(algorithm 1) can be re-used in every hidden layer and com-
putational complexity reduces to OpHDq.

With the trained iDocNADEe (or DocNADE variants), the
representation (

ÐÑ
he P RH ) for a new document v* of sizeD˚

is extracted by summing the hidden representations from the
forward and backward networks to account for the context
information around each word in the words’ sequence, as
ÝÑ
hepv˚q “ gpÝÑc `

ÿ

kďD˚

W:,v˚k
` λ

ÿ

kďD˚

E:,v˚k
q (10)

ÐÝ
hepv˚q “ gpÐÝc `

ÿ

kě1

W:,v˚k
` λ

ÿ

kě1

E:,v˚k
q (11)

Therefore;
ÐÑ
he “

ÝÑ
hepv˚q `

ÐÝ
hepv˚q (12)

The DocNADE variants without embeddings compute the
representationÐÑh excluding the embedding term E. Param-
eters {ÝÑb , ÐÝb , ÝÑc , ÐÝc , W, U} are learned by minimizing the
average negative log-likelihood of the training documents
using stochastic gradient descent (algorithm 2). In our pro-
posed formulation of iDocNADE or its variants (Figure 1),
we perform inference by computing LiDocNADEpvq (Eq.3).

Evaluation
We perform evaluations on 15 (8 short-text and 7 long-
text) datasets of varying size with single/multi-class labeled
documents from public as well as industrial corpora. See
the supplementary material for the data description, hyper-
parameters and grid-search results for generalization and
IR tasks. Table 1 shows the data statistics, where 20NS:
20NewsGroups and R21578: Reuters21578. Since, Gupta
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Data Train Val Test K L C Domain
Tree-Softmax(TS) Full-Softmax (FS)

DocNADE iDocNADE DocNADE iDocNADE DocNADEe iDocNADEe
PPL IR PPL IR PPL IR PPL IR PPL IR PPL IR

20NSshort 1.3k 0.1k 0.5k 2k 13.5 20 News 894 .23 880 .30 646 .25 639 .26 638 .28 633 .28
TREC6 5.5k 0.5k 0.5k 2k 9.8 6 Q&A 42 .48 39 .55 64 .54 61 .56 62 .56 60 .57

R21578title: 7.3k 0.5k 3.0k 2k 7.3 90 News 298 .61 239 .63 193 .61 181 .62 179 .65 176 .66
Subjectivity 8.0k .05k 2.0k 2k 23.1 2 Senti 303 .78 287 .81 371 .77 365 .80 362 .80 361 .81

Polarity 8.5k .05k 2.1k 2k 21.0 2 Senti 311 .51 292 .54 358 .54 345 .56 341 .56 340 .57
TMNtitle 22.8k 2.0k 7.8k 2k 4.9 7 News 863 .57 823 .59 711 .44 670 .46 668 .54 664 .55

TMN 22.8k 2.0k 7.8k 2k 19 7 News 548 .64 536 .66 592 .60 560 .64 563 .64 561 .66
AGnewstitle 118k 2.0k 7.6k 5k 6.8 4 News 811 .59 793 .65 545 .62 516 .64 516 .66 514 .68
Avg (short) 509 .55 486 .59 435 .54 417 .57 416 .58 413 .60
20NSsmall 0.4k 0.2k 0.2k 2k 187 20 News - - - - 628 .30 592 .32 607 .33 590 .33

Reuters8 5.0k 0.5k 2.2k 2k 102 8 News 172 .88 152 .89 184 .83 178 .88 178 .87 178 .87
20NS 8.9k 2.2k 7.4k 2k 229 20 News 830 .27 812 .33 474 .20 463 .24 464 .25 463 .25

R21578: 7.3k 0.5k 3.0k 2k 128 90 News 215 .70 179 .74 297 .70 285 .73 286 .71 285 .72
RCV1V2: 23.0k .05k 10.0k 2k 123 103 News 381 .81 364 .86 479 .86 463 .89 465 .87 462 .88

SiROBs: 27.0k 1.0k 10.5k 3k 39 22 Industry 398 .31 351 .35 399 .34 340 .34 343 .37 340 .36
AGNews 118k 2.0k 7.6k 5k 38 4 News 471 .72 441 .77 451 .71 439 .78 433 .76 438 .79

