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Abstract

We present PARABANK, a large-scale English paraphrase
dataset that surpasses prior work in both quantity and quality.
Following the approach of PARANMT (Wieting and Gimpel,
2018), we train a Czech-English neural machine translation
(NMT) system to generate novel paraphrases of English ref-
erence sentences. By adding lexical constraints to the NMT
decoding procedure, however, we are able to produce mul-
tiple high-quality sentential paraphrases per source sentence,
yielding an English paraphrase resource with more than 4 bil-
lion generated tokens and exhibiting greater lexical diversity.
Using human judgments, we also demonstrate that PARA-
BANK’s paraphrases improve over PARANMT on both se-
mantic similarity and fluency. Finally, we use PARABANK to
train a monolingual NMT model with the same support for
lexically-constrained decoding for sentence rewriting tasks.

1 Introduction
In natural languages, mappings between meaning and utter-
ance may be many-to-many. Just as ambiguity allows for
multiple semantic interpretations of a single sentence, a sin-
gle meaning can be realized by different sentences. The abil-
ity to identify and generate paraphrases has been pursued
in the context of many natural language processing (NLP)
tasks, e.g., semantic similarity, plagiarism detection, trans-
lation evaluation, monolingual transduction tasks such as
text simplification and style transfer, textual entailment, and
short-answer grading.

Paraphrastic resources exist at many levels of granularity,
e.g., WordNet (Miller, 1995) for word-level and the Para-
phrase Database (PPDB) (Ganitkevitch, Van Durme, and
Callison-Burch, 2013) for phrase-level. We are interested in
building a large resource for sentence-level paraphrases in
English. In this work, we introduce PARABANK, the largest
publicly-available collection of English paraphrases we are
aware of to date. We follow and extend the approach of Wi-
eting and Gimpel (2018), who generate a set of 50 million
English paraphrases, under the name PARANMT-50M, via
neural machine translation (NMT).

A part of PARABANK is trained and decoded on the
same Czech-English parallel corpus (Bojar et al., 2016) as
PARANMT. However, PARABANK not only contains more
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Figure 1: Contrasting prior work (e.g., PARANMT) on
building sentential paraphrase collections via translation,
PARABANK conditions on both the source and target side
of a translation pair, employing positive and negative lexical
constraints derived from the reference to result in multiple,
diverse paraphrases.

reference sentences but also more paraphrases per reference
than PARANMT with overall improvements in lexical di-
versity, semantic similarity, and fluency. We are able to ob-
tain a larger number of paraphrases per sentence by apply-
ing explicit lexical constraints to the NMT decoder, requir-
ing specific words to appear (positive constraint) or not to
appear (negative constraint) in the decoded sentence. Using
PARABANK, we train, and release to the public, a monolin-
gual sentence re-writing system, which may be used to para-
phrase unseen English sentences with lexical constraints.

The main contributions of this work are:
• A novel approach to translation-based generation of

monolingual bitext;
• The largest and highest quality English-to-English bitext

resource to date with 79.5 million references and pre-
dicted human-judgment scores;

• Manual assessment of candidate paraphrases on semantic
similarity, across a variety of generation strategies;

• A trained and freely released model for English-to-
English rewriting, supporting positive and negative lexical
constraints.
PARABANK is available for download at: http://nlp.jhu.

edu/parabank.
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2 Background
The following summarizes key background in approaches
to monolingual paraphrasing with regard to PARABANK,
along with the essential prior efforts that enable PARA-
BANK to improve on related work. We first discuss work
on sub-sentential resources that may be: hand-curated, au-
tomatically expanded from hand-curated, or fully automati-
cally created. We then describe efforts at gathering or creat-
ing monolingual sentential bitexts, or otherwise sentence-to-
sentence paraphrastic rewriting. For additional background,
we refer readers to Madnani and Dorr (2010).

2.1 Paraphrasing Resources
Lexical Resources WordNet (Miller, 1995) includes
manually-curated sub-sentential paraphrases. It groups sin-
gle words or short-phrases with similar meanings into syn-
onym sets (synsets). Each synset is related to other synsets
through semantic relations (e.g., hypernym, entailment) to
allow the construction of hierarchies and entailment rela-
tions.

VerbNet (Schuler, 2006) is a manually-constructed lex-
icon of English verbs. It is augmented with syntactic and
semantic usage of its verb sense members. As a paraphrase
resource, VerbNet groups verb senses into classes like “say-
37.7-1” or “run-51.3.2”. Members under the same class
share a general meaning as noted by the class name.

FrameNet (Baker, Fillmore, and Lowe, 1998) con-
tains manually annotated sentences classified into seman-
tic frames. Though designed as a readable reference and as
training data for semantic role labeling, FrameNet can be
used to construct sub-sentential paraphrases, owing to rich
semantic contents like semantic types and frame-to-frame
relations.

Many efforts have aimed to automatically expand gold
resources, for example: Snow, Jurafsky, and Ng (2006)
augmented WordNet by combining existing semantic tax-
onomies in WordNet with hypernym predictions and coordi-
nate term classifications; and Pavlick et al. (2015b) tripled
the lexical coverage of FrameNet by substituting words
through PPDB, with verification of quality via crowdsourc-
ing.

Larger Paraphrases There is a rich body of work in auto-
matically inducing phrasal, syntactic or otherwise structural
paraphrastic resources. Some examples include: DIRT (Lin
and Pantel, 2001), which extracts paraphrastic expressions
over paths in dependency trees, based on an extension of the
distributional hypothesis, which states that words that occur
in the same contexts tend to have similar meanings (Harris,
1954); Weisman et al. (2012) explored learning inference re-
lations between verbs through broader scopes (document or
corpus level), resulting in a richer set of cues for verb en-
tailment detections; and PPDB (Ganitkevitch, Van Durme,
and Callison-Burch, 2013), a multi-lingual effort to con-
struct paraphrase pairs by linking words or phrases that share
the same translation in another language. Related to the hu-
man scoring pursued here for ParaBank evaluation, in PPDB
2.0 (Pavlick et al., 2015a), the authors collected annotations

via Mechanical Turk to measure the quality of the induced
paraphrases, in order to train a model for scoring all the en-
tries in PPDB for semantic adequacy.

2.2 Monolingual Bitexts
Manually Created Some monolingual bitexts are created
for research in text generation (Pang, Knight, and Marcu,
2003; Robin, 1995) where models benefit from exposure
to multiple elicitations of the same concept. The utility of
these resources is largely limited by their scale, as the cost
of creation is high. Other sources include different transla-
tions of the same foreign text, which exist for many classic
readings. Work has been done on identifying and collecting
sub-sentential paraphrases from such sources (Barzilay and
McKeown, 2001). However, the artistic nature of literature
could result in various interpretations, often rendering this
type of resource unreliable.

PARANMT Wieting and Gimpel (2018) leverage the rel-
ative abundance of bilingual bitext to generate sentence-
level paraphrases through machine translation. This ap-
proach trains a neural machine translation (NMT) model
from a non-English source language to English over the en-
tire bitext (Czech-English) (Bojar et al., 2016), and decodes
the source to obtain outputs that are semantically close to
the training target. Decoding in PARANMT solely depends
on the trained model and the source text with no inputs de-
rived from the target English sentences. The approach in
PARANMT exhibits little control over the diversity and ad-
equacy of its paraphrastic sentence pairs: the application of
lexical constraints during decoding is a key distinction be-
tween PARANMT and the approach described herein.

2.3 Lexically Constrained Decoding
Lexically constrained decoding (Hokamp and Liu, 2017) is a
modification to beam search for neural machine translation
that allows the user to specify tokens and token sequences
that must (or must not) appear in the decoder output. A lex-
ical constraint can be either positive or negative. A posi-
tive constraint requires the model to include the constrained
token or tokens in the output. Negative constraints, on the
other hand, require the model to avoid certain token or to-
kens in the output. The effect of constraints is to cause the
system to generate the best decoding (translation or para-
phrase) under those constraints.

Recently, Post and Vilar (2018) proposed a variant of lex-
ically constrained decoding that reduced complexity from
linear to constant-time (in the number of constraints). This
allows us to decode hundreds of millions of sentences with
constraints in a reasonable amount of time, and forms a key
enabling technology for PARABANK. An implementation of
it is included in Sockeye (Hieber et al., 2017), which we use
for this work.