Avg (long) 417 .61 383 .65 416 .56 394 .60 396 .60 393 .60
Avg (all) 469 .57 442 .62 426 .54 406 .58 407 .59 404 .60

Table 1: Data statistics of short and long texts as well as small and large corpora from various domains. State-of-the-art
comparison in terms of PPL and IR (i.e, IR-precision) for short and long text datasets. The symbols are- L: average text length
in number of words, K:dictionary size, C: number of classes, Senti: Sentiment, Avg: average, ‘k’:thousand and :: multi-label
data. PPL and IR (IR-precision) are computed over 200 (T200) topics at retrieval fraction = 0.02. For short-text, L ă 25. The
underline and bold numbers indicate the best scores in PPL and retrieval task, respectively in FS setting. See Larochelle and
Lauly (2012) for LDA (Blei, Ng, and Jordan 2003) performance in terms of PPL, where DocNADE outperforms LDA.
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Figure 2: (a) PPL (T200) by iDocNADE and DocNADE for
each of the 50 held-out documents of 20NS. The filled circle
points to the document for which PPL differs by maximum.
(b) NLL of each of the words in the document marked by
the filled circle in (a), due to iDocNADE and DocNADE.

et al. (2018a) have shown that DocNADE outperforms
gaussian-LDA (Das, Zaheer, and Dyer 2015), glove-LDA
and glove-DMM (Nguyen et al. 2015) in terms of topic co-
herence, text retrieval and classification, therefore we adopt
DocNADE as the strong baseline. We use the development
(dev) sets of each of the datasets to perform a grid-search on
mixture weights, λ “ r0.1, 0.5, 1.0s.

Generalization (Perplexity, PPL) We evaluate the topic
models’ generative performance as a generative model
of documents by estimating log-probability for the test
documents. During training, we initialize the proposed
DocNADE extensions with DocNADE, i.e., W ma-
trix. A comparison is made with the baselines (Doc-

NADE and DeepDNE) and proposed variants (iDocNADE,
DocNADEe, iDocNADEe, iDeepDNE, DeepDNEe and
iDeepDNEe) using 50 (in supplementary) and 200 (T200)
topics, set by the hidden layer size H .

Quantitative: Table 1 shows the average held-out
perplexity (PPL) per word as, PPL “ exp

`

´
1
N

řN
t“1

1
|vt|

log ppvtq
˘

where N and |vt| are the total num-
ber of documents and words in a document vt. To compute
PPL, the log-likelihood of the document vt, i.e., log ppvtq,
is obtained by LDocNADE (eqn. 2) in the DocNADE (for-
ward only) variants, while we average PPL scores from the
forward and backward networks of the iDocNADE variants.

Table 1 shows that the proposed models achieve lower
perplexity for both the short-text (413 vs 435) and long-text
(393 vs 416) datasets than baseline DocNADE with full-
softmax (or tree-softmax). In total, we show a gain of 5.2%
(404 vs 426) in PPL score on an average over the 15 datasets.

Table 2 illustrates the generalization performance of deep
variants, where the proposed extensions outperform the
DeepDNE for both short-text and long-text datasets. We re-
port a gain of 10.7% (402 vs 450) in PPL due to iDeepDNEe
over the baseline DeepDNE, on an average over 11 datasets.

Inspection: We quantify the use of context informa-
tion in learning informed document representations. For
20NS dataset, we randomly select 50 held-out documents
from its test set and compare (Figure 2a) the PPL for
each of the held-out documents under the learned 200-
dimensional DocNADE and iDocNADE. Observe that iDoc-
NADE achieves lower PPL for the majority of the docu-
ments. The filled circle(s) points to the document for which

6509



0.0
00

1

0.0
00

5
0.0

01
0.0

02
0.0

05 0.0
1

0.0
2

0.0
5 0.1 0.2

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Fraction of Retrieved Documents (Recall)

Pr
ec

is
io

n
(%

)

iDeepDNEe
DeepDNE

iDocNADEe
iDocNADE
DocNADEe
DocNADE

glove

(a) IR: TMNtitle

0.0
00

1
0.0

00
5

0.0
01

0.0
02

0.0
05 0.0
1

0.0
2

0.0
5 0.1 0.2

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Fraction of Retrieved Documents (Recall)