2.4 Efficient Annotation of Scalar Labels (EASL)
Sakaguchi and Van Durme (2018) propose an efficient and
accurate method of collecting scalar-valued scores from hu-
man annotators, called EASL, by combining pairwise rank-
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System Reference Constraints Paraphrase

	2ndIDF How often do earthquakes occur? 	occur How often are earthquakes happening?
	2nd3rdIDF How often do earthquakes occur? 	occur, often What frequency do earthquakes happen?
	〈BOS〉 1sttoken How often do earthquakes occur? 	〈BOS〉 How What frequency do earthquakes occur?
PPDB equ How often do earthquakes occur? 	often ⊕frequently How frequently are earthquakes happen-

ing?

PPDB rev This myth involves three misconceptions. 	myth ⊕mythology There are three misconceptions in this
mythology.

	1stIDF This myth involves three misconceptions. 	misconceptions This myth has three false ideas.
	3rdIDF This myth involves three misconceptions. 	involves The myth has three misconceptions.

	2ndIDF It didn’t mean anything, okay? 	anything It didn’t mean a thing, okay?
	1stIDF It didn’t mean anything, okay? 	okay It didn’t mean anything, all right?
	1st, 3rdIDF w/ lexi-
cal variants

It didn’t mean anything, okay? 	okay,mean,
means,meaning,
meant

It was nothing, all right?

	1st, 2ndIDF It didn’t mean anything, okay? 	okay,anything It meant nothing, all right?

Table 1: Examples of different constraint selection methods in PARABANK leading to multiple different paraphrases per refer-
ence. System names are defined in Tab. 3 with full descriptions in §3.2. Constraints are labeled in bold.

ing aggregation and direct assessment. In manually evalu-
ating the quality of our system’s paraphrases, we adopt an
annotator interface based on EASL. Human annotators are
asked to assess paraphrases’ semantic similarity to the refer-
ence sentence through a combination of direct numerical as-
sessment and pairwise comparison. This mode of evaluation
is akin to the method employed by the Workshop on Sta-
tistical Machine Translation (WMT) evaluation through an
adaptation of TrueSkillTM (Sakaguchi, Post, and Van Durme,
2014).

3 Approaches
3.1 Training the model
We use Sockeye (Hieber et al., 2017) to train the machine
translation model, with which we generate paraphrases un-
der different constraint systems. The training data, CzEng
1.7 (Bojar et al., 2016), is tokenized1 and processed through
Byte Pair Encoding (BPE) (Sennrich, Haddow, and Birch,
2016). To reduce the vocabulary size, we tokenized all num-
bers to digit-level.

The model’s encoder and decoder are both 6-layer LSTMs
with a hidden size of 1024 and an embedding size of 512.
Additionally, the model has one dot-attention layer. We
trained the model on 2 Nvidia GTX 1080Ti for two weeks.

3.2 Selection of Lexical Constraints
Lexical constraints (§2.3) can directly influence the diversity
and sufficiency of the NMT decoder output (i.e., the trans-
lation). We generate paraphrases of English translations of
Czech sentences using different sets of constraints obtained
from the English side of the bitext. These constraints may be
positive or negative, and multiple constraints of either type
may be combined simultaneously (provided they are consis-
tent).

1We used spaCy (Honnibal and Montani, 2017) to tokenize En-
glish text, and MorphoDiTa (Straková, Straka, and Hajič, 2014) to
tokenize Czech text.

The tokens on which we base these constraints are the
tokens that appear in the reference sentence (or are morpho-
logical variants thereof), though in principle any token could
be used as a constraint. To select the constraints from this
pool, we experiment with different ways of selecting these
constraints from the reference, resulting in 37 experimental
system configurations (Tab. 3): one baseline system with no
constraints, three with tokens selected positionally, 30 with
positive and negative constraints selected via inverse docu-
ment frequency (IDF), and three additional systems based
on PPDB lookups. Here we describe these selection criteria
in detail.

IDF Criteria We compute each token’s inverse document
frequency (IDF) from the training data. To avoid constraints
with misspelled or overly-specialized words, we exclude to-
kens with an IDF above 17.0 from consideration as lexical
constraints. We also avoid constraints based on the most fre-
quent English words by setting a minimum IDF threshold of
7.0. These thresholds are heuristics and we leave optimiza-
tions to future works. Among the remaining candidates, the
constraint token may be selected by the highest IDF, lowest
IDF, or randomly.

Prepositions We make one exception to the minimum IDF
threshold in the case of prepositions, which we found fruitful
as diversity-promoting constraints (see Fig. 1). The allowed
prepositions are: about, as, at, by, for, from, in, into, of, on,
onto, over, to, and with.

Morphological Variants To discourage trivial para-
phrases, some negative constraint systems include morpho-
logical variants of the word, and all negative constraint
systems exclude capitalization. For positive constraints, we
only consider morphological variants for verbs2, and only

2We POS-tagged the reference sentence using SpaCy.
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Token IDF Token IDF
proud 11.1 told 7.9
work 7.4 them 6.2
her 5.8 was 4.3
for 3.6 to 2.3

Table 2: Tokens assessed, along with their IDFs, of the sen-
tence “I told her I was proud to work for them.”

one variant of the selected token is used. For all constraints,
only lowercased alphabetical tokens are considered.

Positional Constraints It has been observed that RNN de-
coders in dialogue systems can be nudged toward produc-
ing more diverse outputs by modifying decoding for only
the first few tokens (Li et al., 2016). Motivated by this ob-
servation, we include positional constraints, which require
that a given constraint apply only at the beginning of the
sentence (denoted as 〈BOS〉 in Table 3). In particular, we
require the first one, two, or three tokens not to match the
reference translation (i.e., a negative constraint).

PPDB Constraints We also use PPDB 2.0 (Pavlick et
al., 2015a) as a source for introducing positive lexical con-
straints. For each token in the original English sentence
that passes the IDF filter (above), we look up its para-
phrases in PPDB3. We randomly select up to three lex-
ical paraphrases, one each of the type Equivalence,
ForwardEntailment, and ReverseEntailment, if
present. We further require the selected lexical paraphrases
to coarsely match the original token’s POS tag (e.g., any
form of verb, etc.) A negative constraint is then added for
the original token, and a positive constraint is added for the
lexical paraphrase from PPDB. These negative-positive con-
straint pairs are applied one at a time (i.e., one pair per de-
coding).

Example of constraint selection Here we work through
the process of selecting lexical constraints to produce a new
paraphrase of the sentence “I told her I was proud to work
for them.”. We follow the rules of system number 18 (as des-
ignated in Tab. 3).

First, tokens with only lower-cased alphabetical letters are
assessed; they are listed in Tab. 2 along with their IDF val-
ues. After applying the IDF thresholds and exception for
prepositions, the following tokens are in the candidate pool,
from which we choose tokens to constrain on (listed in de-
scending order of IDF values): proud, told, work, for, and
to.

Under the configuration of PARABANK System 18
(Tab. 3), which avoids tokens with the lowest and the sec-
ond lowest IDF, a negative constraint is generated for the
tokens for, For, to, and To. With these constraints applied,
the resulting decoded paraphrase is: “I told her I was really
proud of working with them.”.

3We use the ppdb-2.0-lexical-xl packet downloaded
from paraphrase.org.

No. ⊕/	 Token(s) Selected Lex.
1,2,3 	 1st, 2nd, 3rd highest IDF4 None
4,5,6 	 (1st, 2nd), (2nd, 3rd), (1st, 3rd) IDF None

7 	 (1st, 2nd, 3rd) highest IDF None
8,9,10 	 1st, 2nd, 3rd highest IDF All

11,12,13 	 (1st, 2nd), (2nd, 3rd), (1st, 3rd) IDF All
14 	 (1st, 2nd, 3rd) highest IDF All

15,16,17 	 1st, 2nd, 3rd lowest IDF None
18,19,20 	 (1st, 2nd), (2nd, 3rd), (1st, 3rd) low None

21 	 (1st, 2nd, 3rd) lowest IDF None
22,23,24 	 1, 2, 3 random tokens None
25,26,27 	 1, 2, 3 random tokens All