Pr
ec

is
io

n
(%

)

iDeepDNEe
DeepDNE

iDocNADEe
iDocNADE
DocNADEe
DocNADE

glove

(b) IR: AGnewstitle

0.0
00

5
0.0

01
0.0

02
0.0

05 0.0
1

0.0
2

0.0
5 0.1 0.2

0.12

0.16

0.2

0.24

0.28

0.32

0.36

0.4

0.44

0.48

Fraction of Retrieved Documents (Recall)

Pr
ec

is
io

n
(%

)

iDeepDNEe
DeepDNE

iDocNADEe
iDocNADE
DocNADEe
DocNADE

glove

(c) IR: 20NSshort

0.0
00

1
0.0

00
5

0.0
01

0.0
02

0.0
05 0.0
1

0.0
2

0.0
5 0.1 0.2 0.3

0.1

0.14

0.18

0.22

0.26

0.3

0.34

0.38

0.42

Fraction of Retrieved Documents (Recall)

Pr
ec

is
io

n
(%

)

iDeepDNEe
DeepDNE

iDocNADEe
iDocNADE
DocNADEe
DocNADE

glove

(d) IR: 20NS

0.0
00

5
0.0

01
0.0

02
0.0

05 0.0
1

0.0
2

0.0
5 0.1 0.2 0.3

0.64

0.67

0.7

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

Fraction of Retrieved Documents (Recall)

Pr
ec

is
io

n
(%

)

iDeepDNEe
DeepDNE

iDocNADEe
iDocNADE
DocNADEe
DocNADE

glove

(e) IR: Reuters8

0.0
00

1
0.0

00
5

0.0
01

0.0
02

0.0
05 0.0
1

0.0
2

0.0
5 0.1 0.2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Fraction of Retrieved Documents (Recall)

Pr
ec

is
io

n
(%

)

iDeepDNEe
DeepDNE

iDocNADEe
iDocNADE
DocNADEe
DocNADE

glove

(f) IR: AGnews

Figure 3: Document retrieval performance (IR-precision) on 3 short-text and 3 long-text datasets at different retrieval fractions

PPL differs by a maximum between iDocNADE and Doc-
NADE. We select the corresponding document and compute
the negative log-likelihood (NLL) for every word. Figure 2b
shows that the NLL for the majority of the words is lower
(better) in iDocNADE than DocNADE. See the supplemen-
tary material for the raw text of the selected documents.

Interpretability (Topic Coherence) Beyond PPL, we
compute topic coherence (Chang et al. 2009; Newman,
Karimi, and Cavedon 2009; Das, Zaheer, and Dyer 2015;
Gupta et al. 2018b) to assess the meaningfulness of the un-
derlying topics captured. We choose the coherence measure
proposed by Röder, Both, and Hinneburg (2015) that iden-
tifies context features for each topic word using a sliding
window over the reference corpus. The higher scores imply
more coherent topics.

Quantitative: We use gensim module (coherence type =
c v) to estimate coherence for each of the 200 topics (top
10 and 20 words). Table 3 shows average coherence over
200 topics using short-text and long-text datasets, where the
high scores for long-text in iDocNADE (.636 vs .602) sug-
gest that the contextual information helps in generating more
coherent topics than DocNADE. On top, the introduction of
embeddings, i.e., iDocNADEe for short-text boosts (.847 vs
.839) topic coherence. Qualitative: Table 5 illustrates ex-
ample topics each with a coherence score.

Applicability (Document Retrieval) To evaluate the
quality of the learned representations, we perform a docu-
ment retrieval task using the 15 datasets and their label in-
formation. We use the experimental setup similar to Lauly
et al. (2017), where all test documents are treated as queries
to retrieve a fraction of the closest documents in the orig-
inal training set using cosine similarity measure between

data DeepDNE iDeepDNE DeepDNEe iDeepDNEe
PPL IR PPL IR PPL IR PPL IR

20NSshort 917 .21 841 .22 827 .25 830 .26
TREC6 114 .50 69 .52 69 .55 68 .55

R21578title 253 .50 231 .52 236 .63 230 .61
Subjectivity 428 .77 393 .77 392 .81 392 .82