28 no constraints
29,30,31 ⊕ 1st, 2nd, 3rd highest IDF Verb5

32,33,34 	 positional 〈BOS〉: 1, 2, 3 tokens None
35,36,37 	⊕ PPDB equ, fwd, rev entailment None

Table 3: Different system configurations to generate para-
phrases. ⊕/	 designates the type of constraint we impose
on the model: negative constraints (	) are sets of tokens or
ngrams which the decoder must not include in its output,
while positive constraints (⊕) are sets of tokens or ngrams
required in the output. Additional constraints may be in-
cluded for lexical variations of the selected token(s), as in-
dicated by the Lex. column. Systems in bold fonts are pre-
sented here for evaluation. Evaluations of all systems will be
made available with the resource.

More examples are shown in Tab. 1.

4 Extension to other bilingual corpora
Our methods are independent of the source bilingual cor-
pora. We apply the same pipeline to the 109 word French-
English parallel corpus (Giga) (Callison-Burch et al., 2009),
which has different domain coverage than CzEng. This adds
an additional 22.4 million English references, resulting in
a total of 79.5 million reference sentences for PARABANK.
We conducted manual evaluation on paraphrases generated
from both CzEng and Giga, and included the additional
PPDB constraint systems for Giga.

5 Evaluation
We evaluate the quality of paraphrases by both semantic
similarity and lexical diversity. A good paraphrase should
strive to preserve as much meaning as possible while using
lexically diverse expression. Otherwise, the result is either a
trivial re-write or fails to convey the original meaning. We
understand these two metrics as interdependent and some-
times conflicting – a high lexical diversity likely sacrifices
semantic similarity. The goal of PARABANK is to offer not
only a balance between the two, but also options across the
spectrum for different applications. Of course, good para-
phrases should also be fluent in their expression, so we

4Highest within the token pool. Same for lowest.
5If the token is a verb, we pick a random lexical variation

to include. E.g., we might constrain on one of ”taken”, ”taking”,
”takes”, or ”take” if the original token is ”took”.
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# System Czech-English French-English
len=5 len=10 len=20 len=40 Avg. len=5 len=10 len=20 len=40 Avg.

Se
m

an
tic

Si
m

ila
ri

ty

- PARANMT 73.47 73.49 75.49 71.09 73.39 - - - - -
17 	3rdlow IDF 71.59 75.71 79.67 77.31 76.07 73.64 72.69 83.60 80.15 77.52
21 	3 low IDF 59.86 66.56 70.76 69.77 66.74 62.84 69.56 81.73 77.08 72.80
28 no con. 76.63 78.35* 83.19* 80.35 79.63* 79.09 74.28 84.86 83.02* 80.31*
31 ⊕3rdtop IDF 77.12* 75.22 82.98 79.91 78.81 80.22* 73.78 85.01 80.02 79.76
34 	first 3 tks 74.03 77.74 81.88 81.04* 78.67 78.12 74.37* 84.14 82.74 79.84

35 PPDB Equ - - - - - 79.22 67.30 82.09 79.98 77.15
36 PPDB Fwd - - - - - 65.40 69.39 85.10* 82.75 75.66
37 PPDB Rev - - - - - 64.25 66.28 76.35 72.49 69.84

L
ex

ic
al

D
iv

er
si

ty

35 PARANMT 18.32 25.49 32.25 33.84 27.48 - - - - -
17 	3rd low IDF 9.25 20.62 35.76 41.88 26.88 6.59 15.57 26.78 34.54 20.87
21 	3 low IDF 0.00* 7.84* 22.04* 28.90* 14.70* 1.21* 6.90* 18.28 22.02 12.10
28 no con. 19.32 28.41 42.02 46.63 34.10 14.07 21.12 30.57 38.66 26.11
31 ⊕3rd top IDF 19.09 29.16 41.42 46.96 34.16 15.28 21.69 31.49 37.56 26.51
34 	first 3 tks 13.22 24.90 39.11 44.67 30.47 10.87 18.15 27.70 36.87 23.40

35 PPDB equ - - - - - 4.46 13.33 25.88 29.54 18.30
36 PPDB fwd - - - - - 1.51 8.87 14.14* 19.03* 10.89*
37 PPDB bkw - - - - - 3.94 9.69 18.94 26.24 14.70

Table 4: Top: Semantic similarity between paraphrases and reference sentences, as scored by human annotators on a 0-100
scale (least to most similar). Results are grouped by length of reference sentences {5, 10, 20, 40}. System names and numbers
correspond to Tab. 3. Improvements over PARANMT (Czech-English only) in bold. Asterisk (*) indicates best in column.
Bottom: Lexical diversity between generated paraphrases and reference sentences, as computed by a modified BLEU score with
no length penalty. Results are grouped by length of reference sentences, and BLEU is computed over concatenated references
and concatenated paraphrases. Lower BLEU scores indicate greater lexical divergence; the lowest per column (bottom half) is
indicated by (*).

also evaluate paraphrases for grammaticality and meaning-
fulness, independent of their reference.

For brevity, we picked 5 PARABANK systems (bold in
Tab. 3) to cover negative, positive, positional, and no con-
straint. We also include system 21 (3 lowest IDF tokens) to
show that too many constraints might significantly hurt se-
mantic similarity. Full evaluations on all proposed systems
will be included with the release of the resource.

5.1 Scoring PARABANK paraphrases
Following the approach of PPDB 2.0 (Pavlick et al., 2015a),
we trained a supervised model on the human annotations
we collected. We extracted several features from reference-
paraphrase pairs to predict human judgments of semantic
similarity on all paraphrases, with the exception of those
whose reference contains more than 100 tokens post-BPE.
The regression model achieves reasonable correlation with
human judgment on the test data with a Spearman’s ρ of
0.53 on CzEng and 0.63 on Giga.

5.2 Baseline comparison
Our baseline system with no lexical constraints applied
shows substantial improvement compared to PARANMT.
This could be a combination of improved training data and
NMT framework. PARANMT is trained on a 51.4M subset
of CzEng1.6, while PARABANK used CzEng1.7, a 57.0M

subset of CzEng1.6. We also switched to SOCKEYE as our
training framework. This baseline improvement gives us
more flexibility to pursue explicit lexical diversity with rea-
sonable compromise in semantic similarity.

5.3 Semantic similarity
Human judgment remains the gold standard of semantic
similarity. We randomly sampled 100 Czech-English sen-
tence pairs from each of the four English token lengths:
5, 10, 20, and 40. We translate 400 sentences from CzEng
under 34 PARABANK systems (without PPDB constraints)
and 400 sentences from Giga under 37 PARABANK systems.
Then, we merge identical outputs and add in the correspond-
ing PARANMT entries to the CzEng evaluation.

We randomize the paraphrase pool and formulate them
into Mechanical Turk Human Intelligence Tasks. Inspired
by the interface of EASL (Sakaguchi and Van Durme, 2018),
we ask workers to assign each paraphrase a score between 0
and 100 by adjusting a slider bar. Each worker is presented
with one reference sentence and five attempted paraphrases
at the same time. Occasionally, we present workers the ref-
erence sentence itself as a candidate paraphrase and expect
it to receive a perfect score. Workers who fail to do so more
than 10% of all times are disqualified for inattentiveness. In
total, we incorporated the annotations of 44 workers who
contributed at least 25 judgments. Each paraphrase receives
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independent judgments from at least 3 different workers.
We then calculate the average score for each sentence pair,

before averaging over all pairs from each PARABANK sys-
tem (or PARANMT). The final score for each system is a
number between 0 and 100.

The top half of Tab. 4 shows the average human judgment
over 100 sentences per reference length for PARABANK sys-
tems and PARANMT, grouped by sentence length.

Best performing PARABANK systems from each refer-
ence length outperform PARANMT relatively by 5.0%,
6.6%, 10.2%, and 14.0% in terms of semantic similarity
(corresponding to 5, 10, 20, 40 tokens per reference sen-
tence).