Polarity 408 .51 385 .51 383 .55 387 .53
TMN 681 .60 624 .62 627 .63 623 .66

Avg (short) 467 .51 424 .53 422 .57 421 .57
Reuters8 216 .85 192 .89 191 .88 191 .90

20NS 551 .25 504 .28 504 .29 506 .29
R21578 318 .71 299 .73 297 .72 298 .73

AGNews 572 .75 441 .77 441 .75 440 .80
RCV1V2 489 .86 464 .88 466 .89 462 .89

Avg (long) 429 .68 380 .71 379 .71 379 .72
Avg (all) 450 .59 404 .61 403 .63 402 .64

Table 2: Deep Variants (+ Full-softmax) with T200: PPL and
IR (i.e, IR-precision) for short and long text datasets.

their representations (eqn. 12 in iDocNADE and ÝÑhD in
DocNADE). To compute retrieval precision for each frac-
tion (e.g., 0.0001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, etc.),
we average the number of retrieved training documents with
the same label as the query. For multi-label datasets, we
average the precision scores over multiple labels for each
query. Since Salakhutdinov and Hinton (2009) and Lauly et
al. (2017) showed that RSM and DocNADE strictly outper-
form LDA on this task, we only compare DocNADE and its
proposed extensions.

Table 1 shows the IR-precision scores at retrieval frac-
tion 0.02. Observe that the introduction of both pre-trained
embedding priors and contextual information leads to im-
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model DocNADE iDocNADE DocNADEe iDocNADEe
W10 W20 W10 W20 W10 W20 W10 W20

20NSshort .744 .849 .748 .852 .747 .851 .744 .849
TREC6 .746 .860 .748 .864 .753 .858 .752 .866

R21578title .742 .845 .748 .855 .749 .859 .746 .856
Polarity .730 .833 .732 .837 .734 .839 .738 .841

TMNtitle .738 .840 .744 .848 .746 .850 .746 .850
TMN .709 .811 .713 .814 .717 .818 .721 .822

Avg (short) .734 .839 .739 .845 .742 .846 .741 .847
20NSsmall .515 .629 .564 .669 .533 .641 .549 .661

Reuters8 .578 .665 .564 .657 .574 .655 .554 .641
20NS .417 .496 .453 .531 .385 .458 .417 .490

R21578 .540 .570 .548 .640 .542 .596 .551 .663
AGnews .718 .828 .721 .840 .677 .739 .696 .760

RCV1V2 .383 .426 .428 .480 .364 .392 .420 .463
Avg (long) .525 .602 .546 .636 .513 .580 .531 .613

Table 3: Topic coherence with the top 10 (W10) and 20
(W20) words from topic models (T200). Since, (Gupta et al.
2018a) have shown that DocNADE outperforms both glove-
DMM and glove-LDA, therefore DocNADE as the baseline.

data glove doc2vec DocNADE DocNADEe iDocNADE iDocNADEe
F1 acc F1 acc F1 acc F1 acc F1 acc F1 acc

20NSshort .493 .520 .413 .457 .428 .474 .473 .529 .456 .491 .518 .535
TREC6 .798 .810 .400 .512 .804 .822 .854 .856 .808 .812 .842 .844

R21578title .356 .695 .176 .505 .318 .653 .352 .693 .302 .665 .335 .700
Subjectivity .882 .882 .763 .763 .872 .872 .886 .886 .871 .871 .886 .886

Polarity .715 .715 .624 .624 .693 .693 .712 .712 .688 .688 .714 .714
TMNtitle .693 .727 .582 .617 .624 .667 .697 .732 .632 .675 .696 .731

TMN .736 .755 .720 .751 .740 .778 .765 .801 .751 .790 .771 .805
AGnewstitle .814 .815 .513 .515 .812 .812 .829 .828 .819 .818 .829 .828
Avg (short) .685 .739 .523 .593 .661 .721 .696 .755 .666 .726 .700 .756

Reuters8 .830 .950 .937 .852 .753 .931 .848 .956 .836 .957 .860 .960
20NS .509 .525 .396 .409 .512 .535 .514 .540 .524 .548 .523 .544

R21578 .316 .703 .215 .622 .324 .716 .322 .721 .350 .710 .300 .722
AGnews .870 .871 .713 .711 .873 .876 .880 .880 .880 .880 .886 .886