5.4 Lexical diversity
We used a modified BLEU score to evaluate lexical diver-
sity and a lower score suggests a higher lexical diversity.
Specifically, we concatenate6 multiple paraphrastic sentence
pairs into one reference paragraph and one paraphrase para-
graph, and calculate the associated BLEU score without
brevity penalty. This modification ensures that we don’t
reward shorter paraphrases. We compared the result with a
naive unigram precision metric and they show a strong cor-
relation with a Spearman’s ρ of 0.98.

The bottom half of Tab. 4 shows this modified BLEU
score for each PARABANK system and PARANMT, grouped
by reference length. For every length, there is at least one
PARABANK system that exhibits higher lexical diversity
than PARANMT; unsurprisingly, the PARABANK systems
that apply the greatest number of lexical constraints tend to
yield the greatest lexical diversity (e.g., system 21).

5.5 Meaningfulness and grammaticality
We ask annotators to comment on each paraphrase’s fluency
by flagging sentences that are completely nonsensical or in-
disputably ungrammatical. We consider a sentence nonsen-
sical or ungrammatical when at least one independent anno-
tator flags it as so.

We then calculate the percentage of sentences that are
deemed both meaningful and grammatical for each PARA-
BANK system and PARANMT.

The result is shown in Tab. 5. System 34 (avoid first 3 to-
kens) shows a 12.6% improvement over PARANMT. In all,
21 out of 34 proposed PARABANK systems contain a smaller
proportion of nonsensical or ungrammatical sentences than
PARANMT. The full set of annotations are available with
the resource.

6 Constrained monolingual rewriting
Napoles, Callison-Burch, and Post (2016) explored senten-
tial rewriting with machine translation models. Inspired by
their work, we use a subset of PARABANK, with more than
50 million English paraphrastic sentence pairs (English text
from CzEng as source, PARABANK outputs as target), to
train a monolingual NMT model, and decode with the same
types of constraint systems. We present the following result

6After switching all tokens to lowercase and stripping punctua-
tion to avoid rewarding trivial re-writes.

# System Cz-En Fr-En

- PARANMT 73.25 -
17 	3rdlow IDF 76.50 73.75
21 	3 low IDF 65.50 65.00
28 no con. 81.75 80.00*
31 ⊕3rdtop IDF 74.00 72.75
34 	first 3 tks 82.50* 77.50
35 PPDB equ - 69.97
36 PPDB fwd - 71.19
37 PPDB rev - 52.46

Table 5: Percentage of paraphrases for each system that
are rated by human annotators as both grammatical and
meaningful, independent of similarity to the reference sen-
tence. Improvements over PARANMT (Czech-English only)
in bold. Asterisk (*) indicates best in column.

as a proof of concept that highlights the potential for and
problems with the most straightforward instantiation of the
model. A thorough investigation of building such a mono-
lingual model is outside the scope of this work.

We decide to use the same LSTM model instead of more
advanced self-attention models to contrast between the bilin-
gual and monolingual models. After training for one epoch,
we decode the model with the same 5 constraint systems
(no. 17, 21, 28, 31, 34) evaluated for the bilingual model,
and ask human annotators7 to compare their semantic simi-
larity to the reference sentence in the same way. We sampled
100 sentences across the same 4 lengths (25 sentences per
length); each sentence receives at least 3 independent judg-
ments. The semantic similarity scores for this monolingual
system are reported in Tab. 6 (“Monolingual”) alongside lex-
ical diversity scores (modified BLEU).

Outputs from the monolingual model show a significant
boost in semantic similarity compared to bilingual counter-
parts, system 28 (no constraint) shows an improvement of
16.7%. This is accompanied by an increase in BLEU score,
a sign of less lexical diversity. Example outputs from the
monolingual model can be found in Tab. 7.

As evidenced in our examples, some monolingual systems
may generate slightly more nonsensical or ungrammatical
sentences than their bilingual counterparts: future work will
pursue more extensive model training and data filtering for
the monolingual model. Our intent here is to foremost illus-
trate the quality of PARABANK as a resource, while illustrat-
ing the feasibility of training and employing a monolingual
sentence rewriting model built atop the PARABANK artifact.

7 Conclusions and Future Work
We created PARABANK by decoding a neural machine trans-
lation (NMT) model with lexical constraints. We applied
our methods to CzEng 1.7 and Giga, leading to a large
collection of paraphrases with 79.5 million references and
on average 4 paraphrases per reference, which we make

7Same setup as §5.3. The result includes 8 workers who con-
tributed more than 25 judgments.
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# System Semantic Similarity Lexical Diversity
Bilingual (Cz-En) Monolingual Bilingual (Cz-En) Monolingual

- PARANMT 73.89 (std. 4.60) - 27.36 (4.89) -
17 	3rd low IDF 76.79 (std. 3.77) 74.56 (std. 9.17) 27.20 (std. 14.67) 33.04 (std. 18.58)
21 	3 low IDF 66.48 (std. 8.25) 63.35 (std. 19.59) 14.28 (std. 13.35) 24.82 (std. 20.52)
28 no con. 81.91 (std. 3.11) 86.25 (std. 3.94) 33.90 (std. 11.58) 44.36 (std. 13.69)
31 ⊕3rd top IDF 80.64 (std. 3.60) 83.09 (std. 4.23) 33.48 (std. 12.66) 43.80 (std. 13.39)
34 	first 3 tks 80.04 (std. 1.95) 84.47 (std. 4.10) 30.20 (std. 13.50) 39.81 (std. 10.52)
- Reference 99.81 (std. 0.16) - 100.00 (std. 0.00) -

Table 6: Comparison of bilingual (Czech-English) and monolingual (English-English) paraphrasing systems in terms of (1)
semantic similarity as rated by human annotators on a scale of 0-100, and (2) lexical diversity as measured by a modified
BLEU score without length penalty, where lower BLEU scores are taken as evidence of greater lexical diversity. We observe that
similarity and diversity scores for the monolingual rewriting systems exhibit higher variance than bilingual systems (sample
standard deviations given in parentheses); however, the monolingual rewriter is able to generate English paraphrases in the
absence of a Czech reference sentence.

Reference
Hey, it’s nothing to be ashamed of.

Paraphrases from the monolingual model
Hey, it’s nothing to be embarrassed.

Hey, it’s nothing to be ashamed.
Hey, it’s not like you’re ashamed of.

Hey, you don’t have to worry about that.
Hey, you don’t have to be ashamed.

Hey, there’s nothing you can be ashamed of.
You don’t have to be ashamed of it.

Hey, there’s nothing you can do about it.
Oh, hey, it’s no big deal.

Table 7: Example paraphrases generated from the monolin-
gual rewriting model, after applying the same set of lexical
constraints described in Tab. 3 and merging duplicates.

available for download at http://nlp.jhu.edu/parabank. Via
large-scale crowdsourced annotations, we found the overall
best performing PARABANK system exhibits an 8.5% rela-
tive improvement in terms of semantic similarity over prior
work. Analysis on lexical diversity showed the potential of
PARABANK as a more diverse and less noisy paraphras-
tic resource. In addition to releasing hundreds of millions
of English sentential paraphrases, we also release a free,
pre-trained, model for monolingual sentential rewriting, as
trained on PARABANK.

With the existence of PARABANK and an initial monolin-
gual rewriting model, future work can investigate how more
advanced NMT models, such as those with self-attention
structures, can lead to better rewriting. One may also inves-
tigate the automatic expansion of resources for a variety of
NLP tasks. For example, in Machine Translation one might
create sentential paraphrases from the English side of bitexts
for low-resource languages: cases where only small num-
bers of gold translations exist in English, and are expensive
or otherwise problematic to expand by hand. In Informa-
tion Extraction, one may rewrite sentences with structured
annotations such as for Named Entity Recognition (NER),
with positive constraints that phrases representing known

NER spans be preserved while some tokens of the remain-
der be negatively constrained, thereby providing additional
novel sentential contexts for IE system training. In educa-
tional NLP technology, one might wish to rewrite a sentence
that includes or excludes target vocabulary words a language
learner does not understand or is trying to acquire. There
are many other such examples in NLP where the ability to
rewrite existing datasets with lexical constraints could lead
to significantly larger and more diverse training sets, with no
additional human labor. To pursue such work may require a
large, high quality monolingual bitext to train a rewriting
model, and an NMT decoder supporting both positive and
negative constraints, such as we have introduced here.
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