RCV1V2 .442 .368 .442 .341 .461 .438 .460 .457 .463 .452 .465 .454
Avg (long) .593 .683 .540 .587 .584 .699 .605 .711 .611 .710 .607 .713

Avg (all) .650 .718 .530 .590 .631 .712 .661 .738 .645 .720 .664 .740

Table 4: Text classification for short and long texts with
T200 or word embedding dimension (Topic models with FS)

proved performance on the IR task for short-text and long-
text datasets. We report a gain of 11.1% (.60 vs .54) in pre-
cision on an average over the 15 datasets, compared to Doc-
NADE. On top, the deep variant i.e. iDeepDNEe (Table 2)
demonstrates a gain of 8.5% (.64 vs .59) in precision over
the 11 datasets, compared to DeepDNE. Figures (3a, 3b, 3c)
and (3d, 3e and 3f) illustrate the average precision for the re-
trieval task on short-text and long-text datasets, respectively.

Applicability (Text Categorization) Beyond the docu-
ment retrieval, we perform text categorization to measure
the quality of word vectors learned in the topic models.
We consider the same experimental setup as in the doc-
ument retrieval task and extract the document representa-
tion (latent vector) of 200 dimension for each document
(or text), learned during the training of DocNADE variants.
To perform document categorization, we employ a logistic
regression classifier with L2 regularization. We also com-
pute document representations from pre-trained glove (Pen-
nington, Socher, and Manning 2014) embedding matrix by

DocNADE iDocNADE DocNADEe
beliefs, muslims, scripture, atheists, atheists, christianity,

forward, alt, sin, religions, belief, eternal,
islam, towards, christianity, lord, atheism, catholic,

atheism, christianity, bible, msg, bible, arguments,
hands, opinions heaven, jesus islam, religions

0.44 0.46 0.52

Table 5: Topics (top 10 words) of 20NS with coherence

book jesus windows gun
neighbors si sg neighbors si sg neighbors si sg neighbors si sg

books .61 .84 christ .86 .83 dos .74 .34 guns .72 .79
reference .52 .51 god .78 .63 files .63 .36 firearms .63 .63
published .46 .74 christians .74 .49 version .59 .43 criminal .63 .33
reading .45 .54 faith .71 .51 file .59 .36 crime .62 .42
author .44 .77 bible .71 .51 unix .52 .47 police .61 .43

Table 6: 20NS dataset: The five nearest neighbors by iDoc-
NADE. si: Cosine similarity between the word vectors from
iDocNADE, for instance vectors of jesus and god. sg: Co-
sine similarity in embedding vectors from glove.

summing the word vectors and compute classification per-
formance. On top, we also extract document representation
from doc2vec (Le and Mikolov 2014).

Table 4 shows that glove leads DocNADE in classifica-
tion performance, suggesting a need for distributional pri-
ors. For short-text dataset, iDocNADEe (and DocNADEe)
outperforms glove (.700 vs .685) and DocNADE (.700 vs
.661) in F1. Overall, we report a gain of 5.2% (.664 vs .631)
in F1 due to iDocNADEe over DocNADE for classification
on an average over 13 datasets.

Inspection of Learned Representations: To analyze the
meaningful semantics captured, we perform a qualitative in-
spection of the learned representations by the topic mod-
els. Table 5 shows topics for 20NS dataset that could be in-
terpreted as religion, which are (sub)categories in the data,
confirming that meaningful topics are captured. Observe that
DocNADEe extracts a more coherent topic.

For word level inspection, we extract word representa-
tions using the columns W:,vi as the vector (200 dimension)
representation of each word vi, learned by iDocNADE us-
ing 20NS dataset. Table 6 shows the five nearest neighbors
of some selected words in this space and their correspond-
ing similarity scores. We also compare similarity in word
vectors from iDocNADE and glove embeddings, confirming
that meaningful word representations are learned.

Conclusion

We show that leveraging contextual information and intro-
ducing distributional priors via pre-trained word embed-
dings in our proposed topic models result in learning bet-
ter word/document representation for short and long docu-
ments, and improve generalization, interpretability of topics
and their applicability in text retrieval and classification.
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